

Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

 $P(E \cup F) = P(E) + P(F)$

Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = \frac{7}{50} + \frac{4}{5} = \frac{11}{50}$$

Today's Lesson

Dice – Our Misunderstood Friends

- Roll two 6-sided dice, yielding values D₁ and D₂
- Let **E** be event: $D_1 + D_2 = 4$
- What is P(E)?
 - ISI = 36, E = {(1, 3), (2, 2), (3, 1)}
 - P(E) = 3/36 = 1/12
- Let **F** be event: $D_1 = 2$
- P(E, given F already observed)?
 - $S = \{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)\}$
 - E = {(2, 2)}
 - P(E, given F already observed) = 1/6

Dice – Our Misunderstood Friends

- Two people each roll a die, yielding D_1 and D_2 . You win if $D_1 + D_2 = 4$
- Q: What do you think is the best outcome for D_1 ?
- Your Choices:
 - A. 1 and 3 tie for best
 - B. 1, 2 and 3 tie for best
 - C. 2 is the best
 - D. Other/none/more than one

- <u>Conditional probability</u> is probability that E occurs *given* that F has already occurred "Conditioning on F"
- Written as P(E|F)
 - Means "P(E, given F already observed)"
 - Sample space, S, reduced to those elements consistent with F $(i.e. S \cap F)$
 - Event space, E, reduced to those elements consistent with F $(i.e. E \cap F)$

With equally likely outcomes:

$$P(E \mid F) = \frac{\# \text{ of outcomes in } E \text{ consistent with } F}{\# \text{ of outcomes in } S \text{ consistent with } F}$$
$$= \frac{|EF|}{|SF|} = \frac{|EF|}{|F|}$$
$$P(E) = \frac{8}{50} \approx 0.16$$
$$P(E|F) = \frac{3}{14} \approx 0.21$$

• General definition:

$$P(E \mid F) = \frac{P(EF)}{P(F)}$$

- Holds even when outcomes are not equally likely
- Implies: P(EF) = P(E | F) P(F) (chain rule)

- What if P(F) = 0?
 - P(E | F) undefined
 - Congratulations! You observed the impossible!

Generalized Chain Rule

- General definition of Chain Rule:
 - $P(E_1 E_2 E_3 \dots E_n)$ = $P(E_1) P(E_2 | E_1) P(E_3 | E_1 E_2) \dots P(E_n | E_1 E_2 \dots E_{n-1})$

+ Learn

What is the probability that a user will watch Life is Beautiful?

P(E)

 $S = {Watch, Not Watch}$

 $E = {Watch}$

 $P(E) = \frac{1}{2}$?

What is the probability that a user will watch Life is Beautiful?

P(E)

What is the probability that a user will watch Life is Beautiful?

P(E)

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\text{\#people who watched movie}}{\text{\#people on Netflix}}$$

P(E) = 10,234,231 / 50,923,123 = 0.20

Let *E* be the event that a user watched the given movie:

What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

P(E|F)

$$P(E|F) = \frac{P(EF)}{P(F)}$$

What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

P(E|F)

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\frac{\#\text{people who watched both}}{\#\text{people on Netflix}}}{\frac{\#\text{people who watched }F}{\#\text{people on Netflix}}}$$

What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

P(E|F)

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\text{\#people who watched both}}{\text{\#people who watched }F}$$

P(E|F) = 0.42Piech, CS106A, Stanford University

Let E be the event that a user watched the given movie, Let F be the event that the same user watched Amelie:

Machine Learning

Machine Learning is: Probability + Data + Computers

Sophomores

- There are 260 students in CS109:
 - Probability that a random student in CS109 is a Sophomore is 0.43
 - We can observe the probability that a student is both a Sophomore and is in class
 - What is the conditional probability of a student coming to class given that they are a Sophomore?
- Solution:
 - -S is the event that a student is a sophomore
 - -A is the event that a student is in class

$$P(A|S) = \frac{P(SA)}{P(S)}$$

Thomas Bayes

 Rev. Thomas Bayes (1702 –1761) was a British mathematician and Presbyterian minister

He looked remarkably similar to Charlie Sheen
But that's not important right now...

But First!

Piech, CS106A, Stanford University

So, $P(E) = P(EF) + P(EF^{c})$

Note: $EF \cap EF^c = \emptyset$

Background Observation

Say E and F are events in S

Law of Total Probability

$P(E) = P(EF) + P(EF^{C})$ $= P(E|F)P(F) + P(E|F^{C})P(F^{C})$

Law of Total Probability

$$P(E) = \sum_{i} P(B_i \cap E)$$
$$= \sum_{i} P(E|B_i)P(B_i)$$

Moment of Silence...

Bayes Theorem

I want to calculate P(State of the world, $F \mid$ Observation, E) It seems so tricky!...

The other way around is easy P(Observation, $E \mid$ State of the world, F) What options to I have, chef?

P(E | F)

P(F | E)

Bayes Theorem

Want P(F | E). Know P(E | F)

$$P(F|E) = \frac{P(EF)}{P(E)}$$

Chain Rule

Bayes Theorem

• Most common form:

$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

• Expanded form:

$$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^C)P(F^C)}$$

HIV Testing

- A test is 98% effective at detecting HIV
 - However, test has a "false positive" rate of 1%
 - 0.5% of US population has HIV
 - Let E = you test positive for HIV with this test
 - Let F = you actually have HIV
 - What is P(F | E)?
- Solution:

HIV Testing

- A test is 98% effective at detecting HIV
 - However, test has a "false positive" rate of 1%
 - 0.5% of US population has HIV
 - Let E = you test positive for HIV with this test
 - Let F = you actually have HIV
 - What is P(F | E)?
- Solution:

 $P(F | E) = \frac{P(E | F) P(F)}{P(E | F) P(F) + P(E | F^{c}) P(F^{c})}$ $P(F | E) = \frac{(0.98)(0.005)}{(0.98)(0.005) + (0.01)(1 - 0.005)} \approx 0.330$

Intuition Time

Bayes Theorem Intuition

All People

Bayes Theorem Intuition

Conditioning on a positive result changes the sample space to this:

Piech, CS106A, Stanford University

≈ 0.330

Conditioning on a positive result changes the sample space to this:

Say we have 1000 people:

5 have HIV and test positive, 985 do not have HIV and test negative 10 do not have HIV and test positive. Piech. CS106A. Sta ≈ 0.333 iversity

Why It's Still Good to get Tested

	HIV +	HIV –
Test +	0.98 = P(E F)	$0.01 = P(E F^{c})$
Test –	$0.02 = P(E^{c} F)$	$0.99 = P(E^{c} F^{c})$

- Let E^c = you test <u>negative</u> for HIV with this test
- Let F = you actually have HIV
- What is P(F | E^c)?

 $P(F | E^{c}) = \frac{P(E^{c} | F) P(F)}{P(E^{c} | F) P(F) + P(E^{c} | F^{c}) P(F^{c})}$ $P(F | E^{c}) = \frac{(0.02)(0.005)}{(0.02)(0.005) + (0.99)(1 - 0.005)} \approx 0.0001$

Slicing Up Spam

In 2010 88% of email was spam Piech, CS106A, Stanford University

Simple Spam Detection

- Say 60% of all email is spam
 - 90% of spam has a forged header
 - 20% of non-spam has a forged header
 - Let E = message contains a forged header
 - Let F = message is spam
 - What is P(F | E)?
- Solution: $P(F \mid E) = \frac{P(E \mid F) P(F)}{P(E \mid F) P(F) + P(E \mid F^c) P(F^c)}$

 $P(F \mid E) = \frac{(0.9)(0.6)}{(0.9)(0.6) + (0.2)(0.4)} \approx 0.871$

Before Observation

Before Observation

		Z
	l í	

After Observation

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{P(O)}$$

Piech, CS106A, Stanford University

 $P(L_5|O)$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_i P(O|L_i)P(L_i)}$$

 $P(L_5|O)$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_i P(O|L_i)P(L_i)}$$

 $P(L_5|O)$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_i P(O|L_i)P(L_i)}$$

 $P(L_5|O)$

Monty Hall

Let's Make a Deal

• Game show with 3 doors: A, B, and C

- Behind one door is prize (equally likely to be any door)
- Behind other two doors is nothing
- We choose a door
- Then host opens 1 of other 2 doors, revealing nothing
- We are given option to change to other door
- Should we?
 - Note: If we don't switch, P(win) = 1/3 (random)

Let's Make a Deal

- Without loss of generality, say we pick A
 - P(A is winner) = 1/3
 - $_{\odot}$ Host opens either B or C, we <u>always lose</u> by switching
 - \circ P(win | A is winner, picked A, switched) = 0
 - P(B is winner) = 1/3
 - $_{\odot}$ Host <u>must</u> open C (can't open A and can't reveal prize in B)
 - So, by switching, we switch to B and <u>always win</u>
 - \circ P(win | B is winner, picked A, switched) = 1
 - P(C is winner) = 1/3
 - Host <u>must</u> open B (can't open A and can't reveal prize in C)
 - So, by switching, we switch to C and <u>always win</u>
 - \circ P(win | C is winner, picked A, switched) = 1
 - Should always switch!

○ P(win | picked A, switched) = (1/3*0) + (1/3*1) + (1/3*1) = 2/3

Slight Variant to Clarify

- Start with 1,000 envelopes, of which 1 is winner
 - You get to choose 1 envelope

 Probability of choosing winner = 1/1000
 - Consider remaining 999 envelopes

 Probability one of them is the winner = 999/1000
 - I open 998 of remaining 999 (showing they are empty)
 - Probability the last remaining envelope being winner = 999/1000
 - Should you switch?

Probability winning without switch =

1 original # envelopes

 \circ Probability winning with switch = $\frac{\text{original # envelopes - 1}}{\text{original # envelopes}}$

original # envelopes

