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Conditional Probability



Mutually Exclusive Events

P (E [ F ) = P (E) + P (F )

If events are mutually exclusive, probability of OR is simple:
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Today’s Lesson
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• Roll two 6-sided dice, yielding values D1 and D2

• Let E be event: D1 + D2 = 4
• What is P(E)?

§ |S| = 36,  E = {(1, 3), (2, 2), (3, 1)}
§ P(E) = 3/36 = 1/12

• Let F be event: D1 = 2
• P(E, given F already observed)?

§ S = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}
§ E = {(2, 2)}
§ P(E, given F already observed) = 1/6

Dice – Our Misunderstood Friends
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Dice – Our Misunderstood Friends

• Two people each roll a die, yielding D1 and D2. 
You win if D1 + D2 = 4

• Q: What do you think is the best outcome for D1 ?

• Your Choices:
§ A. 1 and 3 tie for best
§ B. 1, 2 and 3 tie for best
§ C. 2 is the best
§ D. Other/none/more than one



Piech, CS106A, Stanford University

• Conditional probability is probability that E occurs 
given that F has already occurred “Conditioning on F”

• Written as 
§ Means “P(E, given F already observed)”
§ Sample space, S, reduced to those elements 

consistent with F   (i.e. S Ç F)
§ Event space, E, reduced to those elements    

consistent with F   (i.e. E Ç F)

Conditional Probability

P (E|F )
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With equally likely outcomes:

P(E | F) =                                          
=

# of outcomes in E consistent with F

# of outcomes in S consistent with F
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Conditional Probability

P (E|F ) =
3

14
⇡ 0.21

P (E) =
8

50
⇡ 0.16
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• General definition:

• Holds even when outcomes are not equally likely
• Implies: P(EF) = P(E | F) P(F) (chain rule)

• What if P(F) = 0?
§ P(E | F) undefined
§ Congratulations!  You observed the impossible!
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• General definition of Chain Rule:
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Generalized Chain Rule
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+ Learn
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Netflix and Learn

P(E)

S = {Watch, Not Watch} 

E = {Watch} 

P(E) = ½ ?

What is the probability 
that a user will watch

Life is Beautiful?
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What is the probability 
that a user will watch

Life is Beautiful?

P(E)

Netflix and Learn
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What is the probability 
that a user will watch

Life is Beautiful?

P(E)

Netflix and Learn

P(E) = 10,234,231 / 50,923,123 = 0.20

P (E) = lim
n!1

n(E)

n
⇡ #people who watched movie

#people on Netflix
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Netflix and Learn

Let E be the event that a user watched the given movie:

P(E) =
0.19

P(E) =
0.32

P(E) =
0.20

P(E) =
0.09

P(E) =
0.23

* These are the actual estimates
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Netflix and Learn

What is the probability 
that a user will watch
Life is Beautiful, given 
they watched Amelie?

P(E|F)

P (E|F ) =
P (EF )

P (F )
=

#people who watched both
#people on Netflix

#people who watched F
#people on Netflix

P (E|F ) =
P (EF )

P (F )
=

#people who watched both
#people on Netflix

#people who watched F
#people on Netflix
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Netflix and Learn

P(E|F)

What is the probability 
that a user will watch
Life is Beautiful, given 
they watched Amelie?
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Netflix and Learn

P(E|F)

P(E|F) = 0.42

What is the probability 
that a user will watch
Life is Beautiful, given 
they watched Amelie?

P (E|F ) =
P (EF )

P (F )
=

#people who watched both
#people on Netflix

#people who watched F
#people on Netflix

#people who watched both

#people who watched F
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Netflix and Learn

Let E be the event that a user watched the given movie,
Let F be the event that the same user watched Amelie:

P(E|F) =
0.14

P(E|F) =
0.35

P(E|F) =
0.20

P(E|F) =
0.72

P(E|F) =
0.49
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Machine Learning

Machine Learning is:
Probability + Data + Computers 
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• There are 260 students in CS109:
– Probability that a random student in CS109 is a Sophomore 

is 0.43
– We can observe the probability that a student is both a 

Sophomore and is in class
– What is the conditional probability of a student coming to 

class given that they are a Sophomore?
• Solution:

– S is the event that a student is a sophomore
– A is the event that a student is in class

Sophomores 

P (A|S) = P (SA)

P (S)
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• Rev. Thomas Bayes (1702 –1761) was a 
British mathematician and Presbyterian 
minister

• He looked remarkably similar to Charlie Sheen
§ But that’s not important right now...

Thomas Bayes

Bi-Winning!
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But First!
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• Say E and F are events in S

E F

S

E = EF È EFc

Note: EF Ç EFc = Æ

So, P(E) = P(EF) + P(EFc) 

Background Observation
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Law of Total Probability

P (E) = P (EF ) + P (EFC)

= P (E|F )P (F ) + P (E|FC)P (FC)

F FC

Sample Space

E
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Law of Total Probability

B1
B2

Sample Space

E
B3 B4

P (E) =
X

i

P (Bi \ E)

=
X

i

P (E|Bi)P (Bi)
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Moment of Silence…
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I want to calculate 
P(State of the world, F | Observation, E)

It seems so tricky!…

The other way around is easy
P(Observation, E | State of the world, F)

What options to I have, chef?

P( F | E )

P( E | F )

Bayes Theorem 
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Bayes Theorem 
Want P( F | E ).  Know P( E | F )

A little while later…
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• Most common form:

• Expanded form:

Bayes Theorem 

P (F |E) =
P (E|F )P (F )

P (E|F )P (F ) + P (E|FC)P (FC)
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• A test is 98% effective at detecting HIV
§ However, test has a “false positive” rate of 1%
§ 0.5% of US population has HIV
§ Let E = you test positive for HIV with this test
§ Let F = you actually have HIV
§ What is P(F | E)?

• Solution:

HIV Testing
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• A test is 98% effective at detecting HIV
§ However, test has a “false positive” rate of 1%
§ 0.5% of US population has HIV
§ Let E = you test positive for HIV with this test
§ Let F = you actually have HIV
§ What is P(F | E)?

• Solution:

P(E | F) P(F) + P(E | Fc) P(Fc)
P(F | E) =

P(E | F) P(F)

(0.98)(0.005) + (0.01)(1 - 0.005)
P(F | E) =

(0.98)(0.005)
» 0.330

HIV Testing
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Intuition Time
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Bayes Theorem Intuition

All People
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Bayes Theorem Intuition

All People

People with HIV
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Bayes Theorem Intuition

All People

People who test positive
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Bayes Theorem Intuition

All People

People with HIV

People who test positive
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Bayes Theorem Intuition

Conditioning on a positive result changes the 
sample space to this:

» 0.330

People who 
test positive

People who test 
positive and have 
HIV
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Bayes Theorem Intuition

Conditioning on a positive result changes the 
sample space to this:

» 0.330

People who 
test positive

P(F)P(E|F)

P(F)P(E|F) + 
P(Fc)P(E|Fc)

People who test 
positive and have 
HIV
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Bayes Theorem Intuition

All People

People with positive 
test

People with HIV
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Bayes Theorem Intuition
Say we have 1000 people:

5 have HIV and test positive, 985 do not have HIV and test negative.
10 do not have HIV and test positive. » 0.333



Piech, CS106A, Stanford University

§ Let Ec = you test negative for HIV with this test
§ Let F = you actually have HIV
§ What is P(F | Ec)?

P(Ec | F) P(F) + P(Ec | Fc) P(Fc)
P(F | Ec) = P(Ec | F) P(F)

(0.02)(0.005) + (0.99)(1 - 0.005)
P(F | Ec) = (0.02)(0.005)

» 0.0001

HIV + HIV –
Test + 0.98 = P(E | F) 0.01 = P(E | Fc)
Test – 0.02 = P(Ec | F) 0.99 = P(Ec | Fc)

Why It’s Still Good to get Tested
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Slicing Up Spam

In 2010 88% of email was spam
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• Say 60% of all email is spam
§ 90% of spam has a forged header
§ 20% of non-spam has a forged header
§ Let E = message contains a forged header
§ Let F = message is spam
§ What is P(F | E)?

• Solution:
P(E | F) P(F) + P(E | Fc) P(Fc)

P(F | E) = P(E | F) P(F)

(0.9)(0.6) + (0.2)(0.4)
P(F | E) = (0.9)(0.6)

» 0.871

Simple Spam Detection
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Update Belief

Before Observation

P (L1) P (L2)

P (L5)
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Update Belief

Before Observation After Observation

P (L5)
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Update Belief

Before Observation After Observation

P (L5)

P (L5|O) =
P (O|L5)P (L5)

P (O)

P (L5|O)
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Update Belief

Before Observation After Observation

P (L5) P (L5|O)
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Update Belief

Before Observation After Observation

P (L5) P (L5|O)
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Update Belief

Before Observation After Observation

P (L5) P (L5|O)
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Monty Hall
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• Game show with 3 doors: A, B, and C

§ Behind one door is prize (equally likely to be any door)
§ Behind other two doors is nothing
§ We choose a door
§ Then host opens 1 of other 2 doors, revealing nothing
§ We are given option to change to other door

• Should we?
§ Note: If we don’t switch, P(win) = 1/3    (random)

Let’s Make a Deal
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• Without loss of generality, say we pick A
§ P(A is winner) = 1/3

o Host opens either B or C, we always lose by switching
o P(win | A is winner, picked A, switched) = 0

§ P(B is winner) = 1/3
o Host must open C (can’t open A and can’t reveal prize in B)
o So, by switching, we switch to B and always win
o P(win | B is winner, picked A, switched) = 1

§ P(C is winner) = 1/3
o Host must open B (can’t open A and can’t reveal prize in C)
o So, by switching, we switch to C and always win
o P(win | C is winner, picked A, switched) = 1

§ Should always switch!
o P(win | picked A, switched) = (1/3*0) + (1/3*1) + (1/3*1) = 2/3

Let’s Make a Deal
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• Start with 1,000 envelopes, of which 1 is winner
§ You get to choose 1 envelope

o Probability of choosing winner = 1/1000

§ Consider remaining 999 envelopes
o Probability one of them is the winner = 999/1000

§ I open 998 of remaining 999 (showing they are 
empty)
o Probability the last remaining envelope being winner = 

999/1000

§ Should you switch?
o Probability winning without switch =

o Probability winning with switch =  

1

original # envelopes

original # envelopes - 1

original # envelopes

Slight Variant to Clarify
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