
• How to calculate the probability of at least k
successes in n trials?
§ X is number of successes in n trials each with 

probability p
§

Debugging Intuition

Correct:

First clue that 
something is wrong. 

Think about p = 1
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1. Be able to calculate variance for a random variable
2. Be able to recognize and use a Bernoulli Random Var
3. Be able to recognize and use a Binomial Random Var

Learning Goals



Is Peer Grading Accurate Enough?

Peer Grading on Coursera
HCI. 

31,067 peer grades for 
3,607 students.  

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller
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Review: Random Variables

For example:
X is the sum of two dice rolled.

A random variable takes on values 
probabilistically.
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Review: Probability Mass Function

The probability mass function (PMF) of a 
random variable is a function from values 
of the variable to probabilities.
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Review: Expectation

The expectation of a random variable is the 
“average” value of the variable (weighted by 
probability).



• Linearity:

• Expectation of a sum is the sum of expectations

• Unconscious statistician:

Properties of Expectation

E[aX + b] = aE[X] + b

E[X + Y ] = E[X] + E[Y ]



Random 
Variable

E[X]

P(X=x)
Semantic 
Meaning

Fundamental Properties



Four Prototypical Trajectories

Is E[X] enough?



Intuition

Peer Grading on Coursera
HCI. 

31,067 peer grades for 
3,607 students.  



X is the score peer graders give to an assignment submission with 
true grade 70 
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• Consider the following 3 distributions (PMFs)

• All have the same expected value, E[X] = 3
• But “spread” in distributions is different
• Variance = a formal quantification of “spread”

Variance



Peer Grades in Coursera HCI

-80 -60 -40 -20 0 20 40 60 8060 80 10040200

True grade = 58
E[X] = 57.5 

Let X be a random variable that represents a peer grade for 
an assignment that has a true grade of 58.



Peer Grades in Coursera HCI

-80 -60 -40 -20 0 20 40 60 8060 80 10040200

True grade = 58
E[X] = 57.5 

Let X be a random variable that represents a peer grade
Var(X) = E[(X – µ)2]
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25 points 1056 points2



Peer Grades in Coursera HCI

-80 -60 -40 -20 0 20 40 60 8060 80 10040200

True grade = 58
E[X] = 57.5 

Let X be a random variable that represents a peer grade
Var(X) = E[(X – µ)2]

X (X – µ)2
25 points 1056 points2

80 points 506 points2



Peer Grades in Coursera HCI

-80 -60 -40 -20 0 20 40 60 8060 80 10040200

True grade = 58
E[X] = 57.5 

Let X be a random variable that represents a peer grade
Var(X) = E[(X – µ)2]

X (X – µ)2
25 points 1056 points2

80 points 506 points2

50 points 56 points2



Peer Grades in Coursera HCI

-80 -60 -40 -20 0 20 40 60 8060 80 10040200

True grade = 58
E[X] = 57.5 

Let X be a random variable that represents a peer grade
Var(X) = E[(X – µ)2]

X (X – µ)2
25 points 1056 points2

80 points 506 points2

50 points 56 points2

…

E [(X – µ)2] = 52 points2



Peer Grades in Coursera HCI

-80 -60 -40 -20 0 20 40 60 8060 80 10040200

True grade = 58
E[X] = 57.5 

Let X be a random variable that represents a peer grade
Var(X) = E[(X – µ)2]

X (X – µ)2
25 points 1056 points2

80 points 506 points2

50 points 56 points2

…

E [(X – µ)2] = 52 points2

Std(X) = 7.2 points



• If X is a random variable with mean µ then the 
variance of X, denoted Var(X), is:

Var(X) = E[(X – µ)2]

• Note: Var(X) ≥ 0

• Also known as the 2nd Central Moment, or 
square of the Standard Deviation

Variance



Recall: Unconscious statistician:

Computing Variance
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Ladies and gentlemen, please 
welcome the 2nd moment!

Computing Variance

Note: µ = E[X]



• Let X = value on roll of 6 sided die
• Recall that E[X] = 7/2
• Compute E[X2]
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Variance of a 6 sided dice



• Var(aX + b) = a2Var(X)
§ Proof:

Var(aX + b) = E[(aX + b)2] – (E[aX + b])2

= E[a2X2 + 2abX + b2] – (aE[X] + b)2

= a2E[X2] + 2abE[X] + b2 – (a2(E[X])2 + 2abE[X] + b2)
= a2E[X2] – a2(E[X])2 = a2(E[X2] – (E[X])2)
= a2Var(X)

• Standard Deviation of X, denoted SD(X), is:

§ Var(X) is in units of X2

§ SD(X) is in same units as X

)(Var)(SD XX =

Properties of Variance



Random 
Variable

E[X]

P(X=x)
Semantic 
Meaning

Var(X)

Std(X)
E[X2]

Fundamental Properties



Four Prototypical Trajectories

Lots of fun with Random Variables



Four Prototypical Trajectories

Classics





• Jacob Bernoulli (1654-1705), also known as 
“James”, was a Swiss mathematician

• One of many mathematicians in Bernoulli family
• The Bernoulli Random Variable is named for him
• He is my academic great12-grandfather
• Ice Cube at a renaissance fair?

Jacob Bernoulli



• Experiment results in “Success” or “Failure”
§ X is random indicator variable (1 = success, 0 = failure)
§ P(X = 1) = p P(X = 0) = 1 – p
§ X is a Bernoulli Random Variable:  X ~ Ber(p)
§ E[X] = p
§ Var(X) = p(1 – p)

• Examples
§ coin flip
§ random binary digit
§ whether a disk drive crashed
§ whether someone likes a netflix movie

Bernoulli Random Variable

Feel the Bern!



Run a program, crashes with probability p = 0.1, 

works with probability (1 – p)

X: 1 if program crashes

P(X = 1) = p
P(X = 0) = 1 - p

X ~ Ber(p = 0.1)

Does a Program Crash?



Serve an ad, clicked with probability p = 0.01, 

ignored with prob. (1 – p)

C: 1 if ad is clicked

P(C = 1) = p
P(C = 0) = 1 - p

C ~ Ber(p = 0.01)

Does a User Click an Ad?



Four Prototypical Trajectories

More!



• Consider n independent trials of Ber(p) rand. var.
§ Let X be the number of successes in n trials
§ X is a Binomial Random Variable:  X ~ Bin(n, p)

• Examples
§ # of heads in n coin flips
§ # of 1’s in randomly generated length n bit string
§ # of disk drives crashed in 1000 computer cluster

o Assuming disks crash independently

Binomial Random Variable



Bernoulli vs Binomial

Bernoulli is an indicator RV

+

+
+

Binomial is the sum of n
Bernoullis

=



• Three fair (“heads” with p = 0.5) coins are flipped
§ X is number of heads
§ X ~ Bin(n = 3, p = 0.5)

8
1)1(

0
3

)0( 30 =-÷÷
ø

ö
çç
è

æ
== ppXP

8
3)1(

2
3

)2( 12 =-÷÷
ø

ö
çç
è

æ
== ppXP

8
3)1(

1
3

)1( 21 =-÷÷
ø

ö
çç
è

æ
== ppXP

8
1)1(

3
3

)3( 03 =-÷÷
ø

ö
çç
è

æ
== ppXP

Three Coin Flips



Consider: X ~ Bin(n, p)

•

•

•

• Note: Ber(p) = Bin(1, p)

Properties of Bin(n, p)





I Really Want the Proof of Var :)



n runs of program, each crashes with probability p = 0.1, 
works with probability (1 – p).

What is the probability of exactly 2 crashes with 100 users?

H: number of crashes

P(H = k) =       

H ~ Bin(n = 100, p = 0.1)

How Many Program Crashes?

✓
n

k

◆
(p)k(1� p)n�k



n runs of program, each crashes with probability p = 0.1, 
works with probability (1 – p).

What is the probability of < 3 crashes with 100 users?

H: number of crashes

P(H = k) =       

H ~ Bin(n = 100, p = 0.1)

How Many Program Crashes?

✓
n

k

◆
(p)k(1� p)n�k



1000 ads served, each clicked with p = 0.01, otherwise ignored.
Expectation and Standard deviation of number of ads clicked?

H: number of clicks

H ~ Bin(n = 1000, p = 0.01)

How Many Ads Clicked?

P(H = k) =       
✓
1000

k

◆
(0.01)k(0.99)1000�k

Var(H) = np(1-p) = 9.9

Std(H) = 3.15

E(H) = np = 10



Galton Board



Galton Board

When a marble hits a pin, it has 
equal chance of going left or 
right. 



Galton Board

When a marble hits a pin, it has 
equal chance of going left or 
right. Each pin represents an 
independent event.



Galton Board
The bucket index that a marble 
lands in is equal to the number of 
times the marble went right 

0 1 2 3 4 5



Galton Board
We can define an indicator 
random variable (R) which 
represents whether a particular 
marble goes right as a Bernoulli 
R ~ Ber(0.5)

0 1 2 3 4 5



Galton Board

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in.

0 1 2 3 4 5



Galton Board

0 1 2 3 4 5

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(levels, 0.5)



Galton Board

0 1 2 3 4 5

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)



Galton Board

0 1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)



Galton Board

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)

0 1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

P (B = 0) =

✓
5

0

◆
1

2

5

⇡ 0.03



Galton Board

0 1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

P (B = 1) =

✓
5

1

◆
1

2

5

⇡ 0.16

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)



Galton Board

0 1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

P (B = 2) =

✓
5

2

◆
1

2

5

⇡ 0.31

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)



Galton Board

0 1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

P (B = 3) =

✓
5

2

◆
1

2

5

⇡ 0.31

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)



0

Galton Board

1 2 3 4 5

Calculate the probability of a 
marble landing in a bucket.

PDF

We can define an indicator 
random variable (B) which 
represents what bucket a marble 
lands in. B ~ Bin(5, 0.5)





k

P(X=k)

PMF for X ~ Bin(n = 10, p = 0.5)



k

P(X=k)

PMF for X ~ Bin(n = 10, p = 0.3)



• Person has 2 genes for trait (eye color)
§ Child receives 1 gene (equally likely) from each parent
§ Child has brown eyes if either (or both) genes brown
§ Child only has blue eyes if both genes blue
§ Brown is “dominant” (d) ,  Blue is “recessive” (r)
§ Parents each have 1 brown and 1 blue gene

• 4 children, what is P(3 children with brown eyes)?
§ Child has blue eyes: p = (½) (½)  = ¼   (2 blue genes)
§ P(child has brown eyes) = 1 – (¼) = 0.75
§ X = # of children with brown eyes.  X ~ Bin(4, 0.75)
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Genetic Inheritance
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Have original 4 bit string to send over network.
Add 3 “parity” bits and send 7 bits total

Each bit independently corrupted (flipped) in transmission with
probability 0.1. What is the probability of successful transmition?

Key Send 1110?

Receive 1110000? Receive 1010100?

A

B

C

1
2

3

4

5 6

7



Have original 4 bit string to send over network.
Add 3 “parity” bits and send 7 bits total

Each bit independently corrupted (flipped) in transmission with
probability 0.1. What is the probability of successful transmition?



Three Graders
Three peer graders (A, B, C) grade the same submission for a 

problem with 100 points.  Each grader gives a grade which is a 
Binomial with n = 100, p = 0.8. What is the Expected average 

of their three grades?



Is Peer Grading Accurate Enough?

Peer Grading on Coursera
HCI. 

31,067 peer grades for 
3,607 students.  

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

Looking ahead



Is Peer Grading Accurate Enough?

1. Defined random variables for:
• True grade (si) for assignment i
• Observed (zi

j) score for assign i
• Bias (bj) for each grader j
• Variance (rj) for each grader j

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

2. Designed a probabilistic model that    
defined the distributions for all random 
variables

zji ⇠ N (µ = si + bj ,� =
p
rj)

si ⇠ Bin(points, ✓)

Problem param

Looking ahead



Is Peer Grading Accurate Enough?

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

2. Designed a probabilistic model that    
defined the distributions for all random 
variables

3. Found the variable assignments that 
maximized the probability of our 
observed data

1. Defined random variables for:
• True grade (si) for assignment i
• Observed (zi

j) score for assign i
• Bias (bj) for each grader j
• Variance (rj) for each grader j

Inference or Machine Learning

Looking ahead
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Yes, With Probabilistic Modelling

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

81% 
within 
10pp
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“sweet spot of grading”: ~ 
20 minutes

Grading Sweet Spot



Four Prototypical Trajectories

Voilà, c'est tout




