Debugging Intuition

How to calculate the probability of at least k
successes in n trials?

= X is number of successes in n trials each with
probability p

. P(X > k) — First clue that
_ something is wrong.

n DOﬂ"" care about Think about p = 1
pk the rest
k X Not mutually
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Correct: P(X > k) = Zn: (?)pi(i _ )
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Learning Goals

1. Be able to calculate variance for a random variable
2. Be able to recognize and use a Bernoulli Random Var
3. Be able fo recognize and use a Binomial Random Var




Is Peer Grading Accurate Enough?

Peer Grading on Coursera
HCI.

31,067 peer grades for
3,607 students.

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller




Review: Random Variables

A random variable takes on values
probabilistically.

For example:
X 1s the sum of two dice rolled.

1
P(X=2)=%



Review: Probability Mass Function

The probability mass function (PMF) of a
random variable is a function from values
of the variable to probabilities.

px(x) = P(X=x)
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Review: Expectation

The expectation of a random variable is the
“average” value of the variable (weighted by
probability).

x:p(x)>0
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Properties of Expectation

. Linearity:

ElaX + bl =aF|X]+ b

- Expectation of a sum is the sum of expectations

E[X +Y] = E[X] + E[Y]

- Unconscious statistician:

Elg(X)] =) g(z)p(x)



Fundamental Properties

Semantic

Random
Variable




Is E[X] enough??



Intuition

Peer Grading on Coursera
L HCI.

z p u 31,067 peer grades for
Mo hv, wd BRI 3,607 students.
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X 1s the score peer graders give to an assignment submission with
true grade 70

True grade
P(X = x) P(X'=x) P(X'=x)
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Variance

- Consider the following 3 distributions (PMFs)
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- All have the same expected value, E[X] =
- But “spread” in distributions is different
- Variance = a formal quantification of “spread”



Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade for
an assignment that has a true grade of 58.

True grade = 58
E[X]=57.5

0 20 40 60 80 100



Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58
E[X]=57.5

20 40 60 80 100



Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58 X (X — py?
E[X]=57.5 25 points 1056 points?
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58 X (X — py?
E[X]=57.5 25 points 1056 points?
80 points 506 points?
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade

Var(X) = E[(X - 1)°]

True grade = 58 X
A IZ >/ 25 points
| 80 points
N 50 points
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(X —
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58 X (X — py?
E[X]=57.5 25 points 1056 points?

80 points 506 points?
50 points 56 points?

|
|
|
|
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: E [(X — )] = 52 points?
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58 X (X — py?
E[X]=57.5 25 points 1056 points?

80 points 506 points?
50 points 56 points?

E [(X — 1)?] = 52 points?

|
|
I
I
I
I
| Std(X) = 7.2 points
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Variance

- If X'is a random variable with mean u then the
variance of X, denoted Var(X), is:

Var(X) = E[(X - 4]

+ Note: Var(X) =20

- Also known as the 2nd Central Moment, or

square of the Standard Deviation



Computing Variance

Var(X) = E[(X — p)?

Recall: Unconscious statistician:




Computing Variance

Var(X) = E[(X — 1)°] Note: pt = F|X]
= (x— )’ p(x)

= > (X =2ux+ p*) p(x)

=X p(x)=2p) xp(x)+ 4 Y p(x)

=(E[ X —2,uE[X]+,uz Ladies and gentlemen, please
- 5, welcome the 2" moment!
=FE|X"|-2u "+ u

= E[X*]-p°
= E[X*]-(E[X])’




Variance of a 6 sided dice

- Let X = value on roll of 6 sided die

- Recall that E[X] = 7/2
. Compute E[X?]

E[X*]= (12)é + (22)é + (32)1 L (42)1 N (52)1 N (62)1 _9

Var(X) = E[X°]—-(E[X])
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Properties of Variance

. Var(aX + b) = a?Var(X)
« Proof:
Var(aX +b) = E[(aX + b)q] — (E[aX + b])?
= E[a®X? + 2abX + b?] — (aE[X] + b)?
= a?E[X?] + 2abE[X] + b% — (a¥(E[X])? + 2abE[X] + b?)
= a’E[X?] — a*(E[X])* = a*(E[X’] - (E[X])?)
= a*Var(X)
- Standard Deviation of X, denoted SD(X), is:
SD(X) =,/ Var(X)
. Var(X) is in units of X?
« SD(X) is in same units as X




Fundamental Properties

Semantic

Random
Variable

E[X2]



Lots of fun with Random Variables



Classics






Jacob Bernoulli

Jacob Bernoulli (1654-1705), also known as
“James”, was a Swiss mathematician

One of many mathematicians in Bernoulli family
The Bernoulli Random Variable is named for him
He is my academic great'?-grandfather

lce Cube at a renaissance fair?



Bernoulli Random Variable

Experiment results in “Success” or “Failure”

= X is random indicator variable (1 = success, 0 = failure)
» PX=1)=p PX=0)=1-p

= X is a Bernoulli Random Variable: X ~ Ber(p)

« E[X]=p /—/\ R
= Var(X) =p(1 —p) Feel the Bern!

Examples N Y
= coin flip

» random binary digit
= whether a disk drive crashed
= whether someone likes a netflix movie



Does a Program Crash?

(‘,E

Run a program, crashes with probability p = 0.1,
works with probability (1 — p)

X: 1 1f program crashes

P(X=1)=p
PX=0)=1-p

X ~Ber(p=0.1)



Does a User Click an Ad?

Serve an ad, clicked with probability p = 0.01,
ignored with prob. (1 — p)

C: 1 1f ad 1s clicked

P(C=1)=p
P(C=0)=1-p

C ~ Ber(p = 0.01)



More!



Binomial Random Variable

Consider n independent trials of Ber(p) rand. var.
= Let X be the number of successes in n trials
= X is a Binomial Random Variable: X ~ Bin(n, p)

P(X =1) = (?)p"(l — )" " where i € {0,1,...,n}

Examples
« # of heads in n coin flips
« # of 1's in randomly generated length n bit string

« # of disk drives crashed in 1000 computer cluster
o Assuming disks crash independently



Bernoulli vs Binomial

Bernoulli is an indicator RV

Binomial is the sum of n
Bernoullis




Three Coin Flips

- Three fair ("heads” with p = 0.5) coins are flipped
« X is number of heads
« X ~Bin(n=3,p=0.5)

3) .1
P(X =0)= (jp (1-p) =3

3
1

_3

P(X =1)= Op(l p)’ =

\USEE \O)

8
3 3
P(X =2) ( p(- P)_g

P(X =3)=

1
31_ O:_
p(1-p) .

Wl



Properties of Bin(n, p)

Consider: X ~ Bin(n, p)
T

- P(X =1) = <i>pi(1 —p)" " where i € {0,1,...,n}
. F|X]|=mnp

+ Var(X) = np(1 — p)

. Note: Ber(p) = Bin(l, p)



Binomial distribution

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribuX
of nindependent experiments, each asking a yes-no question, and each with its own boclean-valued cutcome: a random v
successiyesirualone (with probabilty p) or failure/nafalse/zero (with probability g = 1 - p). A single successailure experime
Bernoulli experiment and a sequence of outcomes is called a Bermnoulli process; for a single trial, l.e., n = 1, the binomial distr
binomial distribution Is the basis for the popular binomial test of statistical significance.

The binomial distribution is frequently used to model the number of Successes in a sampie of size n drawn with replacement
is carried out without replacement, the draws are not independent and so the resulting distribution is a hypergeometric
much larger than n, the binomial distridution remains a good approximation, and is widely used.

7 Covariance between two binomials (
8 Related distributions

8.1 Sums of binomials
8.2 Ratio of two binomial distributions
8.3 Conditional binomials

8.4 Bemoulli distribution
B.5 Poisson binomial distribution
8.6 Normal approximation
B.7 Poisson approximation
8.8 Limiting distributions
8.9 Beta distribution
9 Confidenca intervals
9.1 Waki method
9.2 Agresti-Coull mathod!'®l

Binomial distribution

Probability mass function
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E(X?)

| Really Want the Proof of Var :)

]

nplin=Dplp+g™ ' +(p+q))
np(in—1p+1)
n2p2+np(l -p)

Definion of Binomial Distribution: p 4 ¢ = |

Factors of Binomial Coetficsent: k(:) = n(: s :)

Change of imil: term is zerowhen k - | = 0
putting j =k - I.m=n— |
Spating SuUm up INGO two

m— |
Factors of Binomial Coemcam.j(m) = m(m l )
J ' S

Change of imil: term is zero when j — | = ()

Binomeal Theoram
asp+g=1
by algebra



How Many Program Crashes?

EERERR
- T T T T T

n runs of program, each crashes with probability p = 0.1,
works with probability (1 — p).

What 1s the probability of exactly 2 crashes with 100 users?

H: number of crashes

H ~Bin(n = 100, p =0.1)
n

P =k = (1)t




How Many Program Crashes?

\!EJ \!E§ \!E‘ \!EJ ‘EE \!EJ
- T o Vo TV

n runs of program, each crashes with probability p = 0.1,
works with probability (1 — p).

What 1s the probability of < 3 crashes with 100 users?

H: number of crashes

H ~Bin(n = 100, p =0.1)
n

P =k = (1)t

P(H <3) =

R

I
o

(190) (0.1)*(0.9)*0~
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1000 ads served, each clicked with p =0.01, otherwise 1gnored.
Expectation and Standard deviation of number of ads clicked?

H: number of clicks
H ~ Bin(n = 1000, p =0.01)

1000

P(H = k) = ( |

) (0.01)%(0.99)1000—+

E(H)=np =10
Var(H) = np(1-p) =9.9
Std(H) = 3.15



Galton Board




Galton Board

When a marble hits a pin, it has
equal chance of going left or
right.




Galton Board

When a marble hits a pin, it has
equal chance of going left or
right. Each pin represents an
iIndependent event.




Galton Board

The bucket index that a marble
° lands in is equal to the number of
times the marble went right




Galton Board

We can define an indicator
random variable (R) which
represents whether a particular
marble goes right as a Bernoulli
~ Ber(0.5)




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in.




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(levels, 0.5)




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.

5\ 1°
° P(B:O):(O)5 ~ 0.03




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.

15
o P(B=2)= (5) = ~031




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.

o P(B=3) = <5) U 031




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.

PDF




FROM CHAOS TO ORDER



PMF for X ~Bin(n =10, p = 0.5)

0.3

0.25

0.2

P(X=k) 0.15
0.1

0.05

.II|||II.
123456789



PMF for X ~Bin(n =10, p = 0.3)
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Genetic Inheritance

Person has 2 genes for trait (eye color)

= Child receives 1 gene (equally likely) from each parent
= Child has brown eyes if either (or both) genes brown

= Child only has blue eyes if both genes blue

« Brown is “dominant” (d) , Blue is “recessive” (r)

« Parents each have 1 brown and 1 blue gene

- 4 children, what is P(3 children with brown eyes)?
= Child has blue eyes: p = (%) (2) =7 (2 blue genes)
« P(child has brown eyes) =1 - (74) =0.75

« X =# of children with brown eyes. X ~ Bin(4, 0.75)

P(X =3)= @(0.75)3 (0.25)' = 0.4219






Have original 4 bit string to send over network.
Add 3 “parity” bits and send 7 bits total
Each bit independently corrupted (flipped) in transmission with
probability 0.1. What 1s the probability of successful transmition?

Key B Send 11107

Nga
Y
N

Receive 1110000? Receive 10101007?



Have original 4 bit string to send over network.
Add 3 “parity” bits and send 7 bits total
Each bit independently corrupted (flipped) in transmission with
probability 0.1. What 1s the probability of successful transmition?




Three Graders

Three peer graders (A, B, C) grade the same submission for a

problem with 100 points. Each grader gives a grade which is a

Binomial with n = 100, p = 0.8. What 1s the Expected average
of their three grades?




Is Peer Grading Accurate Enough?
Looking ahead

Peer Grading on Coursera

L HCI.
- 31,067 peer grades for
i, W R 3,607 students.
Seier W Do Bl
| A
¢ ‘

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Is Peer Grading Accurate Enough?

Looking ahead

1. Defined random variables for:
* True grade (s;) for assignment i
- * Observed (z/) score for assign i
* Bias (b,) for each grader j
» Variance (r;) for each grader j

R R R 2. Designed a probabilistic model that
ot ENL T ' defined the distributions for all random
7 & variables Prob,
em
] J \5- Par‘am

s; ~ Bin(points, 0)

ZgNN(,LL:Si—Fbj,O': ”I“j)

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Is Peer Grading Accurate Enough?

Looking ahead

1. Defined random variables for:
* True grade (s;) for assignment i
* Observed (z/) score for assign i
* Bias (b,) for each grader j
» Variance (r;) for each grader j

N
2. Designed a probabilistic model that

. defined the distributions for all random

variables

3. Found the variable assignments that

maximized the probability of our
observed data ;‘

1 .\ g
hine Learn
nce or Mac
Inference

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Yes, With Probabilistic Modelling

Before: After:

81% V9%

within within
10pp 10pp

e A

-100 -80 -60 -40 -20 0 20 40 60 80 -100 -80 -60 -40 -20 0 20 40 60 80

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



S
o0

Standard deviation of residual
O
|

Grading Sweet Spot

“sweet spot of grading”: ~
20 minutes

-0.30 -0.25 -0.20 -0.15 -0.10
Time Grading (z-score)



Voila, c'est tout






