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Review



Binomial Random Variable

Consider n independent trials of an experiment
with success probability p.

« X is number of successes in n trials

» X is a Binomial Random Variable:

Examples
« # of heads in n coin flips
« # of 1's in randomly generated length n bit string

« # of disk drives crashed in 1000 computer cluster
o Assuming disks crash independently
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If X is a binomial with parameters n and p

Probability Mass Function
for a Binomial
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Probability that our
variable takes on the
value Kk



Bernoulli vs Binomial

N Bernoulli is a type of RV that
A Bern(p) can take on two values, 1
(for success) with probability
X € {O’ 1} p and O (for failure) with
probability (1- p)
Y ~ Bin(n,p)
n Binomial is the sum of n
vV — Z X, Bernoullis
1=1

s.t. X; ~ Bern(p)
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Is Peer Grading Accurate Enough?
Looking ahead

Peer Grading on Coursera
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Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Is Peer Grading Accurate Enough?

Looking ahead

1. Defined random variables for:
* True grade (s;) for assignment i
- * Observed (z/) score for assign i
* Bias (b,) for each grader j
» Variance (r;) for each grader j

R R R 2. Designed a probabilistic model that
ot ENL T ' defined the distributions for all random
7 & variables Prob,
em
] J \5- Par‘am

s; ~ Bin(points, 0)
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Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Is Peer Grading Accurate Enough?

Looking ahead

1. Defined random variables for:
* True grade (s;) for assignment i
* Observed (z/) score for assign i
* Bias (b,) for each grader j
» Variance (r;) for each grader j

N
2. Designed a probabilistic model that

. defined the distributions for all random

variables

3. Found the variable assignments that

maximized the probability of our
observed data ;‘
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Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Yes, With Probabilistic Modelling

Before: After:
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Good to know

Natural Exponent def:
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End Review
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Probability of k requests from this area in the next 1 min
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Probability of k requests from this area in the next 1 min
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Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break the next minute down into seconds




Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break the next minute down into seconds

1 2 3 4 5 6 60

At each second either get a request or you don’t.



Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break the next minute down into seconds

1 2 3 4 5 6 60

At each second either get a request or you don’t.
Let X = Number of requests in the minute

X ~ Bin(n = 60, p = 5/60)

Pix == () @ra-pm

P(X =3) = (63()) (5/60)%(1 — 5/60)°7



Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break the next minute down into seconds

1 2 3 4 5 6 60

At each second either get a request or you don’t.
Let X = Number of requests in the minute

X ~ Bin(n = 60, p = 5/60)

Pix == () @ra-pm

But what 1f there are two requests 1n the same second?



Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break that next minute down into milli-seconds

1 60,000

At each milli-second either get a request or you don’t.
Let X = Number of requests in the minute

But what 1f there are two requests 1n the same second?



Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break that next minute down into milli-seconds

1 60,000

At each milli-second either get a request or you don’t.
Let X = Number of requests in the minute

X ~ Bin(n = 60000,p = A/n)

n

P(X =k)= <k> (A/n)F (1 = N\/n)"F

Can we do any better than milli-seconds?



Binomial in the Limit

On average A = 5 requests per minute

We can break that minute down 1nto infinitely small buckets

Let X = Number of requests in the minute

X ~ Bin(n,p = A\/n)

n—oo

P(X = k) = lim (Z) (\/n)*(1 — A\/n)"*

Who wants to see some cool math?



Binomial in the Limit
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Simeon-Denis Poisson

.- Simeon-Denis Poisson (1781-1840) was a prolific
French mathematician

- Published his first paper at 18, became professor
at 21, and published over 300 papers in his life

« He reportedly said “Life is good for only two things,
discovering mathematics and teaching mathematics.”

- I'm going with French Martin Freeman



Poisson Random Variable

- Xis a Poisson Random Variable: the number of

occurrences in a fixed interval of time.
X ~ Poi(\)

= Ais the “rate’
= Xtakes on values 0O, 1, 2...
= has distribution (PMF):

A

P(X=k)=ce x



Poisson Process

- Consider events that occur over time
« Earthquakes, radioactive decay, hits to web server, etc.
« Have time interval for events (1 year, 1 sec, whatever...)
= Events arrive at rate: A events per interval of time

- Split time interval into n - o« sub-intervals
« Assume at most one event per sub-interval
» Event occurrences in sub-intervals are independent

« With many sub-intervals, probability of event occurring
In any given sub-interval is small

- N(t) = # events in original time interval ~ Poi(1)



Poisson is great when you
have a rate!

Piech, CS106A, Stanford University



Poisson is great when you
have a rate and you care
about # of occurrences!




Make sure that the time
unit for “rate” and match
the probability question




Earthquakes

cobal 2 ELG Animation:

{ January 2001
to
21 December 2015

QANNSPacific Tsunami Warning Center
data from USGS/NEIC

Average of 2.79 major earthquakes per year.
What is the probability of 3 major earthquakes next year? §




Earthquake Probability Mass Function

Let X = number of earthquakes next year
X ~ Poi(2.79)

0.25 +
The expected probability mass function
for the major earthquake given its
0.20 4 mean rate = 2.79 events per year
~~
=
I 0.15 -
=
A

0.10 +

0.05 +

0.00 <

0 2 4 6 8 10

Number of earthquakes (x)

B )\k6_>‘ B 2.7936_2'79
K 3!

s
>
[

N
|

~ (0.23




Bulletin of the
Seismological Society of America

Vol. 64 October 1974 No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA,
WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GArRDNER and L. KNOPOFF

ABSTRACT

Yes.



Poisson can approximate a Binomial!



Storing Data on DNA

All the movies, images, emails and other digital data from more than
600 smartphones (10,000 gigabytes) can be stored in the faint pink
smear of DNA at the end of this test tube.



Storing Data on DNA

- Will the DNA storage become corrupt?

« In DNA (and real networks) store large strings

. Length n~ 10*

« Probability of corruption of each base pair is very
small p ~ 10°

. X ~ Bin(10%, 107°) is unwieldy to compute

Extreme n and p values arise in many cases
= # bit errors in steam sent over a network
« # of servers crashes in a day in giant data center



Storing Data on DNA

- Will the DNA storage become corrupt?

« In DNA (and real networks) store large strings

. Length n~ 10*

« Probability of corruption of each base pair is very
small p ~ 10°

« X ~Poi(A=10**10°=0.01)

N

1

_ A
P(X=0)=¢"5

— ¢ 991 %~ 0.99



Poisson is Binomial in the Limit

- Poisson approximates Binomial where n is large,
p is small, and A = np is “moderate”

- Different interpretations of "moderate”
» n>20and p<0.05
» n>100and p<0.1

- Really, Poisson is Binomial as
n->woandp > 0,wherenp=21



Bin(10,0.3) vs Bin(100,0.03) vs Poi(3)

0.3

0.25

= Bin(10, 0.3)

0.2 = Bin(100, 0.03)

m Poi(3)

0.15

P(X = k)

01

0.05




Poisson can be used
to approximate a
Binomial where n is
large and p is small.




Tender (Central) Moments with Poisson

- Recall: Y ~ Bin(n, p)
« E[Y]=np
= Var(Y) = np(1 - p)

- X~ Poi(L) where A.=np (n > «and p - 0)
« E[X]=np=A
« Var(X)=np(1-p)=1(1-0)=A
« Yes, expectation and variance of Poisson are same
o It brings a tear to my eye...



A Real License Plate Seen at Stanford

No, it's not mine...
but | kind of wish it was.



Poisson is Chill

- Poisson can still provide a good approximation
even when assumptions are “mildly” violated

.- "Poisson Paradigm”

. Can apply Poisson approximation when...

« “Successes’ in trials are not entirely independent
o Example: # entries in each bucket in large hash table

= Probability of “Success” in each trial varies (slightly)
- Small relative change in a very small p

o Example: average # requests to web server/sec. may fluctuate
slightly due to load on network



Web Server Load

- Consider requests to a web server in 1 second
« |In past, server load averages 2 hits/second
= X = # hits server receives in a second

« Whatis P(X < 5)?

. Solution
X ~ Poi(\ = 2)

P(X < 5) ZP

= e N — Since X is Poisson

— e “— =~ 0.95 Since \ = 2
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To the code!
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Predicted and Actual Frequency
o0

Historically ~ Poisson(8.5)

Until 1966, things look pretty Poisson
1 i Lambda = 8.5
r IJI ‘ IinL n

30 40
Num Hurricanes




Improbability Drive

- What is the probability of over 15 hurricanes in a
season given that the distribution doesn’t change?

« Let X =# hurricanes in a year. X ~ Poi(8.5)

. Solution:

This is the pmf
P(X > 15) — 1 — P(X < 15) of a Poisson.

Your favorite

rogrammin
—1—ZP wf.Pg 9

= 1) language has a
function for it

=1 - 0.98
= 0.02



Twice since 1966 there have been
years with over 30 hurricanes



Improbability Drive

- What is the probability of over 30 hurricanes in a
season given that the distribution doesn’t change?
« Let X =# hurricanes in a year. X ~ Poi(8.5)

. Solution:

This is the pdf
of a Poisson.
Your favorite

30 < programming
=1-— Z P(X =1) language has a
i—=0 function for it

P(X >30)=1— P(X < 30)

— 1 — 0.999999997823
= 2.2¢ — 09



The Distribution has Changed

.d‘u “‘I'I
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Since 1966, looks like the distribution
has changed
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Lambda =16.6?
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At;lospherk CO2 (ppm)

CO2 levels over the last 10,000 years

= Taylor Dome Ice Core
~Law Dome Ice Core
= Mauna Loa, Hawaii




Annual anomaly relative to 1961-1990 (C)

Global annual average surface temperature

s

0.5

-1
B3RS NININRREI NN IITIRNCRERRRINGRGS

Year



What's Up?




Python Scipy Poisson Methods

Function Description

pmf(k) Probability mass function.

cdf(k) Cumulative distribution
function.

Differential) entropy of
entropy() Ehe RV. entropy
mean() Mean of the distribution.
var() Variance of the

distribution.
std() Standard deviation of the

distribution.




The Poisson Common Path
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