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Four Prototypical Trajectories

Review



• Consider n independent trials of an experiment 
with success probability p.
§ X is number of successes in n trials
§ X is a Binomial Random Variable:

• Examples
§ # of heads in n coin flips
§ # of 1’s in randomly generated length n bit string
§ # of disk drives crashed in 1000 computer cluster

o Assuming disks crash independently

Binomial Random Variable



X ⇠ Bin(n, p)

Our random 
variable

Is distributed 
as a

Binomial
With these 
parameters

Num
trials

Probability of 
success on each 

trial



P (X = k) =

✓
n

k

◆
pk(1� p)n�k

If X is a binomial with parameters n and p

Probability that our 
variable takes on the 

value k

Probability Mass Function 
for a Binomial



Bernoulli vs Binomial

Bernoulli is a type of RV that 
can take on two values, 1 
(for success) with probability 
p and 0 (for failure) with 
probability (1- p)

Binomial is the sum of n
Bernoullis

X 2 {0, 1}

X ⇠ Bern(p)

Y =
nX

i=1

Xi

Y ⇠ Bin(n, p)

s.t. Xi ⇠ Bern(p)



Random 
Variable

E[X]

P(X = k)
Semantic 
Meaning

Var(X)

Std(X)
E[X2]

Fundamental Properties



Is Peer Grading Accurate Enough?

Peer Grading on Coursera
HCI. 

31,067 peer grades for 
3,607 students.  

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

Looking ahead



Is Peer Grading Accurate Enough?

1. Defined random variables for:
• True grade (si) for assignment i
• Observed (zi

j) score for assign i
• Bias (bj) for each grader j
• Variance (rj) for each grader j

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

2. Designed a probabilistic model that    
defined the distributions for all random 
variables

zji ⇠ N (µ = si + bj ,� =
p
rj)

si ⇠ Bin(points, ✓)

Problem param

Looking ahead



Is Peer Grading Accurate Enough?

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

2. Designed a probabilistic model that    
defined the distributions for all random 
variables

3. Found the variable assignments that 
maximized the probability of our 
observed data

1. Defined random variables for:
• True grade (si) for assignment i
• Observed (zi

j) score for assign i
• Bias (bj) for each grader j
• Variance (rj) for each grader j

Inference or Machine Learning

Looking ahead
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99% 
within 
10pp

Before: After:

Yes, With Probabilistic Modelling

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

81% 
within 
10pp



Natural Exponent def:

Good to know
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End Review



Algorithmic Ride Sharing



Probability of k requests from this area in the next 1 min



Probability of k requests from this area in the next 1 min



Probability of k requests from this area in the next 1 min

On average λ = 5 requests per minute



Probability of k requests from this area in the next 1 min

We can break the next minute down into seconds
…

1 2 3 4 5 6 60

On average λ = 5 requests per minute



Probability of k requests from this area in the next 1 min

On average λ = 5 requests per minute

…

At each second either get a request or you don’t.
Let X = Number of requests in the minute

1 2 3 4 5 6 60

We can break the next minute down into seconds



Probability of k requests from this area in the next 1 min

On average λ = 5 requests per minute

…

At each second either get a request or you don’t.
Let X = Number of requests in the minute

1 2 3 4 5 6 60

We can break the next minute down into seconds



Probability of k requests from this area in the next 1 min

On average λ = 5 requests per minute

…

At each second either get a request or you don’t.
Let X = Number of requests in the minute

But what if there are two requests in the same second?

1 2 3 4 5 6 60

We can break the next minute down into seconds



Probability of k requests from this area in the next 1 min

On average λ = 5 requests per minute

We can break that next minute down into milli-seconds
…

60,000

But what if there are two requests in the same second?

1

At each milli-second either get a request or you don’t.
Let X = Number of requests in the minute



Probability of k requests from this area in the next 1 min

On average λ = 5 requests per minute

…

60,0001

Can we do any better than milli-seconds?

At each milli-second either get a request or you don’t.
Let X = Number of requests in the minute

We can break that next minute down into milli-seconds



Binomial in the Limit
On average λ = 5 requests per minute

We can break that minute down into infinitely small buckets

1

OMG so small

Let X = Number of requests in the minute

Who wants to see some cool math?



Binomial in the Limit



Probability of k requests from this area in the next 1 min



• Simeon-Denis Poisson (1781-1840) was a prolific 
French mathematician

• Published his first paper at 18, became professor 
at 21, and published over 300 papers in his life
§ He reportedly said “Life is good for only two things, 

discovering mathematics and teaching mathematics.”
• I’m going with French Martin Freeman

Simeon-Denis Poisson



• X is a Poisson Random Variable: the number of 
occurrences in a fixed interval of time. 

§ λ is the “rate”
§ X takes on values 0, 1, 2…
§ has distribution (PMF):

Poisson Random Variable

X ⇠ Poi(�)

P (X = k) = e���
k

k!



• Consider events that occur over time
§ Earthquakes, radioactive decay, hits to web server, etc.

§ Have time interval for events (1 year, 1 sec, whatever...)

§ Events arrive at rate: l events per interval of time

• Split time interval into  n à ¥ sub-intervals
§ Assume at most one event per sub-interval

§ Event occurrences in sub-intervals are independent

§ With many sub-intervals, probability of event occurring  
in any given sub-interval is small

• N(t) = # events in original time interval ~ Poi(l)

Poisson Process
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Poisson is great when you 
have a rate!
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Poisson is great when you 
have a rate and you care 
about # of occurrences!
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Make sure that the time 
unit for “rate” and match
the probability question
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Earthquakes

Average of 2.79 major earthquakes per year. 
What is the probability of 3 major earthquakes next year? 
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Earthquake Probability Mass Function
Let X = number of earthquakes next year

P(
X

= 
x)

Number of earthquakes (x)





Four Prototypical Trajectories

Poisson can approximate a Binomial!



Storing Data on DNA

All the movies, images, emails and other digital data from more than 
600 smartphones (10,000 gigabytes) can be stored in the faint pink 

smear of DNA at the end of this test tube.



• Will the DNA storage become corrupt?
§ In DNA (and real networks) store large strings
§ Length n » 104

§ Probability of corruption of each base pair is very 
small p » 10-6

§ X ~ Bin(104, 10-6) is unwieldy to compute

• Extreme n and p values arise in many cases
§ # bit errors in steam sent over a network
§ # of servers crashes in a day in giant data center

Storing Data on DNA



• Will the DNA storage become corrupt?
§ In DNA (and real networks) store large strings
§ Length n » 104

§ Probability of corruption of each base pair is very 
small p » 10-6

§ X ~ Poi(l = 104 * 10-6 = 0.01)

Storing Data on DNA

P (X = k) = e���
k

k!

P (X = 0) = e�� 1

0!
= e�0.01 ⇡ 0.99

P (X = k) = e���
k

k!

P (X = 0) = e�� 1

0!
= e�0.01 ⇡ 0.99

P (X = k) = e���
k

k!

P (X = 0) = e�� 1

0!
= e�0.01 ⇡ 0.99



• Poisson approximates Binomial where n is large, 
p is small, and l = np is “moderate”

• Different interpretations of "moderate" 
§ n > 20 and p < 0.05
§ n > 100 and p < 0.1

• Really, Poisson is Binomial as
nà ¥ and pà 0, where np = l

Poisson is Binomial in the Limit
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Bin(10, 0.3)

Bin(100, 0.03)

Poi(3)

P(
X 

= 
k)

k

Bin(10,0.3) vs Bin(100,0.03) vs Poi(3)
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Poisson can be used 
to approximate a 

Binomial where n is 
large and p is small.



• Recall: Y ~ Bin(n, p)
§ E[Y] = np
§ Var(Y) = np(1 – p)

• X ~ Poi(l) where l = np (nà ¥ and pà 0)
§ E[X] = np = l
§ Var(X) = np(1 – p) = l(1 – 0) = l
§ Yes, expectation and variance of Poisson are same

o It brings a tear to my eye…

Tender (Central) Moments with Poisson



No, it’s not mine… 
but I kind of wish it was.

A Real License Plate Seen at Stanford



• Poisson can still provide a good approximation 
even when assumptions are “mildly” violated

• “Poisson Paradigm”
• Can apply Poisson approximation when...

§ “Successes” in trials are not entirely independent
o Example: # entries in each bucket in large hash table

§ Probability of “Success” in each trial varies (slightly)
o Small relative change in a very small p
o Example: average # requests to web server/sec. may fluctuate 

slightly due to load on network

Poisson is Chill



• Consider requests to a web server in 1 second
§ In past, server load averages 2 hits/second
§ X = # hits server receives in a second
§ What is P(X < 5)?

• Solution

Web Server Load



Probability for Extreme Weather?
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Four Prototypical Trajectories

To the code!
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Until 1966, things look pretty Poisson

Lambda = 8.5

Historically ~ Poisson(8.5)



Improbability Drive

• What is the probability of over 15 hurricanes in a 
season given that the distribution doesn’t change? 
§ Let X = # hurricanes in a year. X ~ Poi(8.5)

• Solution: This is the pmf
of a Poisson. 
Your favorite 
programming 
language has a 
function for it

P (X > 15) = 1� P (X  15)

= 1�
15X

i=0

P (X = i)

= 1� 0.98

= 0.02



Four Prototypical Trajectories

Twice since 1966 there have been 
years with over 30 hurricanes



Improbability Drive

• What is the probability of over 30 hurricanes in a 
season given that the distribution doesn’t change? 
§ Let X = # hurricanes in a year. X ~ Poi(8.5)

• Solution:

P (X > 30) = 1� P (X  30)

= 1�
30X

i=0

P (X = i)

= 1� 0.999999997823

= 2.2e� 09

This is the pdf 
of a Poisson. 
Your favorite 
programming 
language has a 
function for it
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Lambda = 16.6?

Since 1966, looks like the distribution 
has changed

The Distribution has Changed



What’s Up?



What’s Up?



What’s Up?



Function Description
pmf(k) Probability mass function.

cdf(k) Cumulative distribution 
function.

entropy() (Differential) entropy of 
the RV.

mean() Mean of the distribution.

var() Variance of the 
distribution.

std() Standard deviation of the 
distribution.

Python Scipy Poisson Methods



Defense

Solution

“Backbone”

The Poisson Common Path


