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CS109 Nov 14, 2018

Section #7;: Maximum Likelihood Honor Code

1. Single Match:

Let A; be the event that decision point i is matched. We note that a match occurs when both
students make the more popular choice or when both students make the less popular choice.
P(A;) = P(Both more popular) + P(Both less popular) = p? + (1 — p)*.

Let M be a random variable for the number of matches. It is easy to see that each of the 1000
decisions is an independent Bernoulli experiment with probability of success p’ = p>+(1-p)>.
Therefore M ~ Bin(1000, p’).

We can use a Normal distribution to approximate a binomial. We approximate M ~ Bin(1000, p’)
with Normal random variable Y ~ N(1000p’, 1000(1 — p’)p’).

2. Maximum Match:

For this problem, we use Maximum Likelihood Estimator (MLE) to estimate the parameters
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Now we must choose the values of 8 = (u, 8) that maximize our log-likelihood function. To

solve this argmax, we will use Gradient Ascent. First, we need to find the first derivative of
the log-likelihood function with respect to our parameters.
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Now that we know the derivative of the log-likelihood function with respect to each parame-
ter, we have the information we would need to perform gradient ascent. We would initialize
our values of 6, either to zero or to random values, and then iteratively take a small step in
the direction of the gradient for each variable in 8 (x and B) and recalculate the gradient until
the gradient approaches zero.

. Understanding:
P(Y >=90) = 0.00000017180200395650047, or nearly 1 in 6 million.

from scipy.stats import gumbel_r
print(l - gumbel_r.cdf(90, 9, 5.2))



