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Section #7: Maximum Likelihood Honor Code

1. Single Match:
Let Ai be the event that decision point i is matched. We note that a match occurs when both
students make the more popular choice or when both students make the less popular choice.
P(Ai) = P(Both more popular) + P(Both less popular) = p2 + (1 − p)2.

Let M be a random variable for the number of matches. It is easy to see that each of the 1000
decisions is an independentBernoulli experimentwith probability of success p′ = p2+(1−p)2.
Therefore M ∼ Bin(1000, p′).

We can use aNormal distribution to approximate a binomial.We approximate M ∼ Bin(1000, p′)
with Normal random variable Y ∼ N(1000p′, 1000(1 − p′)p′).

2. Maximum Match:
For this problem, we use Maximum Likelihood Estimator (MLE) to estimate the parameters
θ = (µ, β).

L(θ) =
n∏

i=1
f (Y (i) = y(i) | θ)

LL(θ) = log
n∏

i=1
f (Y (i) = y(i) | θ)

=

n∑
i=1

log f (Y (i) = y(i) | θ)

=

n∑
i=1

log
1
β

e−(zi+e−zi ) where zi =
y(i) − µ

β

=

n∑
i=1

log
1
β
+

n∑
i=1
−(zi + e−zi )

= −n log(β) +
n∑

i=1
−(zi + e−zi )

Now we must choose the values of θ = (µ, β) that maximize our log-likelihood function. To
solve this argmax, we will use Gradient Ascent. First, we need to find the first derivative of
the log-likelihood function with respect to our parameters.
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∂LL(θ)
∂µ

=
∂

∂µ

[
− n log(β) +

n∑
i=1
−(zi + e−zi )

]
=

n∑
i=1

∂

∂µ

[
− (zi + e−zi )

]
=

n∑
i=1

∂

∂zi

[
− (zi + e−zi )

] ∂zi

∂µ
By the Chain Rule

=

n∑
i=1

[
− 1 + e−zi

] [
−

1
β

]
=

1
β

n∑
i=1

1 − e−zi

∂LL(θ)
∂β

=
∂

∂β

[
− n log(β) +

n∑
i=1
−(zi + e−zi )

]
= −

n
β
+

n∑
i=1

∂

∂β

[
− (zi + e−zi )

]
= −

n
β
+

n∑
i=1

∂

∂zi

[
− (zi + e−zi )

] ∂zi

∂β
By the Chain Rule

= −
n
β
+

n∑
i=1

[
− 1 + e−zi

] [ µ − y(i)

β2

]
Where the last term equals

∂zi

∂β

Now that we know the derivative of the log-likelihood function with respect to each parame-
ter, we have the information we would need to perform gradient ascent. We would initialize
our values of θ, either to zero or to random values, and then iteratively take a small step in
the direction of the gradient for each variable in θ (µ and β) and recalculate the gradient until
the gradient approaches zero.

3. Understanding:
P(Y >= 90) = 0.00000017180200395650047, or nearly 1 in 6 million.

from scipy.stats import gumbel_r
print(1 - gumbel_r.cdf(90, 9, 5.2))


