Conditional Probability

1 Conditional Probability

In English, a conditional probability answers the question: "What is the chance of an event E happening, given that I have already observed some other event F ?" Conditional probability quantifies the notion of updating one's beliefs in the face of new evidence.

When you condition on an event happening you are entering the universe where that event has taken place. Mathematically, if you condition on F, then F becomes your new sample space. In the universe where F has taken place, all rules of probability still hold!

The definition for calculating conditional probability is:

Definition of Conditional Probability

The probability of E given that (aka conditioned on) event F already happened:

$$
P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{P(E \cap F)}{P(F)}
$$

(As a reminder, $E F$ means the same thing as $E \cap F$-that is, E "and" F.)
A visualization might help you understand this definition. Consider events E and F which have outcomes that are subsets of a sample space with 50 equally likely outcomes, each one drawn as a hexagon:

Figure 1: Conditional Probability Intuition

Conditioning on F means that we have entered the world where F has happened (and F, which has 14 equally likely outcomes, has become our new sample space). Given that event F has occured, the conditional probability that event E occurs is the subset of the outcomes of E that are consistent
with F. In this case we can visually see that those are the three outcomes in $E \cap F$. Thus we have the:

$$
P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{3 / 50}{14 / 50}=\frac{3}{14} \approx 0.21
$$

Even though the visual example (with equally likely outcome spaces) is useful for gaining intuition, the above definition of conditional probability applies regardless of whether the sample space has equally likely outcomes.

The Chain Rule

The definition of conditional probability can be rewritten as:

$$
P(E F)=P(E \mid F) P(F)
$$

which we call the Chain Rule. Intuitively it states that the probability of observing events E and F is the probability of observing F , multiplied by the probability of observing E, given that you have observed F. Here is the general form of the Chain Rule:

$$
P\left(E_{1} E_{2} \ldots E_{n}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) \ldots P\left(E_{n} \mid E_{1} E_{2} \ldots E_{n-1}\right)
$$

Netflix example

Say that you want to calculate the probability of an event E, that a Netflix user will watch the movie Life is Beautiful (1997). By invoking the mathematical definition of probability, we can consider every Netflix user in their database to be an "experiment" where we either observe that the user watched the movie or not. Because the database is large enough, we can get a good estimate of the probability:

$$
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \approx \frac{\text { \# users who watched movie }}{\text { \# netflix users }}
$$

In the case of Life is Beautiful $P(E) \approx 10,234,231 / 50,923,123=0.20$.
In order to recommend movies, Netflix would like to calculate conditional probabilities. For example, say a user has just watched Life is Beautiful (we know that E is true). when deciding whether or not to recommend that a user watch movie F, Three Idiots (2009), Netflix would like to calculate $P(F \mid E)$. They can calculate this probability using the chain rule:

$$
P(F \mid E)=\frac{P(E F)}{P(E)} \approx \frac{\# \text { users who watched both }}{\# \text { netflix users }} \underset{\frac{\# \text { users who watched } E}{\# \text { nettlix users }}}{\#}=\frac{\# \text { users who watched both }}{\# \text { users who watched } E}
$$

In this case $P(F \mid E)=0.42$ which is larger than $P(F)=0.09$. A user is much more likely to watch Three Idiots, if they watched Life is Beautiful!

2 Law of Total Probability

An astute person once observed that in a picture like the one in Figure 1, event F can be thought of as having two parts, the part that is in E (that is, $E \cap F=E F$), and the part that isn't ($E^{C} \cap F=E^{C} F$). This is true because E and E^{C} are mutually exclusive sets of outcomes which together cover the entire sample space. After further investigation this was proved to be a general mathematical truth, and there was much rejoicing:

$$
P(F)=P(E F)+P\left(E^{C} F\right)
$$

This observation is called the law of total probability; however, it is most commonly seen in combination with the chain rule:

The Law of Total Probability

For events E and F,

$$
P(F)=P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)
$$

There is a more general version of the rule. If you can divide your sample space into any number of events $E_{1}, E_{2}, \ldots E_{n}$ that are mutually exclusive and exhaustive-that is, every outcome in sample space falls into exactly one of those events-then:

$$
P(F)=\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)
$$

The word "total" refers to the fact that the events in E_{i} must combine to form the totality of the sample space.

3 Bayes' Theorem

Bayes' theorem (or Bayes' rule) is one of the most ubiquitous results in probability for computer scientists. Very often we know a conditional probability in one direction, say $P(E \mid F)$, but we would like to know the conditional probability in the other direction. Bayes' theorem provides a way to convert from one to the other. We can derive Bayes' theorem by starting with the definition of conditional probability:

$$
P(E \mid F)=\frac{P(F \cap E)}{P(F)}
$$

Now we can expand $P(F \cap E)$ using the chain rule, which results in Bayes' theorem.

Bayes' theorem

The most common form of Bayes' theorem is:

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)}
$$

Each term in the Bayes' rule formula has its own name. The $P(E \mid F)$ term is often called the posterior; the $P(E)$ term is often called the prior; the $P(F \mid E)$ term is called the likelihood (or the "update"); and $P(F)$ is often called the normalization constant.

If the normalization constant (the probability of the event you were initially conditioning on) is not known, you can expand it using the law of Total Probability:

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}=\frac{P(F \mid E) P(E)}{\sum_{i} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Again, for the last version, all the events E_{i} must be mutually exclusive and exhaustive.

A common scenario for applying the Bayes Rule formula is when you want to know the probability of something "unobservable" given an "observed" event. For example, you want to know the probability that a student understands a concept, given that you observed them solving a particular problem. It turns out it is much easier to first estimate the probability that a student can solve a problem given that they understand the concept and then to apply Bayes' theorem.

The "expanded" version of Bayes' rule (at the bottom of the Bayes' theorem box) allows you to work around not immediately knowing the denominator $P(F)$. We call $P(F)$ the normalization constant because it is the term whose value can be calculated by making sure that the probabilities of all outcomes sum to 1 (they are "normalized").

4 Conditional Paradigm

As we mentioned above, when you condition on an event you enter the universe where that event has taken place, all the laws of probability still hold. Thus, as long as you condition consistently on the same event, every one of the tools we have learned still apply. Let's look at a few of our old friends when we condition consistently on an event (in this case G):

Name of Rule	Original Rule	Conditional Rule
First axiom of probability	$0 \leq P(E) \leq 1$	$0 \leq P(E \mid G) \leq 1$
Complement Rule	$P(E)=1-P\left(E^{C}\right)$	$P(E \mid G)=1-P\left(E^{C} \mid G\right)$
Chain Rule	$P(E F)=P(E \mid F) P(F)$	$P(E F \mid G)=P(E \mid F G) P(F \mid G)$
Bayes Theorem	$P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)}$	$P(E \mid F G)=\frac{P(F \mid E G) P(E \mid G)}{P(F \mid G)}$

