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1 Random Encounter Redux
You walk into a gathering at Stanford with R number of Stanford students. What is the probability
that you know more than 5 people at the gathering?

Let P be the number of students at Stanford and let F be the number of Stanford students that you
know. Assume that each Stanford student is equally likely to be at the gathering.

Solve this problem by recognizing that every combination of students is equally likely. Let Ek be the
event that you know exactly k people.

P(Ek) =

(P−F
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)
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)
Let X be the number of people that you know.

P(X > 5) = 1−P(X ≤ 5)

= 1−
5

∑
i=0

P(Ei)
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2 Letters of Recommendation
To get a job or internship next summer, you submit recommendation letters from two professors.
Unfortunately, you can never be completely certain what your recommendation letters say.

You estimate that if you had two good letters, the probability that you would get the job is 0.75. If
you only have one good letter, the probability is 0.2 and if you have no good letters the probability
is 0.05.

You believe that the two letters are independent, the probability that the first letter is strong = 0.8
and the probability that the second letter is strong is 0.5.

Let J be the event that you get a job.

a. What is the probability of getting two good letters?
Let T be the event that you receive two good letters.
Let L1 be the event that the first letter is good.
Let L2 be the event that the second letter is good.
Since the two events are independent:

P(T ) = P(L1) ·P(L2)

= 0.8 ·0.5 = 0.4



b. What is the probability of getting exactly one good letter?
Let K be the event that you receive exactly one strong letter.
By the inclusion/exclusion principle:

P(K) = P(L1 ∩LC
2 )+P(L2 ∩LC

1 )

= P(L1) ·P(LC
2 )+P(L2) ·P(LC

1 )

= 0.8 ·0.5+0.5 ·0.2 = 0.5

c. What is the probability of getting the job?
Let Z be the event that you receive exactly zero strong letters. Since the two letters are
independent:

P(Z) = P(LC
1 ) ·P(LC

2 )

= 0.2 ·0.5 = 0.1

By the law of total probability:

P(J) = P(J|T )P(T )+P(J|K)P(K)+P(J|Z)P(Z)
= 0.75 ·P(T )+0.2 ·P(K)+0.05 ·P(Z)
= 0.75 ·0.4+0.2 ·0.5+0.05 ·0.1

d. You got the job. What is the probability that you had two good letters?

P(T |J) = P(J|T )P(T )
P(J)

=
0.75 ·0.4

0.75 ·0.4+0.2 ·0.5+0.05 ·0.1

3 Hindenbug
You are testing software and discover that your program has a non-deterministic bug that causes
catastrophic failure. Your program was tested for 400 hours and the bug occurred twice.

a. Based on the rate of occurrence that you observed, what is the probability that the bug will
occur fewer than five times if the program is used for another 400 hours?
Let X be the number of times the bug occurs in 400 hours. X ∼ Poisson(λ = 2).

P(X < 5) =
4

∑
i=0

P(X = i) =
4

∑
i=0

2i

i!
e−2

b. Each user uses your program to complete a three hour long task. If the hindenbug manifests
they will immediately stop their work. What is the probability that the bug manifests for a
given user?
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Let X be the amount of time, in hours, until the bug occurs. X ∼ Exponential(λ = 1/200). Let
E be the even that a bug manifests for the user.

P(E) = P(X < 3) = 1− e−
3

200

Alternatively, you can model the probability as

P(Y > 0)

with
Y

being the number of times the bug occurs in 3 hours.

c. Your program is used by one million users. Use a normal approximation to estimate the
probability that more than 10000 users experience the bug. Let p be the solution to part (b).
Let X be the number of users who experience the bug. X ∼ Bernoulli(n = 106, p)
Let Y be a Normal approximation of X . Y ∼ N(µ = 106 p,σ2 = 106 p(1− p)).

P(X > 10000) = 1−P(X ≤ 10000)
≈ 1−P(Y < 10000.5)

≈ 1−ϕ
(10000.5−106 p√

106 p(1− p)

)

4 NBA Finals Week
Recall that a team’s ability can be modeled by an Elo score, which predicts that if teams A and B
have respective Elo scores EA and EB, then the probability that A wins a game against B, all else
equal, is

P(A wins) = 1

1+9
(
− EA−EB

400

)

a. Suppose that team A has an Elo rating which is 200 less than the Elo rating for team B. What
is the probability that team A wins a game?

EA −EB =−200

P(A wins) = 1

1+9(
200
400 )

=
1
4
= 0.25

b. Suppose the Elo scores of the two teams in the finals are drawn independently from a normal
distribution with mean µ = 1600 and variance σ2 = 2002

2 . What is the probability density
function for the difference (D) between their Elo ratings? D = EA −EB.

Since EA and EB are independent Normals, D ∼ N(1600−1600,2 · 2002

2 ) = N(0,2002). The PDF

is P(D = d) = 1
200

√
2π e−

d2

2·2002 .

c. The difference between the elo scores of two teams is given by the probability density function
from part (b). Write an expression for the probability that team A wins. It is ok to have an
integral in your answer.
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Let W be the event that team A wins. By the total law of probability:

P(W ) =
∫ ∞

−∞
P(W |D = x) f (D = x)dx

=
∫ ∞

−∞

1

1+9(−
x

400 )

1
200

√
2π

e
−(x)2

2·2002 dx

This is equal to 1/2, which you could also argue intuitively based on the symmetry between the
two teams. However, we did need an explanation for this intuition (in particular, it’s incorrect
to apply the ELO formula with D = E[D] = 0, or to simply find P(D > 0), even though both
give the same result).

5 Gaussian Blur
In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It
is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blurring is based on a joint probability distribution of two independent random variables:
X ∼ N(0,4) and Y ∼ N(0,4).

a. Write an expression for P(X < x,Y < y). For full credit your expression should not have integrals.
Since X and Y are independent:

P(X < x,Y < y) = P(X < x) ·P(Y < y)

= ϕ(
x
2
) ·ϕ( y

2
)

b. Each pixel is given a weight equal to the probability that X and Y are both within the pixel
bounds. The center pixel covers the area where −0.5 ≤ x ≤ 0.5 and −0.5 ≤ y ≤ 0.5. What is
the weight of the center pixel?

P(−0.5 < X < 0.5,−0.5 < Y < 0.5)
= P(X < 0.5,Y < 0.5)−P(X < 0.5,Y <−0.5)−P(X <−0.5,Y < 0.5)+P(X <−0.5,Y <−0.5)

= ϕ
(

0.5
2

)
·ϕ

(
0.5
2

)
−2ϕ

(
0.5
2

)
·ϕ

(
−0.5

2

)
+ϕ

(
−0.5

2

)
·ϕ

(
−0.5

2

)
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Let K = ϕ( 0.5
2 )≈ 0.6

P(−0.5 < X < 0.5,−0.5 < Y < 0.5)

= K2 −2K(1−K)+(1−K)2

≈ (0.6)2 −2(0.6)(0.4)+(0.4)2

6 Improved Exam Grading
You are experimenting with a new training course to prepare TAs for exam grading. You test your
new course by giving the new training to 100 graders (group A) and giving the old, standard training
to another set of 100 graders (group B). All 200 graders are asked to grade the same assignment.

The data collected by your experiment are the 100 grades given to the assignment by the graders in
group A (A1 . . .A100), and the 100 grades given by the graders in group B (B1 . . .B100). You assume
that each grade is independent given the grader’s group.

You notice that the sample mean of the two groups is about the same. In expectation all graders are
accurate. However the sample standard deviation of the grades given by group A was 5 percentage
points, whereas the sample standard deviation of grades given by group B was 10 percentage points.

In this question we expect you to write pseudocode. You will be assessed on the quality of your
algorithm, not on programming syntax. You may use any of the following methods: { mean, sum }
on a list of numbers as well as any standard programming control flow. You may not refer to any
statistics libraries.

a. Provide pseudo code for a method sampleStandard that can calculate the unbiased estimate
of standard deviation for a list of IID samples S = [S1,S2, · · · ,S100].

de f sampleStandard (S ) :
sampleMean = mean(S)
dif fSum = 0
f o r S i in S :

dif fSum += ( Si − sampleMean )^2
return sq r t ( dif fSum / (100−1))

b. Was the difference in standard deviations significant? Write pseudo-code for a method that
could return the p-value of the claim. Under the assumption that all 200 grades are identically
distributed, calculate the probability of observing a difference in sample standard deviation
greater than or equal to five. You may use to the method sampleStandard from part (a).

de f pValue (A, B) :
U = j o i n (A, B)
count = 0
repeat ( 10000 ) :

sampleA = sampleWithReplace (U, 100)
sampleB = sampleWithReplace (U, 100)
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stdA = sampleStandard ( sampleA )
stdB = sampleStandard ( sampleB )
# Either one t a i l e d or two t a i l e d i s f i n e !
i f | stdA − stdB | > 5 :

count++
return count / 10000

7 Differential Privacy
You have a dataset that consists of 100 IID values: X1 . . .X100 where Xi ∼ Bern(p).

A researcher wants to calculate statistics on your data. Since you are mindful about privacy, you
decide that you shouldn’t give the raw data to the researcher. Instead for every sample Xi, you give
the researcher a value Yi using the following algorithm.

# Maximize accuracy , whi l e p r e s e rv ing pr ivacy .
de f c a l c u l a t e Y i ( Xi ) :

ob fu sca te = random ( )
i f ob fu sca te :

r e turn i n d i c a t o r ( random ( ) )
e l s e :

r e turn Xi

Where random is a function that returns true or false with equal probability and indicator is a
function that returns 1 if the input is true (and 0 otherwise).

a. What is E[Yi]? Give your answer in terms of p. Yi ∼ Bernoulli(py = 1/4+ p/2):
E[Yi] = px = 1/4+ p/2

b. What is Var(Yi)? Give your answer in terms of p.
Yi ∼ Bernoulli(py = 1/4+ p/2):

Var(Yi) = py(1− py)

= (1/4+ p/2)(3/4− p/2)

= 3/16+ p/4− p2/4

c. Write the distribution of the sample mean Ȳ of the samples Y1 . . .Y100. Explain why the sample
mean follows that distribution. Your distribution parameters should be in terms of p.
By the Central Limit Theorem, we know that the sample mean must be normal.
Ȳ ∼ N(µ = E[Yi],

Var(Yi)
100 ):

Var(Yi) = py(1− py)

= (1/4+ p/2)(3/4− p/2)

= 3/16+ p/4− p2/4
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d. Given the sample mean Ȳ , write an expression for an unbiased estimate of p. An unbiased
estimate is one where the expectation of your estimate should be equal to the true value.

p̂ = 2 · Ȳ − 1/2

E[p̂] = 2 ·E[Ȳ ]− 1/2

= 2(1/4+ p/2)− 1/2

= 1/2+ p− 1/2

= p

e. Write an expression for the probability that your estimate from the previous part is more than
0.1 greater than, or less than, the true probability p.
We use the central limit theorem and use the fact that E[p̂] = px and Var(p̂) = 4Var(Ȳ ) =

4
100 σ2

Y = 4
100 (

3
16 +

p
4 −

p2

4 ).

P(|p̂−E[p̂]| ≥ 0.1) = P(p̂ ≥ px +0.1)+P(p̂ ≤ px −0.1)

= 2∗P(Z ≤ (px −0.1)− px√
4

100 σ2
Y

)

= 2∗P(Z ≤
−0.1 · 10

2
σY

)

= 2∗P(Z ≤ −0.5
σY

)

= 2∗Φ(
−0.5
σY

) = 2∗Φ(
−0.1
2σȲ

)

You could also use Chebyshev’s inequality to find an upper bound, where P(|X −µ| ≥ k)≤ σ2

k2

for any random variable X with E[X ] = µ and Var(X) = σ2.

P(|p̂−E[p̂]| ≥ 0.1) = P(|p̂− px| ≥ 0.1)

≤ 4σ2
Y

100 ·0.12 = 4σ2
Y

8 Windfarm Modeling
In class we saw how climate sensitivity suggests that there is a fierce urgency to developing clean
energy solutions. Wind energy presents many opportunities. However, wind is unpredictable and so
using and expanding wind energy requires probability theory. The speed of the wind at a windfarm
is a random variable that varies as a Rayliegh Distribution. A Rayliegh distribution is parameterized
by a single scale parameter θ and has the following probability density function.

fX (x) =
{

x
θ e−x2/2θ x ≥ 0
0 else

We wish to model the wind speed on a wind farm. To this end we collect N independent measure-
ments of wind speeds w1, w2, · · · , wN . Find a maximum likelihood estimate of θ if we are modeling
the wind speed as coming from a Rayleigh distribution
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Denote our wind speed as a random variable W ∼ Rayleigh(σ). The likelihood is given by

L(σ2) =
N

∏
i=1

fW (wi;σ2)

We then take the logarithm and do some simplification

ℓ(σ2) = log
N

∏
i=1

fW (wi;σ2)

=
N

∑
i=1

log fW (wi;σ2)

=
N

∑
i=1

log
( wi

σ2 e−w2
i /2σ2

)
=

N

∑
i=1

logwi − logσ2 −w2
i /(2σ2)

Maximizing over σ2 we have

argmax
σ2

ℓ(σ2) = argmax
σ2

[
N

∑
i=1

logwi −
N

∑
i=1

logσ2 −
N

∑
i=1

w2
i /(2σ2)

]

= argmin
σ2

[
N logσ2 +

1
2σ2

N

∑
i=1

w2
i

]

Taking the derivative with respect to σ2 and equating to 0 we have

0 = N/σ2 − 1
2σ4

N

∑
i=1

w2
i

N/σ2 =
1

2σ4

N

∑
i=1

w2
i

σ2 =
1

2N

N

∑
i=1

w2
i

9 Multiclass Bayes
In this problem we are going to explore how to write Naive Bayes for multiple output classes.

We want to predict a single output variable Y which represents how a user feels about a book.
Unlike in your homework the output variable Y can take on one of four values from the set
{Like,Love,Haha,Sad}. We will base our predictions off of three binary feature variables X1,X2, and X3
which are indicators of the user’s taste. All values Xi ∈ {0,1}.

We have access to a dataset with 10,000 users. Each user in the dataset has a value for X1,X2,X3
and Y . You can use a special query method count that returns the number of users in the dataset
with the given equality constraints.

Example usage of count:

count(X1 = 1,Y = Haha) returns the number of users where X1 = 1 and Y = Haha.
count(Y = Love) returns the number of users where Y = Love.
count(X1 = 0,X3 = 0) returns the number of users where X1 = 0, and X3 = 0.
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You are given a new user with X1 = 1, X2 = 1, X3 = 0. What is the best prediction for how the user
will feel about the book? You may leave your answer in terms of an argmax function. You should
explain how you would calculate all probabilities used in your expression.

Use Laplace estimates for all probabilities.

ˆY |X1 = 1,X2 = 1,X3 = 0 = argmaxy
P(X1 = 1,X2 = 1,X3 = 0|Y = y)P(Y = y)

P(X1 = 1,X2 = 1,X3 = 0)
= argmaxyP(X1 = 1,X2 = 1,X3 = 0|Y = y)P(Y = y)

= argmaxyP(X1 = 1|Y = y)P(X2 = 1|Y = y)P(X3 = 0|Y = y)P(Y = y)

P(Y = y) = count(Y = y)+1/10,000+4
P(X1 = 1|Y = y) = [count(X1 = 1,Y = y)+1]/count(Y = y)+2
P(X2 = 1|Y = y) = [count(X2 = 1,Y = y)+1]/count(Y = y)+2
′P(X3 = 0|Y = y) = [count(X3 = 0,Y = y)+1]/count(Y = y)+2

10 Logistic Vision Test
You decide that vision tests, given by eye doctors, could have more precise results if we employed
some machine learning. In a vision test a user looks at a letter with a particular font size and either
correctly guesses the letter, or incorrectly guesses the letter.

You assume that the probability that a particular patient is able to guess a letter correctly is:

p = σ(θ − f )

Where θ is the user’s vision and f is the font size of the letter.

Explain how you could estimate a user’s vision θ based on their 20 responses ( f (1),y(1)) . . .( f (20),y(20)),
where y(i) is an indicator variable for whether the user correctly identified the ith letter and f (i) is
the font size of the ith letter.

Derive any derivatives necessary.

We are going to solve this problem by finding the MLE estimate of θ . To find the MLE estimate,
we are going to find the argmax of the log likelihood function. To calculate argmax we are going to
use gradient ascent, which requires that we know the partial derivative of the log likelihood function
with respect to theta.

First write the log likelihood

L(θ) =
20

∏
i=1

py(i)(1− p)[1−y(i)]

LL(θ) =
20

∑
i=1

y(i)log(p)+(1− y(i)) log(1− p)

Then, find the derivative of log likelihood with respect to θ . We first do this for one data point:
∂LL
∂θ

=
∂LL
∂ p

· ∂ p
∂θ
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We can calculate both the smaller partial derivatives independently:

∂LL
∂ p

=
y(i)

p
− 1− y(i)

1− p
∂ p
∂θ

= p[1− p]

Putting it all together for one letter:

∂LL
∂θ

=
∂LL
∂ p

· ∂ p
∂θ

=
[y(i)

p
− 1− y(i)

1− p

]
p[1− p]

= y(i)(1− p)− p(1− y(i))

= y(i)− p

= y(i)−σ(θ − f )

For all twenty examples:

∂LL
∂θ

=
20

∑
i=1

y(i)−σ(θ − f (i))
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