Before reading the solutions, we encourage you to go through the exam first. To help
guide your studying, we went through and tagged each of the exam questions with
relevant topics. If you are struggling with a particular question, we encourage you to
brush up on the tagged topic. Note that these are not comprehensive are rather intended to
serve as a starting point for your studying!

As always, please come to Office Hours or ask on Piazza for clarifications! Good luck
studying! ©
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Practice Final Examination Solutions

1. Answer: 24/51 = 8/17. There are multiple ways to obtain this answer; here are two:

The first (common) method is to sum over all possibilities for the rank of the first card
drawn multiplied by the probability that the second card has greater rank, given the rank
of the first card. The first card drawn can be of any of the 13 ranks with equal probability
(= 1/13). Let i be the rank of the first card. After the first card is chosen, 51 cards
remain, of which 4(13 — i) have a rank greater than i.
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The second method is to solve this problem using symmetry. After the first card is
drawn, there are 51 cards remaining. Of those 51 cards there are 48 (= 51 — 3) that have a
rank different rank than the first card drawn. For a randomly chosen rank for the first
card, by symmetry, half of the remaining cards (24 = 48/2) will have a rank higher than
the first card, giving us 24/51.



a. In order to sell the share of HCI exactly 4 days after buying it, it means that the first
two days after buying it must have included one day of increasing price (denote that
as U) and one day of decreasing price (denoted that by D), then followed by two
consecutive days of increasing or decreasing price. Thus the possible outcomes are:

P(Sell on day 4) — P(UDUU) + P(DUUU) + P(UDDD) + P(DUDD)
= p(l-p)p>+(A-p)p’ + p(-p)’ +(1- p)p(1- p)’
=2p(l-p)(p* +(1-p)*)

b. There are two common ways to compute this. The first is to define a recurrence
relation. Namely, the probability you eventually sell for a gain is the probability that
you either have two U days in a row, or that you have a U day and a D day (so the
stock is again at the starting price of $10), multiplied by the probability that you
eventually sell for a gain. Formally, this can be written as:

P(sell for $12) = P(UU) + P(sell for $12 and UD) + P(sell for $12 and DU)
— p* + P(sell for $12)P(UD) + P(sell for $12)P(DU)
— p* + P(sell for $12)p(1 — p) + P(sell for $12)(1 — p)p
= p* + 2P(sell for $12)p(1 — p)

Let X = P(sell for $12), and solve for X yielding:

X =2Xp(1 - p) + p*
1=2p(1 —p)+p¥X
pIX=1-2p(1-p)
X =p*(1-2p(1 - p))
X =p/(p*+ (1 -p))

2

p
So, P(sell for $12)= — 2
p>+(1-p)’

A second (simpler) way to compute this is using the odds that when we sell, we are
selling for a gain. Here we essentially ignore (cancel out) pairs composed of a U and a
D before the sale, and simply focus on whether the two days that determine the sale
are Us or Ds. Formally, we have the following (which immediately gives us the

answer):
2

P(sell for $12) = P(2 Us)/(P(2 Us) + P(2 Ds)) = —L——
p +(1-p)



Let A = number of type W machines on "watch list"
Let B = number of type X machines on "watch list"

Note that A ~ Bin(10, 0.2) and B ~ Bin(10, 0.2).
Thus, we have: E[A] =10(0.2) =2 and E[B] = 10(0.2) =2

a. Since A and W; are independent and B and X; are independent:

E[Y] =E[AJE[W,] +E[B]E[X]
=@+ @)(5)=8+10=18

b. We can define random variable C = W, + W, + W.. Noting that all W, are
independent, we have that: C ~ (Poi(4) + Poi(4) + Poi(4)) = Poi(12)

Here, Y = C, so we have:

0 -12 i
P(Y>20)= P(C>20)= Y < _'12
!

i=20

c. We can define random variable D = X, + X, + X.. Noting that all X; are independent,
we have that: D ~ N(5, 3) + N(5, 3) + N(5, 3) = N(15, 9)

Since the X; are Normally distributed to begin with, they are continuous variables and
so is their sum. So, in computing a probability involving the sum, there is no need to
approximate a discrete quantity using a continuity correction. Here, Y = D, so we
have:

20-15

NG)

P(Y 220)=P(D>20)=1-P(D<20)=1-P(Z <

)=1-P(Z <1.67)

=1 - ¢(1.67) ~ 1 —0.9525 = 0.0475

Here is what you would have gotten if you had used the continuity correction (which
in this particular case, we gave full credit for when grading the problem):

19.5-15

g

P(Y 220)=P(D>219.5)=1-P(D<19.5)=1-P(Z < y=1-P(Z <1.5)

=1 —¢(1.5) ~ 1 —0.9332 = 0.0668



Let indicator variable X; = 1 if the i-th integer generated is a 1, and 0 otherwise.
Let indicator variable Y, = 1 if the j-th integer generated is a 5, and 0 otherwise.

Note that X = ZX ; and likewise Y = Z Y,

i=1 j=1

a. Note: E[X;] = P(X;) =1/5 and likewise E[Y,] = P(Y;)= 1/5.
Also note: E[X;, Y;] =0 whenever i =, since a 1 and 5 cannot both be the i-th integer.

Cov(Xi, Y)) =E[X;Y,]-E[Xi] E[Y/]
1 L .
Y] wheni = j, since E[X,Y;]=0 when i =

0  otherwise (wheni # j), by independence

So, Cov(X, Y)=Cov(D_ X, > ¥,)=> > Cov(X,,Y,) =D Cov(X,Y,) = (n);—sl = —zls
i=1 Jj=1 i=1

i=l j=1

Cov(X,Y)
\/ Var(X)Var(Y)

By definition: p(X, Y) =

We note that X; ~ Ber(p = 1/5) and likewise Y; ~ Ber(p = 1/5)

Thus, Var(X;) = Var(Y,) = p(1 — p) = (1/5)(4/5) = 4/25

Since X = ZX . and all the X; are independent: Var(X) = nVar(X;) = 4n/25
i=1

Also, Var(Y) = Var(X) = 4n/25

So, p(X, Y) = -n/25  -n/25 __l

/(4n/25)2 C 4n/25 4




5. Let n = the number of machines we purchase. Let Y; = the total number of weeks we use

that the i-th machine purchased until it dies. Note that: X = Z Y,
i=1
We want to compute an expression for #, such that:

P(X >2000) = P(D Y, >2000) > 0.95
i=l1
Note that E[X] = E{Z Y, } =nE[Y]=100n
i=1
Similarly, Var(X) = Var{z Yl} . Since all Y; are independent, we have:

i=1

Var[z": Yl} = n Var(Y,) = 25n. Thus, Var(X) = 25n.

i=1

Now, we apply the Central Limit Theorem:

DY, —100n
. o 2000 — 1007 400 20
P(X >2000) = P(YY, > 2000) = P(:2 > )= P(z > 22— =0n,
( ) (; V25n \25n \/;
We want to have:
pz>30=20n 5 695 = 1-pz <290720m) 5 505 = 1o 022975 005
Jn Jn Jn

Noting that 1-®(C) = ®(-C), we obtain:
20n — 400 20n — 400

N )>0.95 = N

D( >1.645, since ®(1.645) = 0.95.

Here we want to determine the minimal value of n satisfying the inequality above.

Clearly, n = 20 is too small, since 20(20) - 400 _ 0. We consider n = 21, giving us:
V20
20(21) — 400 _ 420400 _ 20 . We know that /21 <5, so £2§=421.645, SO
V21 V21 W21 21 s

21 machines is sufficient to give us P(X > 2000) > 0.95.



6. Let X = value returned by Near ().

E[X] =1/4Q2 +4 +E[6 + X] + E[8 + X]) = 1/4(2 + 4 + 6 + E[X] + 8 + E[X])
= 1/4(20 + 2E[X]) = 5 + 1/2E[X]

So, E[X] =10

E[X’] 1/4(2% + 4> + E[(6 + X)*] + E[(8 + X)?]

1/4(4 + 16 + 36 + 12E[X] + E[X*] + 64 + 16E[X] + E[X?])
1/4(120 + 28E[X] + 2E[X?])
1/4(120 + 28(10) + 2E[X?]) = 1/4(400 + 2E[X?]) = 100 + 1/2E[X?]

So, E[X*] =2(100) =200

E[Y]

So, E[Y]

E[Y?]

1/3(2 +E[2 + X] + B[4 + Y]) = 1/3(2 + 2 + E[X] + 4 + E[Y])
1/3(8 + E[X] + E[Y]) = 1/3(8 + 10 + E[Y]) = 18/3 + 1/3E[Y]
9

/3(2% +E[(2 + X)*]+ E[(4 + Y)*]

/3(4 + 4 + 4B[X] + E[X?] + 16 + 8E[Y] + E[Y?])
/3(24 + 40 + E[X?] + 8(9) + E[Y?])

/3(136 + 200 + E[Y?])

1/3(336 + E[Y?])

1
1
1
1

So, E[Y?] =336/2=168

Var(Y)=E[Y?] - E[Y]* = 168 — (9)* = 168 — 81 = 87



P(X=1)=0
P(X =2) = 1/4 = 16/64

P(X = 3) = (3/4)(2/4) = 3/8 = 6/16 = 24/64
P(X = 4) = (3/4)(2/4)(3/4) = 9/32 = 18/64

P(X = 5) = (3/4)(2/4)(1/4) = 3/32 = 6/64

: mxy=§ypueﬁ)=um+2aw&n+xmm®+4a&&n+ﬂwM)

=238/64 =103/32

n or n=l »\ =+

. i—1

In the general case: P(X =1) Z( H i]—, since we need to hash i — 1 strings
n

jen—i+2 1

without any collisions, and then get a collision on the last (i-th) string hashed.

Note that the product above could be written with either an n or n — 1 as the top index.
Either form is equivalent, since the form with #n as the top index just does an extra
multiplication of the product by 1 (= n/n).

Using the definition of expectation, we have:

E[X]= fip()( )= i{ Hliji

=2 \ jen-iv2N ) N

& ii-Dn!

- S n'(n—i+1)!



a. The mass function for the Geometric distribution with given parameter p is
f(X; | p)=p(=p)"", where X;> 0.

The likelihood function to maximize is:
L(p)=]]p-p)*"
i=1

So, the log-likelihood function to maximize is:

LL(p) =Y [log p + (X, ~D)log(1 - p)]

i=1

Taking the derivative of LL(p) w.r.t. p, and setting it to 0, yields:

M:Z[l_l_()(i_l)__l]:o
o TP 1-p
Solving for p gi oL sy = EP Iy o
olving for p givesus: —=_—— i - = i
p l1-p5 p n iz

1 1 & 1 1
{n ;:1: ::| Pwmie 1 e

p i 7?){1

1 1 5
b. Wehave: Pmie = 7, = 1 =
> X, (20
i=1 5

1
n“

1
20 4




a.

Likelihood = (p;;)% - (1 — p;;)' 5%
Log Likelihood = S;; log(pi;) + (1 — Si;) log(1 — pi;)

b. Using chain rule:

C.

OLL _ OLL Op;
8&1 - 8pz~j E)ai

Just like in a deep learning network:
oLL _ Sy (1—=5y)

opi;  piy  (1—pij)

Staring with the equation for p;;
Opij
&LZ =pij(1 = pig) - 5 —(ai — dj)

(2

= pij (1 — pij)

The likelihood function is the probability mass function of a Bernoulli with
probability pij:

You can optionally reduce your equations further. If you substitute and cancel

you will get that:
8pij

00, Sij = Pij

Using chain rule:

OLL . OLL ) 5pij
8dj N 8pz~j E)dj

This part is the same:
oLL Sij (1—54)

o pij  (1—pij)
Starting with the equation for pj;.
8Pij

=p;ii(l—p;ii) —(a; — d;
adj p]( p]) ad](a J)

= pij(1 —pij)(=1)

You can optionally reduce your equations further. If you substitute and cancel

you will get that:
8pij

= pii — Sy
ad; Pij
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d. Use can estimate the value of all parameters using gradient ascent. Gradient ascent
repeatedly takes a step along the gradient with a fixed step size. Just like when we
implemented logistic regression, we can program our closed form mathematical
solution for gradients to efficiently calculate the gradient for any values of our
parameters.



