
Before reading the solutions, we encourage you to go through the exam first. To help 
guide your studying, we went through and tagged each of the exam questions with 
relevant topics. If you are struggling with a particular question, we encourage you to 
brush up on the tagged topic. Note that these are not comprehensive are rather intended to 
serve as a starting point for your studying! 
 
As always, please come to Office Hours or ask on Piazza for clarifications! Good luck 
studying!  ☺ 
 
Practice Final Solutions 
1. Probabilities with card decks 
 
2. a. Probability calculations 
2. b. Probability calculations 
 
3. a.  Expectation 
3. b. Sum of Poisson RVs 
3. c. CDF calculations 
 
4. a. Covariance 
4. b. Variance Properties 
 
5. Central limit theorem 
 
6. a. Expectation and Variance 
6. b. Expectation and Variance 
 
7. a. Probability distribution 
7. b. Expectation 
7. c. Expectation 
 
8. a. MLE and log-likelihood function 
8. b. MLE 
 
9. a. MLE 
9. b. Naïve Bayes 
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Practice Final Examination Solutions 
 

1. Answer: 24/51 = 8/17.  There are multiple ways to obtain this answer; here are two: 

 

The first (common) method is to sum over all possibilities for the rank of the first card 

drawn multiplied by the probability that the second card has greater rank, given the rank 

of the first card.  The first card drawn can be of any of the 13 ranks with equal probability 

(= 1/13).  Let i be the rank of the first card.  After the first card is chosen, 51 cards 

remain, of which 4(13 – i) have a rank greater than i. 
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The second method is to solve this problem using symmetry.  After the first card is 

drawn, there are 51 cards remaining.  Of those 51 cards there are 48 (= 51 – 3) that have a 

rank different rank than the first card drawn.  For a randomly chosen rank for the first 

card, by symmetry, half of the remaining cards (24 = 48/2) will have a rank higher than 

the first card, giving us 24/51. 
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2.  

a. In order to sell the share of HCI exactly 4 days after buying it, it means that the first 

two days after buying it must have included one day of increasing price (denote that 

as U) and one day of decreasing price (denoted that by D), then followed by two 

consecutive days of increasing or decreasing price.  Thus the possible outcomes are: 

 

P(Sell on day 4)  = P(UDUU) + P(DUUU) + P(UDDD) + P(DUDD) 

   = 
2332

)1()1()1()1()1( pppppppppp −−+−+−+−  

   = ))1()(1(2
22 pppp −+−  

 

b. There are two common ways to compute this.  The first is to define a recurrence 

relation.  Namely, the probability you eventually sell for a gain is the probability that 

you either have two U days in a row, or that you have a U day and a D day (so the 

stock is again at the starting price of $10), multiplied by the probability that you 

eventually sell for a gain.  Formally, this can be written as: 

 

P(sell for $12) = P(UU) + P(sell for $12 and UD) + P(sell for $12 and DU) 

   = p2
 + P(sell for $12)P(UD) + P(sell for $12)P(DU) 

   = p2
 + P(sell for $12)p(1 – p) + P(sell for $12)(1 – p)p 

   = p2
 + 2P(sell for $12)p(1 – p) 

 

Let X = P(sell for $12), and solve for X yielding: 

 

X = 2Xp(1 – p) + p2
   

1 = 2p(1 – p) + p2
/X 

p2
/X = 1 – 2p(1 – p) 

X = p2
/(1 – 2p(1 – p)) 

X = p2
/(p2

+ (1 – p)2
) 

 

So, P(sell for $12) = 
22
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A second (simpler) way to compute this is using the odds that when we sell, we are 

selling for a gain. Here we essentially ignore (cancel out) pairs composed of a U and a 

D before the sale, and simply focus on whether the two days that determine the sale 

are Us or Ds. Formally, we have the following (which immediately gives us the 

answer): 

P(sell for $12) = P(2 Us)/(P(2 Us) + P(2 Ds)) = 
22

2
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3.  

Let A = number of type W machines on "watch list" 

Let B = number of type X machines on "watch list" 

 

Note that A ~ Bin(10, 0.2) and B ~ Bin(10, 0.2). 

Thus, we have: E[A] = 10(0.2) = 2 and E[B] = 10(0.2) = 2 

 

a. Since A and Wi are independent and B and Xi are independent: 

 

E[Y]  = E[A]E[Wi] + E[B]E[Xj]  
 

= (2)(4) + (2)(5) = 8 + 10 = 18 

 

 

b. We can define random variable C = Wa + Wb + Wc.  Noting that all Wi are 

independent, we have that: C ~ (Poi(4) + Poi(4) + Poi(4)) = Poi(12) 
 

Here, Y = C, so we have: 
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c. We can define random variable D = Xa + Xb + Xc.  Noting that all Xi are independent, 

we have that: D ~ N(5, 3) + N(5, 3) + N(5, 3) = N(15, 9)  

 

Since the Xj are Normally distributed to begin with, they are continuous variables and 

so is their sum. So, in computing a probability involving the sum, there is no need to 

approximate a discrete quantity using a continuity correction.  Here, Y = D, so we 

have: 
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= 1 – φ(1.67) ≈ 1 – 0.9525 = 0.0475 

 

 

Here is what you would have gotten if you had used the continuity correction (which 

in this particular case, we gave full credit for when grading the problem): 
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= 1 – φ(1.5) ≈ 1 – 0.9332 = 0.0668 
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4.  

Let indicator variable Xi = 1 if the i-th integer generated is a 1, and 0 otherwise. 

Let indicator variable Yj = 1 if the j-th integer generated is a 5, and 0 otherwise. 

 

Note that X = ∑
=

n

i
iX

1

 and likewise Y = ∑
=

n

j
jY

1

 

 

a. Note: E[Xi] = P(Xi) =1/5 and likewise E[Yj] = P(Yi)= 1/5. 

 

Also note: E[Xi, Yj] = 0 whenever i = j, since a 1 and 5 cannot both be the i-th integer. 

 

Cov(Xi, Yj) = E[Xi Yj] – E[Xi] E[Yj] 
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So, Cov(X, Y) =
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b.  

By definition: ρ(X, Y) = 
)(Var)(Var

),(Cov

YX
YX

 

 

We note that Xi ~ Ber(p = 1/5) and likewise Yj ~ Ber(p = 1/5) 

 

Thus, Var(Xi) = Var(Yj) = p(1 – p) = (1/5)(4/5) = 4/25 

 

Since X = ∑
=

n

i
iX

1

 and all the Xi are independent: Var(X) = nVar(Xi) = 4n/25 

 

Also, Var(Y) = Var(X) = 4n/25 

 

So, ρ(X, Y) = 
4
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5. Let n = the number of machines we purchase.  Let Yi = the total number of weeks we use 

that the i-th machine purchased until it dies.  Note that: ∑
=

=
n

i
iYX

1

 

We want to compute an expression for n, such that: 
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Var .  Since all Yi are independent, we have: 
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Var  = n Var(Yi) = 25n.  Thus, Var(X) = 25n. 

 

 

Now, we apply the Central Limit Theorem: 
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We want to have:  
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Noting that )()(-1 CC −Φ=Φ , we obtain: 
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Here we want to determine the minimal value of n satisfying the inequality above.  

Clearly, n = 20 is too small, since 0
20

400)20(20
=

−
.  We consider n = 21, giving us: 

21

20

21

400420

21

400)21(20
=

−
=

−
.  We know that 521 ≤ , so 645.14

5

20

21

20
≥=≥ , so 

21 machines is sufficient to give us P(X > 2000) ≥ 0.95. 
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6. Let X = value returned by Near(). 

 

E[X]  = 1/4(2 + 4 + E[6 + X] + E[8 + X]) = 1/4(2 + 4 + 6 + E[X] + 8 + E[X]) 

= 1/4(20 + 2E[X]) = 5 + 1/2E[X]  
 

So, E[X] = 10 

 

E[X
2
]  = 1/4(2

2
 + 4

2
 + E[(6 + X)

2
] + E[(8 + X)

2
] 

  = 1/4(4 + 16 + 36 + 12E[X] + E[X
2
] + 64 + 16E[X] + E[X

2
]) 

  = 1/4(120 + 28E[X] + 2E[X
2
]) 

  = 1/4(120 + 28(10) + 2E[X
2
]) = 1/4(400 + 2E[X

2
]) = 100 + 1/2E[X

2
] 

 

So, E[X
2
]  = 2(100) = 200 

 

 

 

a.  

E[Y]  = 1/3(2 + E[2 + X] + E[4 + Y]) = 1/3(2 + 2 + E[X] + 4 + E[Y]) 

 = 1/3(8 + E[X] + E[Y]) = 1/3(8 + 10 + E[Y]) = 18/3 + 1/3E[Y] 
 

So, E[Y] = 9 

 

 

 

b.  

E[Y
2
] = 1/3(2

2
  + E[(2 + X)

2
]+ E[(4 + Y)

2
] 

 = 1/3(4 + 4 + 4E[X] + E[X
2
] + 16 + 8E[Y] + E[Y

2
]) 

 = 1/3(24 + 40 + E[X
2
] + 8(9) + E[Y

2
]) 

 = 1/3(136 + 200 + E[Y
2
]) 

 = 1/3(336 + E[Y
2
]) 

 

So, E[Y
2
] = 336/2 = 168 

 
Var(Y) = E[Y

2
] – E[Y]

2
 = 168 – (9)

2
 = 168 – 81 = 87 
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7.  

a.  

P(X = 1) = 0 

 

P(X = 2) = 1/4 = 16/64 

 

P(X = 3) = (3/4)(2/4) = 3/8 = 6/16 = 24/64 

 

P(X = 4) = (3/4)(2/4)(3/4) = 9/32 = 18/64 

 

P(X = 5) = (3/4)(2/4)(1/4) = 3/32 = 6/64 
 
 
 

b. E[X] = ∑
=

=
5

1

)( 
i

iXPi  = 1(0) + 2(16/64) + 3(24/64) + 4(18/64) + 5(6/64) 

   = 238/64 = 103/32 
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without any collisions, and then get a collision on the last (i-th) string hashed. 

 

Note that the product above could be written with either an n or n – 1 as the top index.  

Either form is equivalent, since the form with n as the top index just does an extra 

multiplication of the product by 1 (= n/n). 
 

  

 Using the definition of expectation, we have: 
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8.  

a. The mass function for the Geometric distribution with given parameter p is 
1

)1()|(
−−= iX

i pppXf , where Xi ≥ 0.   

 

The likelihood function to maximize is: 
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So, the log-likelihood function to maximize is: 
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Taking the derivative of LL(p) w.r.t. p, and setting it to 0, yields:  
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Solving for p gives us:  )1(
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b. We have: 
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9.   

a. The likelihood function is the probability mass function of a Bernoulli with 
probability pij: 
 

 
 

b. Using chain rule: 
 

 
 
Just like in a deep learning network: 

 
 
Staring with the equation for pij 

 
 
You can optionally reduce your equations further. If you substitute and cancel 
you will get that: 

 
 

c. Using chain rule: 
 

 
 
This part is the same: 

 
 
Starting with the equation for pij: 

 
 
You can optionally reduce your equations further. If you substitute and cancel 
you will get that: 

 
 

Likelihood = (pij)
Sij · (1� pij)

1�Sij

Log Likelihood = Sij log(pij) + (1� Sij) log(1� pij)

@LL
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@LL

@pij
· @pij
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=
Sij
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� (1� Sij)
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@
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= pij(1� pij)
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= Sij � pij
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=
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@pij
· @pij
@dj

@pij
@ai

=
Sij

pij
� (1� Sij)

(1� pij)

@pij
@dj

= pij(1� pij) ·
@

@dj
(ai � dj)

= pij(1� pij)(�1)

@pij
@dj

= pij � Sij
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d. Use can estimate the value of all parameters using gradient ascent. Gradient ascent 
repeatedly takes a step along the gradient with a fixed step size. Just like when we 
implemented logistic regression, we can program our closed form mathematical 
solution for gradients to efficiently calculate the gradient for any values of our 
parameters. 
 


