
– 1 –

Lisa Yan
CS109

Lecture Notes #15
October 25, 2019

Covariance
Based on a chapter by Chris Piech

Expectations of Products Lemma
We know that the expectation of the sum of two random variables is equal to the sum of the
expectations of the two variables. However, the expectation of the product of two random variables
only has a nice decomposition in the case where the random variables are independent of one
another.

E[g(X)h(Y )] = E[g(X)]E[h(Y )] if X and Y are independent

1 Covariance and Correlation
Consider the two multivariate distributions shown bellow. In both images I have plotted one thousand
samples drawn from the underlying joint distribution. Clearly the two distributions are different.
However, the mean and variance are the same in both the x and the y dimension. What is different?

Covariance is a quantitative measure of the extent to which the deviation of one variable from its
mean matches the deviation of the other from its mean. It is a mathematical relationship that is
defined as:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

That is a little hard to wrap your mind around (but worth pushing on a bit). The outer expectation will
be a weighted sum of the inner function evaluated at a particular (x, y) weighted by the probability
of (x, y). If x and y are both above their respective means, or if x and y are both below their
respective means, that term will be positive. If one is above its mean and the other is below, the
term is negative. If the weighted sum of terms is positive, the two random variables will have a
positive correlation. We can rewrite the above equation to get an equivalent equation:

Cov(X,Y ) = E[XY ] − E[Y ]E[X]

Using this equation (and the product lemma) is it easy to see that if two random variables are
independent their covariance is 0. The reverse is not true in general.
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Properties of Covariance
Say that X and Y are arbitrary random variables:

Cov(X,Y ) = Cov(Y, X)
Cov(X, X) = E[X2] − E[X]E[X] = Var(X)
Cov(aX + b,Y ) = aCov(X,Y )

Let X = X1 + X2 + · · · + Xn and let Y = Y1 + Y2 + · · · + Ym. The covariance of X and Y is:

Cov(X,Y ) =
n∑

i=1

m∑
j=1

Cov(Xi,Yj)

Cov(X, X) = Var(X) =
n∑

i=1

n∑
j=1

Cov(Xi, X j)

=

n∑
i=1

Var(Xi) + 2
n∑

i=1

n∑
j=i+1

Cov(Xi, X j)

That last property gives us a third way to calculate variance. You could use this definition to
calculate the variance of the binomial.

Correlation
Covariance is interesting because it is a quantitative measurement of the relationship between
two variables. Correlation between two random variables, ρ(X,Y ) is the covariance of the two
variables normalized by the variance of each variable. This normalization cancels the units out and
normalizes the measure so that it is always in the range [0, 1]:

ρ(X,Y ) = Cov(X,Y )√
Var(X)Var(Y )

Correlation measures linearity between X and Y .

ρ(X,Y ) = 1 Y = aX + b where a = σy/σx

ρ(X,Y ) = −1 Y = aX + b where a = −σy/σx

ρ(X,Y ) = 0 absence of linear relationship

If ρ(X,Y ) = 0 we say that X and Y are “uncorrelated." If two varaibles are independent, then
their correlation will be 0. However, it doesn’t go the other way. A correlation of 0 does not imply
independence.

When people use the term correlation, they are actually referring to a specific type of correlation
called “Pearson" correlation. It measures the degree to which there is a linear relationship between
the two variables. An alternative measure is “Spearman" correlation which has a formula almost
identical to your regular correlation score, with the exception that the underlying random variables
are first transformed into their rank. “Spearman" correlation is outside the scope of CS109.
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