Great Expectations

Based on a chapter by Chris Piech and Lisa Yan
Earlier in the course we came to the important result that $E\left[\sum_{i} X_{i}\right]=\sum_{i} E\left[X_{i}\right]$. First, as a warm up lets go back to our old friends and show how we could have derived expressions for their expectation.

Expectation of Binomial

First let's start with some practice with the sum of expectations of indicator variables. Let $Y \sim$ $\operatorname{Bin}(n, p)$, in other words if Y is a Binomial random variable. We can express Y as the sum of n Bernoulli random indicator variables $X_{i} \sim \operatorname{Ber}(p)$. Since X_{i} is a Bernoulli, $E\left[X_{i}\right]=p$

$$
Y=X_{1}+X_{2}+\cdots+X_{n}=\sum_{i=1}^{n} X_{i}
$$

Let's formally calculate the expectation of Y :

$$
\begin{aligned}
E[Y] & =E\left[\sum_{i}^{n} X_{i}\right] \\
& =\sum_{i}^{n} E\left[X_{i}\right] \\
& =E\left[X_{0}\right]+E\left[X_{1}\right]+\ldots E\left[X_{n}\right] \\
& =n p
\end{aligned}
$$

Expectation of Negative Binomial

Recall that a Negative Binomial is a random variable that semantically represents the number of trials until r successes. Let $Y \sim \operatorname{NegBin}(r, p)$.

Let $X_{i}=\#$ trials to get success after the $(i-1)$-th success. We can then think of each X_{i} as a Geometric RV: $X_{i} \sim \operatorname{Geo}(p)$. Thus, $E\left[X_{i}\right]=\frac{1}{p}$. We can express Y as:

$$
Y=X_{1}+X_{2}+\cdots+X_{r}=\sum_{i=1}^{r} X_{i}
$$

Let's formally calculate the expectation of Y :

$$
\begin{aligned}
E[Y] & =E\left[\sum_{i=1}^{r} X_{i}\right] \\
& =\sum_{i=1}^{r} E\left[X_{i}\right] \\
& =E\left[X_{1}\right]+E\left[X_{2}\right]+\ldots E\left[X_{r}\right] \\
& =\frac{r}{p}
\end{aligned}
$$

Jensen's Inequality

If X is a random variable and $f(x)$ is a convex function (that is, $f^{\prime \prime}(x) \geq 0$ for all x), then Jensen's inequality says that

$$
E[f(X)] \geq f(E[X])
$$

A convex function is, roughly speaking, "bowl-shaped", curving upwards. So one way to remember which way the inequality goes is to set up the simplest possible probability distribution: probability 0.5 of being at a and probability 0.5 of being at b. Which is greater: $f\left(\frac{a+b}{2}\right)$ or $\frac{f(a)+f(b)}{2}$?

Since f curves upward, $f\left(\frac{a+b}{2}\right)$ is going to lie below (or at most on) the straight line between $(a, f(a))$ and $(b, f(b))$. The average $\frac{f(a)+f(b)}{2}$ is going to lie on that line at $x=\frac{a+b}{2}$, so $\frac{f(a)+f(b)}{2}$ is greater.
(Note that this isn't a proof of the inequality, which holds for other probability distributions besides this simple one.)

You can also show from this that if f is concave ($f^{\prime \prime}(x) \leq 0$ for all x), then $E[f(X)] \leq f(E[X])$.

Conditional Expectation

We have gotten to know a kind and gentle soul, conditional probability. And we now know another funky fool, expectation. Let's get those two crazy kids to play together.

Let X and Y be jointly random variables. Recall that the conditional probability mass function (if they are discrete), and the probability density function (if they are continuous) are respectively:

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \\
f_{X \mid Y}(x \mid y) & =\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
\end{aligned}
$$

We define the conditional expectation of X given $Y=y$ to be:

$$
\begin{aligned}
& E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y) \\
& E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x
\end{aligned}
$$

Where the first equation applies if X and Y are discrete and the second applies if they are continuous.

Properties of Conditional Expectation

Here are some helpful, intuitive properties of conditional expectation:

$$
\begin{array}{ll}
E[g(X) \mid Y=y]=\sum_{x} g(x) p_{X \mid Y}(x \mid y) & \text { if } \mathrm{X} \text { and } \mathrm{Y} \text { are discrete } \\
E[g(X) \mid Y=y]=\int_{-\infty}^{\infty} g(x) f_{X \mid Y}(x \mid y) d x & \text { if } \mathrm{X} \text { and } \mathrm{Y} \text { are continuous } \\
E\left[\sum_{i=1}^{n} X_{i} \mid Y=y\right]=\sum_{i=1}^{n} E\left[X_{i} \mid Y=y\right] &
\end{array}
$$

Law of Total Expectation

The law of total expectation states that: $E[E[X \mid Y]]=E[X]$.
What?! How is that a thing? Check out this proof:

$$
\begin{aligned}
E[E[X \mid Y]] & =\sum_{y} E[X \mid Y=y] P(Y=y) \\
& =\sum_{y} \sum_{x} x P(X=x \mid Y=y) P(Y=y) \\
& =\sum_{y} \sum_{x} x P(X=x, Y=y) \\
& =\sum_{x} \sum_{y} x P(X=x, Y=y) \\
& =\sum_{x} x \sum_{y} P(X=x, Y=y) \\
& =\sum_{x} x P(X=x) \\
& =E[X]
\end{aligned}
$$

Example 1

You roll two 6-sided dice D_{1} and D_{2}. Let $X=D_{1}+D_{2}$ and let $Y=$ the value of D_{2}.

- What is $E[X \mid Y=6]$?

$$
\begin{aligned}
E[X \mid Y=6] & =\sum_{x} x P(X=x \mid Y=6) \\
& =\left(\frac{1}{6}\right)(7+8+9+10+11+12)=\frac{57}{6}=9.5,
\end{aligned}
$$

which makes intuitive sense since $6+E$ [value of $\left.D_{1}\right]=6+3.5$.

- What is $E[X \mid Y=y]$, where $y=1, \ldots, 6$?

Let $W=$ the value of D_{1}. Then $X=Y+W$, and Y and W are independent.

$$
\begin{aligned}
E[X \mid Y=y] & =E[W+Y \mid Y=y]=E[W+y \mid Y=y] \\
& =y+E[W \mid Y=y] \quad \text { (} y \text { is a constant with respect to } W \text {) } \\
& =y+\sum_{w} w P(W=w \mid Y=y) \\
& =y+\sum_{w} w P(W=w) \\
& =y+3.5
\end{aligned} \quad(W, Y \text { are independent })
$$

Note that $E[X \mid Y=y]$ depends on the value y. In other words, $E[X \mid Y]$ is a function of the random variable Y.

Example 2

Consider the following code with random numbers:

```
int Recurse() {
    int x = randomInt(1, 3); // Equally likely values
    if (x == 1) return 3;
    else if (x == 2) return (5 + Recurse());
    else return (7 + Recurse());
}
```

Let $Y=$ value returned by "Recurse". What is $E[Y]$. In other words, what is the expected return value. Note that this is the exact same approach as calculating the expected run time.

$$
E[Y]=E[Y \mid X=1] P(X=1)+E[Y \mid X=2] P(X=2)+E[Y \mid X=3] P(X=3)
$$

First lets calculate each of the conditional expectations:

$$
\begin{aligned}
& E[Y \mid X=1]=3 \\
& E[Y \mid X=2]=E[5+Y]=5+E[Y] \\
& E[Y \mid X=3]=E[7+Y]=7+E[Y]
\end{aligned}
$$

Now we can plug those values into the equation. Note that the probability of X taking on 1 , 2, or 3 is $1 / 3$:

$$
\begin{aligned}
E[Y] & =E[Y \mid X=1] P(X=1)+E[Y \mid X=2] P(X=2)+E[Y \mid X=3] P(X=3) \\
& =3(1 / 3)+(5+E[Y])(1 / 3)+(7+E[Y])(1 / 3) \\
& =15
\end{aligned}
$$

Hiring Software Engineers

You are interviewing n software engineer candidates and will hire only 1 candidate. All orderings of candidates are equally likely. Right after each interview you must decide to hire or not hire. You can not go back on a decision. At any point in time you can know the relative ranking of the candidates you have already interviewed.

The strategy that we propose is that we interview the first k candidates and reject them all. Then you hire the next candidate that is better than all of the first k candidates. What is the probability that the best of all the n candidates is hired for a particular choice of k ? Let's denote that result $P_{k}($ Best $)$. Let X be the position in the ordering of the best candidate:

$$
P_{k}(\text { Best })=\sum_{i=1}^{n} P_{k}(\text { Best } \mid X=i) P(X=i)
$$

$$
=\frac{1}{n} \sum_{i=1}^{n} P_{k}(\text { Best } \mid X=i) \quad \text { since each position is equally likely }
$$

What is $P_{k}($ Best $\mid X=i)$? if $i \leq k$ then the probability is 0 because the best candidate will be rejected without consideration. Sad times. Otherwise we will chose the best candidate, who is in position i, only if the best of the first $i-1$ candidates is among the first k interviewed. If the best among the first $i-1$ is not among the first k, that candidate will be chosen over the true best. Since all orderings are equally likely the probability that the best among the $i-1$ candidates is in the first k is:

$$
\frac{k}{i-1} \quad \text { if } i>k
$$

Now we can plug this back into our original equation:

$$
\begin{array}{rlr}
P_{k}(\text { Best }) & =\frac{1}{n} \sum_{i=1}^{n} P_{k}(\text { Best } \mid X=i) & \\
& =\frac{1}{n} \sum_{i=k+1}^{n} \frac{k}{i-1} & \text { since we know } P_{k}(\text { Best } \mid X=i) \\
& \approx \frac{1}{n} \int_{i=k+1}^{n} \frac{k}{i-1} d i & \text { By Riemann Sum approximation } \\
& =\left.\frac{k}{n} \ln (i=1)\right|_{k+1} ^{n}=\frac{k}{n} \ln \frac{n-1}{k} \approx \frac{k}{n} \ln \frac{n}{k} &
\end{array}
$$

If we think of P_{k} (Best $)=\frac{k}{n} \ln \frac{n}{k}$ as a function of k we can take find the value of k that optimizes it by taking its derivative and setting it equal to 0 . The optimal value of k is n / e. Where e is Euler's number.

