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Great Expectations
Based on a chapter by Chris Piech and Lisa Yan

Earlier in the course we came to the important result that E[∑i Xi] =
∑

i E[Xi]. First, as a warm
up lets go back to our old friends and show how we could have derived expressions for their
expectation.

Expectation of Binomial
First let’s start with some practice with the sum of expectations of indicator variables. Let Y ∼
Bin(n, p), in other words if Y is a Binomial random variable. We can express Y as the sum of n
Bernoulli random indicator variables Xi ∼ Ber(p). Since Xi is a Bernoulli, E[Xi] = p

Y = X1 + X2 + · · · + Xn =

n∑
i=1

Xi

Let’s formally calculate the expectation of Y :

E[Y ] = E[
n∑
i

Xi]

=

n∑
i

E[Xi]

= E[X0] + E[X1] + . . . E[Xn]
= np

Expectation of Negative Binomial
Recall that a Negative Binomial is a random variable that semantically represents the number of
trials until r successes. Let Y ∼ NegBin(r, p).
Let Xi = # trials to get success after the (i − 1)-th success. We can then think of each Xi as a
Geometric RV: Xi ∼ Geo(p). Thus, E[Xi] = 1

p . We can express Y as:

Y = X1 + X2 + · · · + Xr =

r∑
i=1

Xi

Let’s formally calculate the expectation of Y :

E[Y ] = E[
r∑

i=1
Xi]

=

r∑
i=1

E[Xi]

= E[X1] + E[X2] + . . . E[Xr]

=
r
p
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Jensen’s Inequality
If X is a random variable and f (x) is a convex function (that is, f ′′(x) ≥ 0 for all x), then Jensen’s
inequality says that

E[ f (X)] ≥ f (E[X])
A convex function is, roughly speaking, “bowl-shaped”, curving upwards. So one way to remember
which way the inequality goes is to set up the simplest possible probability distribution: probability
0.5 of being at a and probability 0.5 of being at b. Which is greater: f (a+b

2 ) or f (a)+ f (b)
2 ?

Since f curves upward, f (a+b
2 ) is going to lie below (or at most on) the straight line between

(a, f (a)) and (b, f (b)). The average f (a)+ f (b)
2 is going to lie on that line at x = a+b

2 , so f (a)+ f (b)
2 is

greater.

(Note that this isn’t a proof of the inequality, which holds for other probability distributions besides
this simple one.)

You can also show from this that if f is concave ( f ′′(x) ≤ 0 for all x), then E[ f (X)] ≤ f (E[X]).

Conditional Expectation
We have gotten to know a kind and gentle soul, conditional probability. And we now know another
funky fool, expectation. Let’s get those two crazy kids to play together.

Let X and Y be jointly random variables. Recall that the conditional probability mass function (if
they are discrete), and the probability density function (if they are continuous) are respectively:

pX |Y (x |y) =
pX,Y (x, y)

pY (y)

fX |Y (x |y) =
fX,Y (x, y)

fY (y)
We define the conditional expectation of X given Y = y to be:

E[X |Y = y] =
∑

x

xpX |Y (x |y)

E[X |Y = y] =
∫ ∞

−∞
x fX |Y (x |y)dx

Where the first equation applies if X andY are discrete and the second applies if they are continuous.

Properties of Conditional Expectation
Here are some helpful, intuitive properties of conditional expectation:

E[g(X)|Y = y] =
∑

x

g(x)pX |Y (x |y) if X and Y are discrete

E[g(X)|Y = y] =
∫ ∞

−∞
g(x) fX |Y (x |y)dx if X and Y are continuous

E[
n∑

i=1
Xi |Y = y] =

n∑
i=1

E[Xi |Y = y]
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Law of Total Expectation
The law of total expectation states that: E[E[X |Y ]] = E[X].

What?! How is that a thing? Check out this proof:

E[E[X |Y ]] =
∑
y

E[X |Y = y]P(Y = y)

=
∑
y

∑
x

xP(X = x |Y = y)P(Y = y)

=
∑
y

∑
x

xP(X = x,Y = y)

=
∑

x

∑
y

xP(X = x,Y = y)

=
∑

x

x
∑
y

P(X = x,Y = y)

=
∑

x

xP(X = x)

= E[X]

Example 1
You roll two 6-sided dice D1 and D2. Let X = D1 + D2 and let Y = the value of D2.

• What is E[X |Y = 6]?

E[X |Y = 6] =
∑

x

xP(X = x |Y = 6)

=

(
1
6

)
(7 + 8 + 9 + 10 + 11 + 12) = 57

6
= 9.5,

which makes intuitive sense since 6 + E[value of D1] = 6 + 3.5.

• What is E[X |Y = y], where y = 1, . . . , 6?
Let W = the value of D1. Then X = Y +W , and Y and W are independent.

E[X |Y = y] = E[W + Y |Y = y] = E[W + y |Y = y]
= y + E[W |Y = y] (y is a constant with respect toW)
= y +

∑
w

wP(W = w |Y = y)

= y +
∑
w

wP(W = w) (W,Y are independent)

= y + 3.5

Note that E[X |Y = y] depends on the value y. In other words, E[X |Y ] is a function of the
random variable Y .
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Example 2
Consider the following code with random numbers:

int Recurse() {
int x = randomInt(1, 3); // Equally likely values
if (x == 1) return 3;
else if (x == 2) return (5 + Recurse());
else return (7 + Recurse());

}

Let Y = value returned by “Recurse". What is E[Y ]. In other words, what is the expected return
value. Note that this is the exact same approach as calculating the expected run time.

E[Y ] = E[Y |X = 1]P(X = 1) + E[Y |X = 2]P(X = 2) + E[Y |X = 3]P(X = 3)

First lets calculate each of the conditional expectations:

E[Y |X = 1] = 3
E[Y |X = 2] = E[5 + Y ] = 5 + E[Y ]
E[Y |X = 3] = E[7 + Y ] = 7 + E[Y ]

Now we can plug those values into the equation. Note that the probability of X taking on 1, 2, or 3
is 1/3:

E[Y ] = E[Y |X = 1]P(X = 1) + E[Y |X = 2]P(X = 2) + E[Y |X = 3]P(X = 3)
= 3(1/3) + (5 + E[Y ])(1/3) + (7 + E[Y ])(1/3)
= 15

Hiring Software Engineers
You are interviewing n software engineer candidates and will hire only 1 candidate. All orderings
of candidates are equally likely. Right after each interview you must decide to hire or not hire.
You can not go back on a decision. At any point in time you can know the relative ranking of the
candidates you have already interviewed.

The strategy that we propose is that we interview the first k candidates and reject them all. Then
you hire the next candidate that is better than all of the first k candidates. What is the probability
that the best of all the n candidates is hired for a particular choice of k? Let’s denote that result
Pk(Best). Let X be the position in the ordering of the best candidate:

Pk(Best) =
n∑

i=1
Pk(Best |X = i)P(X = i)

=
1
n

n∑
i=1

Pk(Best |X = i) since each position is equally likely
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What is Pk(Best |X = i)? if i ≤ k then the probability is 0 because the best candidate will be
rejected without consideration. Sad times. Otherwise we will chose the best candidate, who is in
position i, only if the best of the first i − 1 candidates is among the first k interviewed. If the best
among the first i − 1 is not among the first k, that candidate will be chosen over the true best. Since
all orderings are equally likely the probability that the best among the i − 1 candidates is in the first
k is:

k
i − 1

if i > k

Now we can plug this back into our original equation:

Pk(Best) = 1
n

n∑
i=1

Pk(Best |X = i)

=
1
n

n∑
i=k+1

k
i − 1

since we know Pk(Best |X = i)

≈ 1
n

∫ n

i=k+1

k
i − 1

di By Riemann Sum approximation

=
k
n

ln(i = 1)
����n
k+1
=

k
n

ln
n − 1

k
≈ k

n
ln

n
k

If we think of Pk(Best) = k
n ln n

k as a function of k we can take find the value of k that optimizes it
by taking its derivative and setting it equal to 0. The optimal value of k is n/e. Where e is Euler’s
number.


