
– 1 –

Lisa Yan
CS109

Lecture Notes #22
November 11, 2019

Gradient Ascent
Based on a chapter by Chris Piech

Maximum Likelihood Refresher
Our first algorithm for estimating parameters is called Maximum Likelihood Estimation (MLE).
The central idea behind MLE is to select that parameters (θ) that make the observed data the most
likely.

The data that we are going to use to estimate the parameters are going to be n independent and
identically distributed (IID) samples: X1, X2, . . . Xn.

Likelihood
First we define the likelihood of our data give parameters θ:

L(θ) =
n∏

i=1
f (Xi |θ)

This is the probability of all of our data. It evaluates to a product because all Xi are independent.
Now we chose the value of θ that maximizes the likelihood function. Formally θ̂ = argmax

θ
L(θ).

A cool property of argmax is that since log is a monotonic function, the argmax of a function is
the same as the argmax of the log of the function! That’s nice because logs make the math simpler.
Instead of using likelihood, you should instead use log likelihood: LL(θ).

LL(θ) = log
n∏

i=1
f (Xi |θ) =

n∑
i=1

log f (Xi |θ)

To use a maximum likelihood estimator, first write the log likelihood of the data given your
parameters. Then chose the value of parameters that maximize the log likelihood function. Argmax
can be computed in many ways. Most require computing the first derivative of the function.

Gradient Ascent Optimization
In many cases we can’t solve for argmax mathematically. Instead we use a computer. To do so
we employ an algorithm called gradient ascent (a classic in optimization theory). The idea behind
gradient ascent is that if you continuously take small steps in the direction of your gradient, you
will eventually make it to a local maxima.



– 2 –

Start with theta as any initial value (often 0). Then take many small steps towards a local maxima.
The new theta after each small step can be calculated as:

θ new
j = θ old

j + η · ∂LL(θ old)
∂θ j

Where “eta" (η) is the magnitude of the step size that we take. If you keep updating θ using the
equation above you will (often) converge on good values of θ. As a general rule of thumb, use a
small value of η to start. If ever you find that the function value (for the function you are trying
to argmax) is decreasing, your choice of η was too large. Here is the gradient ascent algorithm in
pseudo-code:

Linear Regression Lite
MLE is an algorithm that can be used for any probability model with a derivable likelihood function.
As an example lets estimate the parameter θ in a model where there is a random variable Y such
that Y = θX + Z , Z ∼ N(0, σ2) and X is an unknown distribution.

In the case where you are told the value of X , θX is a number and θX + Z is the sum of a gaussian
and a number. This implies that Y |X ∼ N(θX, σ2). Our goal is to chose a value of θ that maximizes
the probability IID: (X1,Y1), (X2,Y2), . . . (Xn,Yn).



– 3 –

We approach this problem by first finding a function for the log likelihood of the data given θ. Then
we find the value of θ that maximizes the log likelihood function. To start, use the PDF of a Normal
to express the probability of Y |X, θ:

f (Yi |Xi, θ) =
1

√
2πσ

e−
(Yi−θXi )2

2σ2

Now we are ready to write the likelihood function, then take its log to get the log likelihood function:

L(θ) =
n∏

i=1
f (Yi, Xi |θ) Let’s break up this joint

=

n∏
i=1

f (Yi |Xi, θ) f (Xi) f (Xi) is independent of θ

=

n∏
i=1

1
√

2πσ
e−

(Yi−θXi )2

2σ2 f (Xi) Substitute in the definition of f (Yi |Xi)

LL(θ) = log L(θ)

= log
n∏

i=1

1
√

2πσ
e−

(Yi−θXi )2

2σ2 f (Xi) Substitute in L(θ)

=

n∑
i=1

log
1

√
2πσ

e−
(Yi−θXi )2

2σ2 +

n∑
i=1

log f (Xi) Log of a product is the sum of logs

= n log
1

√
2π

− 1
2σ2

n∑
i=1

(Yi − θXi)2 +
n∑

i=1
log f (Xi)

Remove positive constant multipliers and terms that don’t include θ. We are left with trying to find
a value of θ that maximizes:

θ̂ = argmax
θ

[
−

n∑
i=1

(Yi − θXi)2
]

To solve this argmax we are going to use Gradient Ascent. In order to do so we first need to find
the derivative of the function we want to argmax with respect to θ.

∂

∂θ

[
−

n∑
i=1

(Yi − θXi)2
]
= −

n∑
i=1

∂

∂θ
(Yi − θXi)2

= −
n∑

i=1
2(Yi − θXi)(−Xi)

=

n∑
i=1

2(Yi − θXi)(Xi)

This first derivative can be plugged into gradient ascent to give our final algorithm:



– 4 –

Towards Linear Regression
In our Linear Regression Lite model, we made two large simplifying assumptions: (1) our X is
1-dimensional, and (2) the linear relationship between Y and X does not have an intercept term.

Linear Regression in general seeks to find a linear relationship between Y and X = (X1, X2, . . . , Xm)
as follows:

Y = θ0 + θ1X1 + θ2X2 . . . θmXM + Z,

where Z ∼ N(0, σ2), a Gaussian noise, and θ0 is the intercept term.

We will cover multidimensional =datapoints in a few classes, but as an exercise for now, try to run
gradient ascent for the case when our X is 1-dimensional and the linear relationship has an intercept
term θ0:

Y = θ0 + θ1X + Z .

Your optimization objective can be computed as:

θ̂ = argmax
θ

[
−

n∑
i=1

(Yi − (θ1Xi + θ0))2
]

Start by computing the gradient for θ0. The gradient for θ1 has already been computed for you:

∂

∂θ1

[
−

n∑
i=1

(Yi − (θ1Xi + θ0))2
]
=

n∑
i=1

2(Yi − (θ1Xi + θ0))(Xi)


