
– 1 –

Lisa Yan
CS109

Lecture Notes #24
November 15, 2019

Naïve Bayes
Based on a chapter by Chris Piech

Naïve Bayes is a type of machine learning algorithm called a classifier. It is used to predict the
probability of a discrete label random variable Y based on the state of feature random variables X.
We are going to learn all necessary parameters for the probabilistic relationship between X and Y
from data. Naïve Bayes is a ssupervised classification Machine Learning algorithm.

1 Machine Learning: Classification
In supervised machine learning, your job is to use training data with feature/label pairs (I,Y) in
order to estimate a label-predicting function Ŷ = g(X). This function can then be used to make
future predictions. A classification task is one where Y takes on one of a discrete number of values.
Often in classification, g(X) = argmax

y
P̂(Y = y |X = x).

To learn all parameters required to to calculate g(X), you are given n different training pairs known
as training data: (x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n)). X(j) is a vector of m discrete features for the
ith training example, where X(j) = (x(j)

1 , x
(j)
2 , . . . , x

(j)
m). y(j) is the discrete label for the ith training

example. This symbolic description of classification hides the fact that prediction is applied to
interesting real life problems:

1. Predicting heart disease Y , based on a set of m observations from a heart scan, X.

2. Predicting ancestry Y , based on m DNA states X.

3. Predicting if a user will like a movie Y given whether or not they like a set of m movies X.

In this section we are going to assume that all random variables are binary. While this is not a
necessary assumption (Naïve Bayes can work for non-binary data), it makes it much easier to learn
the core concepts. Specifically, we assume that all labels are binary y ∈ {0, 1}, and all features are
binary x j ∈ {0, 1}, ∀ j = 1, . . . ,m.

2 Naïve Bayes algorithm
Here is the Naïve Bayes algorithm. After presenting the algorithm I am going to show the theory
behind it.

– 2 –

Prediction
For an example with X = [x1, x2, . . . , xm], we can make a corresponding prediction for Y . We use
hats (e.g., P̂ or Ŷ) to symbolize values which are estimated.

Ŷ = g(x) = argmax
y∈{0,1}

P̂(Y)P̂(X|Y) This is equal to argmax P̂(Y = y |X)

= argmax
y∈{0,1}

P̂(Y = y)
m∏

i=1
P̂(Xi = xi |Y = y) Naïve Bayes assumption

= argmax
y∈{0,1}

log P̂(Y = y) +
m∑

i=1
log P̂(Xi = xi |Y = y) Log version for numerical stability

In order to calculate this expression, we are going to need to learn the estimates P̂(Y = y) and
P̂(Xi = xi |Y = y) from data using a process called training.

Training
The objective in training is to estimate the probabilities P(Y) and P(Xi |Y) for all 0 < i ≤ m features.
Using an MLE estimate:

P̂(Xi = xi |Y = y) = (# training examples where Xi = xi and Y = y)
(training examples where Y = y)

Using a Laplace MAP estimate:

P̂(Xi = xi |Y = y) = (# training examples where Xi = xi and Y = y) + 1
(training examples where Y = y) + 2

Estimating P(Y = y) is also straightforward. Using MLE estimation:

P̂(Y = y) = (# training examples where Y = y)
(training examples)

3 Theory
Now that you have the algorithm spelled out, let’s go over the theory of how we got there. To do
so, we will first explore an algorithm which doesn’t work, called “Brute Force Bayes.” Then, we
introduce the Naïve Bayes Assumption, which will make our calculations possible.

– 3 –

Brute Force Bayes
We can solve the classification task using a brute force solution. To do so we will learn the full joint
distribution P̂(Y,X).

In the world of classification, when we make a prediction, we want to chose the value of y that
maximizes P(Y = y |X = x). If we can only estimate P̂(Y = y |X = x), then we want to find a
function g(X) = argmax

y
P̂(Y |X).

ŷ = g(x) = argmax
y∈{0,1}

P̂(Y |X) Our objective

= argmax
y∈{0,1}

P̂(X|Y)P̂(Y)
P̂(X)

By Bayes’ Theorem

= argmax
y∈{0,1}

P̂(X|Y)P̂(Y) Since P̂(X) is constant with respect to Y

Using our training data, we could interpret the joint distribution of X andY as one giant Multinomial
with a different parameter for every combination of X = x and Y = y. If for example, the input
vectors are only length one (i.e., |X| = 1) and the number of values that x and y can take on are
small—say, binary—this is a totally reasonable approach. We could estimate the multinomial using
MLE or MAP estimators and then calculate argmax over a few lookups in our table.

The bad times hit when the number of features becomes large. Recall that our multinomial needs
to estimate a parameter for every unique combination of assignments to the vector X and the value
Y . If there are |X| = m binary features then this strategy is going to take order O(2m) space and
there will likely be many parameters that are estimated without any training data that matches the
corresponding assignment.

Naïve Bayes Assumption
The Naïve Bayes Assumption is that each feature of X is conditionally independent of one another
given Y . That assumption is naïve (and often wrong), but useful. This assumption allows us to make
predictions using space and data which is linear with respect to the size of the features: O(m) if
|x| = m. That allows us to train and make predictions for huge feature spaces, such as one which
has an indicator for every word on the internet. Using this assumption the prediction algorithm can
be simplified:

ŷ = g(x) = argmax
y∈{0,1}

P̂(X,Y) As we last left off

= argmax
y∈{0,1}

P̂(Y)P̂(X|Y) By chain rule

= argmax
y∈{0,1}

P̂(Y)
m∏

i=1
P̂(Xi |Y) Using the Naïve Bayes assumption

= argmax
y∈{0,1}

log P̂(Y) +
m∑

i=1
log P̂(Xi |Y) Log version for numerical stability

This algorithm is fast and stable both when training and making predictions.

– 4 –

Let us consider a particular feature, the i-th feature Xi. How should we represent P̂(Xi = xi |Y = y)?
For a particular event Y = y that we condition on, Xi can take on one of k discrete values . Thus
for each particular y, we can model the likelihood of Xi taking on values as a Multinomial random
variable with k parameters. We can then find MLE and MAP estimators for the parameters of
that Multinomial. Recall that the MLE to estimate parameter pi for a Multinomial is just counting,
whereas the MAP estimator (with Laplace prior) to estimate parameter pi imagines one extra
example of each outcome:

p̂i,MLE =
ni

n
and p̂i,M AP =

ni + 1
n + k

,

where n is the number of observations, ni is the number of observations with outcome i, and k is
the total possible number of outcomes k.

Note that in the version of classification we are using in CS109, Xi is binary (technically, a
Multinomial with 2 parameters) and therefore k = 2. I used the Multinomial derivation to help you
understand how one would handle a feature Xi that takes on multiple discrete values.

Naïve Bayes is a simple form of a Bayesian Network where the label Y is the only variable which
directly influences the likelihood of each feature variable Xi. It is a simple model from a field of
machine learning called Probabilistic Graphical Models. In that field you make a graph of how your
variables are related to one another and you come up with conditional independence assumptions
that make it computationally tractable to estimate the joint distribution.

Example
Say we have thirty examples of people’s preferences (like or not) for Star Wars, Harry Potter and
Pokemon. Each training example has X1, X2 and Y where X1 is whether or not the user liked Star
Wars, X2 is whether or not the user liked Harry Potter and Y is whether or not the user liked
Pokemon. For the 30 training examples, the MAP and MLE estimates are as follows:

For a new user who likes Star Wars (X1 = 1) but not Harry Potter (X2 = 0), do you predict that they
will like Pokemon? Yes! Y = 1 leads to a larger value in the argmax term:

– 5 –

if Y = 0 :P̂(X1 = 1|Y = 0)P̂(X2 = 0|Y = 0)P̂(Y = 0) = (0.77)(0.38)(0.43) ≈ 0.126
if Y = 1 :P̂(X1 = 1|Y = 1)P̂(X2 = 0|Y = 1)P̂(Y = 1) = (0.76)(0.41)(0.57) ≈ 0.178

	Machine Learning: Classification
	Naïve Bayes algorithm
	Theory

