CS109: Probability for Computer Scientists

Lisa Yan
September 23, 2019

Lisa Yan

...But now l'm here!!!

PhD: Tools to understand student learning

My interests over time
Yes, my undergrad was here...

Networks, Data Science	Create technology
Teaching	Help people
Education Tools	Create technology to help people

Why I like probability

- I like data
- I want to help people
- Probability helps me help people with data
- Also Pokemon

Me, circa 2003
$a=\frac{\left(3 \times \mathrm{HP}_{\max }-2 \times \mathrm{HP}_{\text {current }}\right) \times \text { rate } \times \text { bonus }_{\text {ball }}}{3 \times \mathrm{HP}_{\max }} \times$ bonus $_{\text {status }}$

Teaching team

Lisa Yan, CS109, 2019

What about you?

Today's plan

Course Mechanics

Why you should take CS109

Counting!

Course mechanics (light version)

- For more info, read the Administrivia handout
- Course website:

> http://cs109.stanford.edu/

Prerequisites

CS106B/X
 MATH 51/CME 100

CS103

(co-requisite OK)

Programming Recursion Hash tables Binary trees

Multivariate differentiation
Multivariate integration
Basic facility with linear algebra (vectors)

Proofs (induction) Set theory
Math maturity

Important!

Staff contact

- Piazza
- Email cs109@cs.stanford.edu
- Working office hours
- Contact Lisa for course level issues, extensions, etc.

How many units should I take?

Where you learn

- Lectures (not videotaped)
- Lecture notes (on website)
- Textbook readings (optional)
- Discussion Section

- Problem Sets

Class breakdown

45\% 6 Problem Sets

$\begin{array}{ll}\text { 20\% } & \text { Midterm } \\ & \text { Tuesday, October 29 }\end{array}$

30\% Final
Wednesday, December 11 ${ }^{\text {th }}, 3: 30-6: 30 \mathrm{pm}$

Problem Sets

Late Days:

(class days)
(for Problem Sets only)

e python

Review session this Friday (time/location TBA)

Stanford Honor Code

Permitted

- Talk to the course staff
- Talk with classmates (cite collaboration)
- Look up general material online

NOT permitted:

- Copy answers: from classmates from former students from previous quarters
- Copy answers from the internet

Besides, these are usually incorrect

Questions on
logistics?

Today's plan

Course Mechanics

Why you should take CS109

Counting!

Traditional View of Probability

CS view of probability

http://www.site.com

Machine Learning

= Machine (compute powere) + Probability + Data

Machine Learning Algorithm

Classification

Where is this useful?

A machine learning algorithm performs better than the best dermatologists.

Developed in 2017 at Stanford.

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks."

The last remaining board game

Image tagging

$\overbrace{\substack{\text { Stanford } \\ \text { Slavesir }}}^{\substack{\text { nen }}}$
 college

Stanford University stanford.edu

Stanford University Rankings, Tuition collegeconsensus.com
 palm drive
 d school

CSLI Home I Center for the Study of www-csli.stanford.edu

family paid $\$ 6.5$ million in scandal stanforddaily.com

California's Stanford University: A fostertravel.com

Self-driving cars

Augmented Reality Machine Translation

Automatic machine translation on Google Translate

Voice assistants

Probability is more than just machine learning.

Probability and medicine

Probability and art

Probability and climate

Probabilistic analysis of algorithms

Probability in practice

Movies \＆TV ，Blu－ray ，Movies

Click image to open expanded view

Frequently bought together

Total price：\＄117．03
Add all three to Cart
Add all three to List
Harry Potter：Complete 8－Film Collection GIFTSET

Daniel Radcliffe（Actor），Rupert Grint（Actor）			Rated：	PG－13	Format：Blu－ray	
合会会会盛 ${ }^{\text {c }}$ 10，314 customer reviews						
Amazon＇s Choice for＂harry potter＂						
Blu－ray $\$ 53.96$	DVD $\$ 34.62$	Multi－Format		4K		
\＄53．96	\＄34．62	\＄122．84		\＄110．00		

（Nov 11，2011）
Blu－ray
See More

Note：Available at a lower price from other sellers that may not offer free Prime shipping．

share $\square_{\text {f }}^{10}$ 11K＋Shares
－Buy New
Qty： 1 V List Price：$\$ 99.98$ You Save：$\$ 46.02$ （46\％）
\＆FREE Shipping．Details
In Stock．
Ships from and sold by Amazon．com．

prime

Enjoy fast，FREE delivery，exclusive deals and Award－Winning movies \＆TV shows with Prime Click here and start saving today with Fast，FREE Delivery

䎌	Add to Cart
D	Buy Now

[^0] within 4 hrs 5 mins and choose Two－ Day Shipping at checkout．Details

[^1]
Probability at your fingertips

(1) elizabethgilmore

Probability and philosophy

Probability for good

why are black women so
Q
why are black women so angry
why are black women so loud
why are black women so mean
why are black women so attractive
why are black women so lazy
Why are black women so annoying
why are black women so confident
why are black women so sassy
why are black women so insecure

Q i am extremely terrified of
Q iam extremely terrified of google
Q i am extremely terrified of spiders
Q i am extremely scared of spiders
Q i am extremely afraid of the dark

Algorithms of Oppression, Safiya Umoja Noble. 2018

How do we identify systemic biases in our data and incorporate human judgment into our probabilistic models?

We'll get there!

Probability is not always intuitive.

Zika test

A patient takes a Zika test that returns positive. What is the probability that they have the Zika virus?

- 0.8% of people have the virus
- Test has 90% positive rate for people with the virus
- Test has 7\% positive rate for people without the virus

Correct answer: 9\%

Probability = Important + Needs Studying

Today's plan

Course Mechanics

Why you should take CS109

Counting!

01: Counting

What is Counting?

An experiment in probability:

Counting:

Outcome

How many possible outcomes can occur from performing this experiment?

What is Counting?

$\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$,
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$,
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$,
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$

Sum Rule of Counting

If the outcome of an experiment can be either from
Set A, where $|A|=m$,
or Set B, where $|B|=n$,
where $A \cap B=\varnothing$,
Then the number of outcomes of the experiment is $|A|+|B|=m+n$.

One experiment

Video streaming application

Your application has distributed servers in 2 locations.

If a server request is sent to the application, how large is the set of servers it can get routed to?

Goal

Outcome server
is in either
San Jose or Boston

Define

A : San Jose
B : Boston
Note: $\mathrm{A} \cap B=\emptyset$

Solve
$|A|+|B|=$
150 servers

Product Rule of Counting

If an experiment has two parts, where
The first part's outcomes are from Set A, where $|A|=m$, and
The second part's outcomes are from Set B, where $|B|=n$,
Then the number of outcomes of the experiment is

$$
|A||B|=m n .
$$

How many possible outcomes are there from rolling two 6 -sided dice?

Goal
Outcome roll contains an outcome from both die 1 and die 2

```
{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1) , (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1) , (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1) , (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1) , (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
```

Solve
$|A| \times|B|=36$
36 outcomes

TOP DEFINITION

kick it up a notch

To make things more intense, exciting, or interesting.
(introduced by chef Emeril Lagasse in reference to spicing up his recipes)

Inclusion-Exclusion Principle

If the outcome of an experiment can be either from
Set A or set B, where A and B may overlap,
Then the total number of outcomes of the experiment is

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

Transmitting bytes over a network

An 8-bit string is sent over a network.

- The receiver only accepts strings that either start with 01 or end with 10.

How many 8-bit strings will the receiver accept?

01001100

byte (8 bits)

Define

A: 8-bit strings starting with 01 B : 8-bit strings ending with 10

1. What is $|A|$?
A. 2^{8}
B. 2^{6}
C. 2^{4}
D. 0
2. What is $|A \cap B|$?
A. 2^{8}
B. 2^{6}
C. 2^{4}
D. 0

Transmitting bytes over a network

An 8-bit string is sent over a network.

- The receiver only accepts strings that

01001100

 either start with 01 or end with 10.How many 8-bit strings will the receiver accept?

Define

A: 8-bit strings starting with 01 B : 8-bit strings ending with 10

1. What is $|A|$?

Transmitting bytes over a network

An 8-bit string is sent over a network.

- The receiver only accepts strings that

01001100

 either start with 01 or end with 10.How many 8-bit strings will the receiver accept?

Define

A: 8-bit strings starting with 01
B : 8-bit strings ending with 10

1. What is $|A|$?
B. 2^{6}
2. What is $|A \cap B|$?
C. 2^{4}

Solve

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
& =2^{6}+2^{6}-2^{4}=112 \text { outcomes }
\end{aligned}
$$

General Principle of Counting

If an experiment has r steps, such that
Step i has n_{i} outcomes for all $i=1, \ldots, r$,
Then the number of outcomes of the experiment is

$$
n_{1} \times n_{2} \times \cdots \times n_{r}=\prod_{i=1}^{r} n_{i}
$$

Multi-step
experiment

Product Rule of Counting: A special case

License plates

How many CA license plates are possible if...

6-part experiment:

$$
\begin{aligned}
A-Z \rightarrow A-Z & \rightarrow A-Z \rightarrow \operatorname{digit} \rightarrow \text { digit } \rightarrow \text { digit } \\
26 \times 26 & \times 26 \times 10 \times 10 \times 10 \\
& =17,576,000
\end{aligned}
$$

2-part experiment:
digit \longrightarrow 6-place license plate experiment

$$
\begin{aligned}
10 \times & 17,576,000 \\
& =175,760,000
\end{aligned}
$$

Floors and ceilings

Floor function

$$
\lfloor x\rfloor
$$

The largest integer $\leq x$

Ceiling function

$$
\lceil x\rceil
$$

Check it out:
$\lfloor 1 / 2\rfloor=0 \quad\lfloor 2.9\rfloor=2 \quad\lfloor 8.0\rfloor=8 \quad\lfloor-1 / 2\rfloor=-1$
$\lceil 1 / 2\rceil=1 \quad\lceil 2.9\rceil=3 \quad\lceil 8.0\rceil=8 \quad\lceil-1 / 2\rceil=0$

Pigeonhole Principle

For positive integers m and n, if m objects are placed in n buckets, then at least one bucket must contain at least $\lceil m / n\rceil$ objects.

Pigeons in holes

$2 \mathbf{2 1 t}^{\text {st }}$ century pigeons

Example:
m objects $=10$ pigeons
n buckets $=9$ pigeonholes

At least one pigeonhole must contain $\lceil m / n\rceil=2$ pigeons.

Balls and urns

≥ 1 bucket must contain at least $\lceil m / n\rceil$ objects

n balls
r urns
(buckets)

Balls and urns Hash Tables and strings

Consider a hash table with 100 buckets. 950 strings are hashed and added to the table.

$$
\begin{gathered}
n=100 \\
m=950
\end{gathered}
$$

1. Is it guaranteed that at least one bucket contains at least 10 entries?
2. Is it guaranteed that at least one bucket contains at least 11 entries?
3. Is it possible to have a bucket with no entries?

Balls and urns Hash Tables and strings

Consider a hash table with 100 buckets. 950 strings are hashed and added to the table.

$$
\begin{gathered}
n=100 \\
m=950
\end{gathered}
$$

1. Is it guaranteed that at least one bucket contains at least 10 entries?
2. Is it guaranteed that at least one bucket contains at least 11 entries?
3. Is it possible to have a bucket with no entries?

Takeaways from this lecture

Inclusion-Exclusion Principle (generalized Sum Rule)

If the outcome of an experiment can be either from Set A or set B, where A and B may overlap, then the total number of outcomes of the experiment is
$|A \cup B|=|A|+|B|-|A \cap B|$.

One-step experiment

General Principle of Counting (generalized Product Rule)

If an experiment has r steps, such that step i has
n_{i} outcomes for all $i=1, \ldots, r$, then the
total number of outcomes of the experiment is
Multi-step
experiment

$$
n_{1} \times n_{2} \times \cdots \times n_{r}=\prod_{i=1}^{r} n_{i}
$$

Unique 6-digit passcodes

How many unique 6-digit passcodes are possible?

Steps:

1. First digit in passcode
2. Second digit in passcode
3. Sixth digit in passcode

$$
\begin{aligned}
\text { Total } & =n_{1} \times n_{2} \times \cdots \times n_{6} \\
& =10 \times 10 \times 10 \times 10 \times 10 \times 10 \\
& =10^{6} \text { passcodes }
\end{aligned}
$$

Unique 6-digit passcodes with six smudges

How many unique 6-digit passcodes are possible if a phone password uses each of six distinct numbers?

Sort n indistinct objects

Sort n distinct objects

Sort n distinct objects

Permutations

A permutation is an ordered arrangement of distinct objects.

The number of unique orderings (permutations) of n distinct objects is $n!=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1$.

Unique 6-digit passcodes with six smudges

How many unique 6-digit passcodes are possible if a phone password uses each of six distinct numbers?

$$
\begin{aligned}
\text { Total } & =6! \\
& =720 \text { passcodes }
\end{aligned}
$$

Unique 6-digit passcodes with five smudges

How many unique 6-digit passcodes are possible if a phone password uses each of five distinct numbers?

Steps:

1. Choose digit to repeat
2. Create passcode

$$
\begin{aligned}
\text { Total } & =5 \times \frac{6!}{2!} \\
& =1,800 \text { passcodes }
\end{aligned}
$$

5 outcomes
(permute 4 distinct, 2 indistinct)

[^0]: Want it Tuesday，Sept．24？Order

[^1]: © Deliver to Stanford 94305

