02: Combinatorics

Lisa Yan
September 25, 2019

Takeaways from last time

Inclusion-Exclusion Principle (generalized Sum Rule)

If the outcome of an experiment can be either from Set A or set B, where A and B may overlap, then the total number of outcomes of the experiment is
$|A \cup B|=|A|+|B|-|A \cap B|$.

One-step experiment

General Principle of Counting (generalized Product Rule)

If an experiment has r steps, such that step i has
n_{i} outcomes for all $i=1, \ldots, r$, then the
total number of outcomes of the experiment is
Multi-step
experiment

$$
n_{1} \times n_{2} \times \cdots \times n_{r}=\prod_{i=1}^{r} n_{i} .
$$

Essential information

Website

Teaching Staff
cs109.stanford.edu

Today's plan

Permutations (sort objects)

Combinations (choose objects)

Put objects into buckets

Summary of Combinatorics

Counting tasks on n objects

Today's plan

Permutations (sort objects)

Combinations (choose objects)

Put objects into buckets

Summary of Combinatorics

Counting tasks on n objects

Sort n distinct objects

Sort n distinct objects

Permutations

A permutation is an ordered arrangement of distinct objects.

The number of unique orderings (permutations) of n distinct objects is

$$
\boldsymbol{n !}=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1 .
$$

Sort semi-distinct objects

All distinct

Ayesha

Tim

Irina

Joey

Waddie

Coke

Some indistinct

$$
=5!=120
$$

$$
=120 / 2
$$

Tim

Sort semi-distinct objects

How do we find the number of permutations considering some objects are indistinct?

By the product rule, permutations of distinct objects is a two-step process:

permutations
of distinct objects

permutations
considering some

objects are indistinct $~ Х$| Permutations |
| :---: |
| of just the |
| indistinct objects |

Sort semi-distinct objects

How do we find the number of permutations considering some objects are indistinct?

By the product rule, permutations of distinct objects is a two-step process:

permutations
of distinct objects

Permutations
of just the
indistinct objects
:---:
considering some
objects are indistinct

General approach to counting permutations

When there are n objects such that
n_{1} are the same (indistinguishable or indistinct), and
n_{2} are the same, and
n_{r} are the same,
The number of unique orderings (permutations) is

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

Sort semi-distinct objects

How many permutations?

Coke

Coke0

Coke

Coke0

$$
=\frac{5!}{3!2!}=10
$$

Strings

How many orderings of letters are possible for the following strings?

1. BOBA
 $=\frac{4!}{2!}=12$
 2. MISSISSIPPI $=\frac{11!}{1: 4442!!}=34,650$

Summary of Combinatorics

Counting tasks on n objects

Unique 6-digit passcodes

How many unique 6-digit passcodes are possible?

$$
\begin{aligned}
\text { Total } & =n_{1} \times n_{2} \times \cdots \times n_{r} \\
& =10 \times 10 \times 10 \times 10 \times 10 \times 10 \\
& =10^{6} \text { passcodes }
\end{aligned}
$$

Unique 6-digit passcodes with six smudges

How many unique 6-digit passcodes are possible if a phone password uses each of six distinct numbers?

$$
\begin{aligned}
\text { Total } & =6! \\
& =720 \text { passcodes }
\end{aligned}
$$

Unique 6-digit passcodes with five smudges

How many unique 6-digit passcodes are possible if a phone password uses each of five distinct numbers?

Steps:

1. Choose digit to repeat
2. Create passcode

$$
\begin{aligned}
\text { Total } & =5 \times \frac{6!}{2!} \\
& =1,800 \text { passcodes }
\end{aligned}
$$

5 outcomes
(permute 4 distinct, 2 indistinct)

Today's plan

Permutations (sort objects)

Combinations (choose objects)

Put objects into buckets

Summary of Combinatorics

Counting tasks on n objects

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

1. n people get in line
n ! ways

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

1. n people get in line

2. Put first k
 in cake room

n ! ways
1 way

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

1. n people 2. Put first k get in line
in cake room
n ! ways
1 way

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

16

$19 \quad 20$
3. Allow cake
group to
mik!odifferent
permutations lead to the same mingle

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

1. n people get in line
n ! ways

16

18

$\frac{0}{12}$

4. Allow non-cake group to mingle

Combinations with cake

There are $n=20$ people.
How many ways can we choose $k=5$ people to get cake?

1. n people get in line
n ! ways
2. Put first k
in cake room

1 way

3. Allow cake group to mingle
k ! different
permutations lead to the same mingle
4. Allow non-cake group to mingle $(n-k)$! different permutations lead to the same mingle

Combinations

A combination is an unordered selection of k objects from a set of n distinct objects.

The number of ways of making this selection is

1. Order n distinct objects

> 2. Take first k as chosen
3. Overcounted: any ordering of chosen group is same choice
4. Overcounted: any ordering of unchosen group is same choice

Combinations

A combination is an unordered selection of k objects from a set of n distinct objects.

The number of ways of making this selection is

$$
\frac{n!}{k!(n-k)!}=n!\times 1 \times \frac{1}{k!} \times \frac{1}{(n-k)!}=\binom{n}{k} \begin{aligned}
& \text { Binomial } \\
& \text { coefficient }
\end{aligned}
$$

The Binomial Theorem
(if you're interested)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{r} x^{k} y^{n-k}
$$

Probability textbooks

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$
\binom{6}{3}=\frac{6!}{3!3!}=20 \text { ways }
$$

Probability textbooks

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$
\binom{6}{3}=\frac{6!}{3!3!}=20 \text { ways }
$$

2. What if we do not want to read both the $9^{\text {th }}$ and $10^{\text {th }}$ edition of Ross?
A. $\binom{6}{3}-\binom{6}{2}=5$ ways
B. $\frac{6!}{3!3!2!}=10$
C. $2 \cdot\binom{4}{2}+\binom{4}{3}=16$
D. $\binom{6}{3}-\binom{4}{1}=16$
E. Both C and D

Probability textbooks

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$
\binom{6}{3}=\frac{6!}{3!3!}=20 \text { ways }
$$

2. What if we do not want to read both the $9^{\text {th }}$ and $10^{\text {th }}$ edition of Ross?
A. $\binom{6}{3}-\binom{6}{2}=5$ ways
B. $\frac{6!}{3!3!2!}=10$
C. $2 \cdot\binom{4}{2}+\binom{4}{3}=16$
D. $\binom{6}{3}-\binom{4}{1}=16$
E. Both C and D

Probability textbooks

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$
\binom{6}{3}=\frac{6!}{3!3!}=20 \text { ways }
$$

2. What if we do not want to read both the $9^{\text {th }}$ and $10^{\text {th }}$ edition of Ross?

$$
\text { C. } 2 \cdot\binom{4}{2}+\binom{4}{3}=16
$$

Probability textbooks

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$
\binom{6}{3}=\frac{6!}{3!3!}=20 \text { ways }
$$

2. What if we do not want to read both the $9^{\text {th }}$ and $10^{\text {th }}$ edition of Ross?

Case 1: pick $9^{\text {th }}$ edition + 2 other books	Case 3: pick 3 other books (not 9th, not 10 ${ }^{\text {th }}$)
Case 2: pick $10^{\text {th }}$ edition + 2 other books	Fonbidden: piok $9^{\text {th }} \& 10$ ditions +10 ther book
$\binom{6}{3}$ total ways to choose 3 books	

$$
\text { D. }\binom{6}{3}-\binom{4}{1}=16
$$

total ways to choose 3 books

Forbidden method: It is sometimes easier to exclude invalid cases than to include cases.

Break for
jokes/announcements

Announcements

```
PS#1
Out: today
Due: Friday 10/4, 1:00pm
Covers: through Friday
```

Python tutorial
When:
Location:
Recorded?
Notes:

Friday 3:30-4:20pm
Hewlett 102
maybe
to be posted online

Staff help

Piazza policy: student discussion Office hours: start today cs109.stanford.edu/handouts/staff.htm

Section sign-ups

Preference form: later today Due: Saturday 9/28 Results: latest Monday

Handout: Calculation Reference

Week	Monday	Wednesday	Friday
1	SEP 23 1: Counting 芸 Slides - Lecture Notes Administrivia Read: Ch 1.1-1.2	SEP 25 2: Permutations and Combinations 芸 Slides Lecture Notes - Calculation Ref Read: Ch 1.3-1.6 Out: PSet \#1	SEP 27 3: Axioms of Probability Lecture Notes Read: Ch 2.1-2.5, 2.7
2 Week 1 Concept Check	SEP 30 4: Conditional Probability and Bayes	ост 2 5: Independence	OCT 4 6: Random Variables and Expectation

Geometric series: Integration by parts (everyone's favorite!):

$$
\begin{aligned}
& \sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x} \\
& \sum_{i=m}^{n} x^{i}=\frac{x^{n+1}-x^{m}}{x-1} \\
& \sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x} \text { if }|x|<1
\end{aligned}
$$

Choose a suitable u and dv to decompose the integral of interest:

$$
\int u \cdot d v=u \cdot v-\int v \cdot d u
$$

Summary of Combinatorics

Counting tasks on n objects

General approach to combinations

The number of ways to choose r groups of n distinct objects such that For all $i=1, \ldots, r$, group i has size n_{i}, and $\sum_{i=1}^{r} n_{i}=n$ (all objects are assigned), is

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}=\binom{n}{n_{1}, n_{2}, \cdots, n_{r}}
$$

Multinomial coefficient

Datacenters

	Datacenter	\# machines
13 different computers are to be allocated to	A	6
3 datacenters as shown in the table:	B	4
How many different divisions are possible?	C	3

A. $\binom{13}{6,4,3}=60,060$
B. $\binom{13}{6}\binom{7}{4}\binom{3}{3}=60,060$
C. $6 \cdot 1001 \cdot 10=60,060$
D. A and B
E. All of the above

Datacenters

	Datacenter	\# machines
13 different computers are to be allocated to	A	6
3 datacenters as shown in the table:	B	4
How many different divisions are possible?	C	3

A. $\binom{13}{6,4,3}=60,060$
B. $\binom{13}{6}\binom{7}{4}\binom{3}{3}=60,060$
C. $6 \cdot 1001 \cdot 10=60,060$
D. A and B
E. All of the above

Datacenters, Solution 1

	Datacenter	\# machines
13 different computers are to be allocated to	A	6
3 datacenters as shown in the table:	B	4
How many different divisions are possible?	C	3

Group 1 (datacenter A): $\quad n_{1}=6$
Group 2 (datacenter B): $\quad n_{2}=4$
Group 3 (datacenter C): $\quad n_{3}=3$

$$
\binom{n}{n_{1}, n_{2}, n_{3}}=\binom{13}{6,4,3}
$$

A. $\binom{13}{6,4,3}=60,060$
B. $\binom{13}{6}\binom{7}{4}\binom{3}{3}=60,060$

	Datacenter	\# machines
13 different computers are to be allocated to	A	6
3 datacenters as shown in the table:	B	4
How many different divisions are possible?	C	3

Steps:

1. Choose 6 computers for A
2. Choose 2 computers for B
3. Choose 3 computers for C

Product Rule to combine
A. $\binom{13}{6,4,3}=60,060$
B. $\binom{13}{6}\binom{7}{4}\binom{3}{3}=60,060$

Your approach will determine if you use binomial/multinomial
coefficients or factorials (often not both).

Summary of Combinatorics

Counting tasks on n objects

A trick question

How many ways are there to group 6 indistinct (indistinguishable) objects into 3 groups, where group A, B, and C have size 1 , 2 , and 3 , respectively?

A. $\binom{6}{1,2,3}$
B. $\frac{6!}{1!2!3!}$
C. 0
D. 1
E. Both A and B

A (fits 1)

B (fits 2)

C (fits 3)

A trick question

How many ways are there to group 6 indistinct (indistinguishable) objects into 3 groups, where group A, B, and C have size 1 , 2 , and 3 , respectively?

A. $\binom{6}{1,2,3}$
B. $\frac{6!}{1!2!3!}$
C. 0

A (fits 1)
B (fits 2)
C (fits 3)

Today's plan

Permutations (sort objects)

Combinations (choose objects)

Put objects into buckets

Summary of Combinatorics

Counting tasks on n objects

Balls and urns Hash tables and distinct strings

How many ways are there to hash n distinct strings to r buckets?

Steps:

1. Bucket $1^{\text {st }}$ string $\quad r$ options
2. Bucket $2^{\text {nd }}$ string $\quad r$ options
n. Bucket $n^{\text {th }}$ string $\quad r$ options

Summary of Combinatorics

Counting tasks on n objects

Hash tables and indistinct strings

How many ways are there to distribute n indistinct strings to r buckets?

Goal

Bucket 1 has x_{1} strings, Bucket 2 has x_{2} strings,

Bucket r has x_{r} strings (the rest)

Bicycle helmet sales

How many ways can we assign $n=5$ indistinguishable children to $r=4$ distinct bicycle helmet styles?

Consider the following generative process...

Bicycle helmet sales: 1 possible assignment outcome

How many ways can we assign $n=5$ indistinguishable children to $r=4$ distinct bicycle helmet styles?

$$
n=5 \text { indistinct objects }
$$

$r=4$ distinct buckets

dsind bicocefenemestyser?
-

Bicycle helmet sales: 1 possible assignment outcome

How many ways can we assign $n=5$ indistinguishable children to $r=4$ distinct bicycle helmet styles?

$$
n=5 \text { indistinct objects } \quad r=4 \text { distinct buckets }
$$

Goal Order n indistinct objects and $r-1$ indistinct dividers.

Bicycle helmet sales: A generative proof

How many ways can we assign $n=5$ indistinguishable children to $r=4$ distinct bicycle helmet styles?

Goal Order n indistinct objects and $r-1$ indistinct dividers.
0. Make objects and dividers distinct

Bicycle helmet sales: A generative proof

How many ways can we assign $n=5$ indistinguishable children to $r=4$ distinct bicycle helmet styles?

Goal Order n indistinct objects and $r-1$ indistinct dividers.
0. Make objects and dividers distinct

1. Order n distinct objects and $r-1$ distinct dividers

$$
(n+r-1)!
$$

Bicycle helmet sales: A generative proof

How many ways can we assign $n=5$ indistinguishable children to $r=4$ distinct bicycle helmet styles?

Goal Order n indistinct objects and $r-1$ indistinct dividers.
0. Make objects and dividers distinct

1. Order n distinct
objects and $r-1$
distinct dividers

$$
(n+r-1)!
$$

2. Make n objects indistinct
$\frac{1}{n!}$

Bicycle helmet sales: A generative proof

How many ways can we assign $n=5$ indistinguishable children to $r=4$ distinct bicycle helmet styles?

Goal Order n indistinct objects and $r-1$ indistinct dividers.
O. Make objects and dividers distinct

$$
\begin{aligned}
& \text { 1. Order } n \text { distinct } \\
& \text { objects and } r-1 \\
& \text { distinct dividers } \\
& \quad(n+r-1)!
\end{aligned}
$$

2. Make n objects indistinct

1

3. Make $r-1$ dividers indistinct

$$
\frac{1}{(r-1)!}
$$

Divider method

The number of ways to distribute n indistinct objects into r buckets is equivalent to the number of ways to permute $n+r-1$ objects such that n are indistinct objects, and $r-1$ are indistinct dividers:

$$
\begin{aligned}
\text { Total } & =(n+r-1)!\times \frac{1}{n!} \times \frac{1}{(r-1)!} \\
& =\binom{n+r-1}{r-1}
\end{aligned}
$$

Integer solutions to equations

How many integer solutions are there to the following equation:

$$
x_{1}+x_{2}+\cdots+x_{r}=n
$$

where for all i, x_{i} is an integer such that $0 \leq x_{i} \leq n$?

Treat any solution as an integer array:

$x[1] \quad x[2]$... $x[r]$
n increments (objects)
r array elements (buckets)

Venture capitalists

You have $\$ 10$ million to invest in 4 companies (in $\$ 1$ million increments).

1. How many ways can you fully allocate your $\$ 10$ million?

Set up

$$
x_{1}+x_{2}+x_{3}+x_{4}=10
$$

x_{i} : amount invested in company i

$$
x_{i} \geq 0
$$

Solve

$$
\begin{aligned}
& n=10 \text { increments } \\
& r=4 \text { companies }
\end{aligned} \quad\binom{10+4-1}{4-1}=\binom{13}{3}=286
$$

Venture capitalists

You have $\$ 10$ million to invest in 4 companies (in $\$ 1$ million increments).

1. How many ways can you fully allocate your $\$ 10$ million?

2. What if you want to invest at least $\$ 3$ million in company 1 ?

Set up

$$
x_{1}+x_{2}+x_{3}+x_{4}=10
$$

x_{i} : amount invested in company i
! $3 \leq x_{1}$

$$
x_{i} \geq 0 \text { for } i=2,3,4
$$

Solve

$$
\begin{aligned}
& n=7 \text { increments } \\
& r=4 \text { companies }
\end{aligned}
$$

$$
x_{1}+x_{2}+x_{3}+x_{4}=7
$$

Fix x_{1} 's bound
x_{i} : amount invested in company i

$$
x_{i} \geq 0
$$

$$
\binom{7+4-1}{4-1}=\binom{10}{3}=120
$$

Venture capitalists

You have $\$ 10$ million to invest in 4 companies (in $\$ 1$ million increments).

1. How many ways can you fully allocate your $\$ 10$ million?

2. What if you want to invest at least $\$ 3$ million in company 1?
3. What if you don't invest all your money?

Set up

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 10
$$

x_{i} : amount invested in company i

$$
x_{i} \geq 0
$$

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=10
$$

Add another bucket
x_{i} : amount invested in company i

$$
x_{i} \geq 0
$$

Solve

$$
\begin{aligned}
& n=10 \text { increments } \\
& r=5 \text { companies } \\
& \text { (including yourself) }
\end{aligned}
$$

$$
\binom{10+5-1}{5-1}=\binom{14}{4}=1001
$$

Summary of Combinatorics

Counting tasks on n objects

See you next time...

