03: Intro to Probability

Lisa Yan
September 27, 2019

Summary of Combinatorics

Counting tasks on n objects

Summary of Combinatorics

Counting tasks on n objects

- Determine if objects are distinct
- Use Product Rule if several steps
- Use Inclusion-Exclusion if different cases

For a DNA tree, we need to calculate the DNA distance between each pair of animals.
How many calculations are needed, i.e, how many distinct pairs of n animals are there?

For a DNA tree, we need to calculate the DNA distance between each pair of animals.
How many calculations are needed, i.e, how many distinct pairs of n animals are there?

SESAME STREET

The Count

Chance The Rapper

Today's plan

Key definitions: sample spaces and events

Axioms of Probability

Equally likely outcomes (counting)

Corollaries of Axioms of Probability

Key definitions

An experiment in probability:

Sample Space, S : The set of all possible outcomes of an experiment
Event, E :
Some subset of $S(E \subseteq S)$.

Key definitions

Sample Space, S

- Coin flip $S=$ \{Heads, Tails $\}$
- Flipping two coins $S=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$
- Roll of 6 -sided die

$$
S=\{1,2,3,4,5,6\}
$$

- \# emails in a day

$$
S=\{x \mid x \in \mathbb{Z}, x \geq 0\}
$$

- YouTube hours in a day $S=\{x \mid x \in \mathbb{R}, 0 \leq x \leq 24\}$

Event, E

- Flip lands heads
$E=\{$ Heads $\}$
- ≥ 1 head on 2 coin flips
$E=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H})\}$
- Roll is 3 or less:
$E=\{1,2,3\}$
- Low email day (≤ 20 emails)
$E=\{x \mid x \in \mathbb{Z}, 0 \leq x \leq 20\}$
- Wasted day (≥ 5 YT hours):
$E=\{x \mid x \in \mathbb{R}, 5 \leq x \leq 24\}$

What is a probability?

A number between 0 and 1
 to which we ascribe meaning.*

*our belief that an event E occurs.

What is a probability?

Let $E=$ the set of outcomes

 where you hit the target.$$
\begin{gathered}
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \\
n=\text { \# of total trials } \\
n(E)=\# \text { trials where } E \text { occurs }
\end{gathered}
$$

What is a probability?

Let $E=$ the set of outcomes

 where you hit the target.$$
\begin{gathered}
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \\
n=\text { \# of total trials } \\
n(E)=\# \text { trials where } E \text { occurs }
\end{gathered}
$$

What is a probability?

Let $E=$ the set of outcomes

 where you hit the target.$$
\begin{gathered}
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \\
n=\text { \# of total trials } \\
n(E)=\# \text { trials where } E \text { occurs }
\end{gathered}
$$

What is a probability?

Let $E=$ the set of outcomes

 where you hit the target.$$
\begin{gathered}
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \\
n=\# \text { of total trials } \\
n(E)=\# \text { trials where } E \text { occurs }
\end{gathered}
$$

What is a probability?

Let $E=$ the set of outcomes

 where you hit the target.$$
\begin{gathered}
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n} \\
n=\# \text { of total trials } \\
n(E)=\# \text { trials where } E \text { occurs }
\end{gathered}
$$

Today's plan

Key definitions: sample spaces and events

Axioms of Probability

Equally likely outcomes (counting)

Corollaries of Axioms of Probability

Quick review of sets

E and F are events in S.

Experiment:

Dice roll
$S=\{1,2,3,4,5,6\}$
Let $E=\{1,2\}$, and $F=\{2,3\}$

Quick review of sets

E and F are events in S.

Experiment:

Dice roll

$$
\begin{aligned}
& S=\{1,2,3,4,5,6\} \\
& \text { Let } E=\{1,2\}, \text { and } F=\{2,3\}
\end{aligned}
$$

def Union of events, $E \cup F$
The event containing all outcomes

$$
E \cup F=\{1,2,3\}
$$ in E or F.

Quick review of sets

E and F are events in S. Experiment:

Dice roll
$S=\{1,2,3,4,5,6\}$
Let $E=\{1,2\}$, and $F=\{2,3\}$
def Intersection of events, $E \cap F$
The event containing all outcomes

$$
E \cap F=E F=\{2\}
$$ in E and F.

def Mutually exclusive events F
and G means that $F \cap G=\varnothing$

Quick review of sets

E and F are events in S. Experiment:

Dice roll
$S=\{1,2,3,4,5,6\}$
Let $E=\{1,2\}$, and $F=\{2,3\}$
def Complement of event E, E^{C}
The event containing all outcomes

$$
E^{C}=\{3,4,5,6\}
$$ in that are not in E.

3 Axioms of Probability

Definition of probability: $\quad P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n}$

Axiom 1:
$0 \leq P(E) \leq 1$

Axiom 2:
$P(S)=1$

Axiom 3:
If E and F are mutually exclusive ($E \cap F=\emptyset$), then $P(E \cup F)=P(E)+P(F)$

Axiom 3 is the (analytically) useful Axiom

Axiom 3:

If E and F are mutually exclusive ($E \cap F=\varnothing$), then $P(E \cup F)=P(E)+P(F)$

More generally, for any sequence of mutually exclusive events E_{1}, E_{2}, \ldots :

Today's plan

Key definitions: sample spaces and events

Axioms of Probability

Equally likely outcomes (counting)

Corollaries of Axioms of Probability

Equally Likely Outcomes

Some sample spaces have equally likely outcomes.

- Coin flip: $S=\{$ Head, Tails $\}$
- Flipping two coins: $S=\{(H, H),(H, T),(T, H),(T, T)\}$
- Roll of 6-sided die: $S=\{1,2,3,4,5,6\}$
$\mathrm{P}($ Each outcome $)=\frac{1}{|S|}$
In that case, $P(E)=\frac{\# \text { outcomes in } E}{\# \text { outcomes in } S}=\frac{|E|}{|S|}$ (by Axiom 3)

Roll two dice

\(P(E)=\frac{|E|}{|S|} \begin{aligned} \& Equally likely
\& outcomes\end{aligned}\)

Roll two 6-sided dice. What is $\mathrm{P}($ sum $=7)$?

$$
\left.\begin{array}{rlrl}
S=\{ & (1,1),(1,2),(1,3),(1,4),(1,5),(1,6), & \\
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), & \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), & P(E)=\frac{|E|}{|S|} \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), & \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \\
E= & \{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}
\end{array} \quad=\frac{6}{36}\right)
$$

Target revisited

Target revisited

Let $E=$ the set of outcomes where you hit the target.

The dart is equally likely to land anywhere on the screen.
What is $P(E)$, the probability of hitting the target?

Screen size $=800 \times 800 \quad|S|=800^{2}$
Radius of target: $200 \quad|E|=\pi \cdot 200^{2}$

$$
P(E)=\frac{|E|}{|S|}=\frac{\pi \cdot 200^{2}}{800^{2}} \approx 0.1963
$$

Target revisited

Let $E=$ the set of outcomes where you hit the target.

The dart is equally likely to land anywhere on the screen.
What is $P(E)$, the probability of hitting the target?

Screen size $=800 \times 800 \quad|S|=800^{2}$
Radius of target: $200 \quad|E|=\pi \cdot 200^{2}$

$$
P(E)=\frac{|E|}{|S|}=\frac{\pi \cdot 200^{2}}{800^{2}} \approx 0.1963
$$

Not equally likely outcomes

Play the lottery.
What is P (win)?

$$
\begin{aligned}
S= & \{\text { Lose }, \text { Win }\} \\
E= & \{\text { Win }\} \\
& P(E)=\frac{|E|}{|S|}=\frac{1}{2}=50 \% ?
\end{aligned}
$$

The hard part: defining equally likely outcomes consistently across sample space and events

Cats and carrots

4 cats and 3 carrots in a bag. 3 drawn. What is P (1 cat and 2 carrots drawn)?
A. $\frac{3}{7}$
B. $\frac{1}{4} \cdot \frac{2}{3}$
C. $\frac{4}{7}+2 \cdot \frac{3}{6}$

Note: Do indistinct objects give you an equally likely sample space?
D. $\frac{12}{35}$
E. Zero/other

Cats and carrots

4 cats and 3 carrots in a bag. 3 drawn. What is P (1 cat and 2 carrots drawn)?

$$
\begin{aligned}
& \text { A. } \frac{3}{7} \\
& \text { B. } \frac{1}{4} \cdot \frac{2}{3} \\
& \text { C. } \frac{4}{7}+2 \cdot \frac{3}{6} \\
& \text { (D. } \frac{12}{35} \\
& \text { E. Zero/other }
\end{aligned}
$$

Note: Do indistinct objects give you an equally likely sample space?

Cats and carrots

4 cats and 3 carrots in a bag. 3 drawn. What is $\mathrm{P}(1$ cat and 2 carrots drawn $)$?

Define

- $S=$ Pick 3 distinct $\quad|S|=7 \cdot 6 \cdot 5=210$ items
- $E=1$ distinct cat, \quad Pick Cat $1^{\text {st }}, 2^{\text {nd }}$, or $3^{\text {rd }}$ 2 distinct carrots

$$
\begin{aligned}
|E|= & 4 \cdot 3 \cdot 2+3 \cdot 4 \cdot 2 \\
& +3 \cdot 2 \cdot 4 \\
= & 72
\end{aligned}
$$

$$
P(E)=72 / 210=12 / 35
$$

Cats and carrots

$$
P(E)=\frac{|E|}{|S|} \text { Equally likely }
$$

4 cats and 3 carrots in a bag. 3 drawn. What is P (1 cat and 2 carrots drawn)?

Ordered

Define

- $S=$ Pick 3 distinct items

$$
|S|=7 \cdot 6 \cdot 5=210
$$

$$
|S|=\binom{7}{3}
$$

- $E=1$ distinct cat, 2 distinct carrots

$$
\begin{aligned}
& \text { Pick Cat } 1^{\text {st }}, 2^{\text {nd }}, \text { or } 3^{\text {rd }} \\
& \begin{array}{l}
|E|=4 \cdot 3 \cdot 2+3 \cdot 4 \cdot 2 \\
\quad+3 \cdot 2 \cdot 4 \\
=72
\end{array}
\end{aligned}
$$

Compute

$$
P(E)=\underset{\text { Lisa ran, csio9, 2019 }}{72 / 210}=12 / 35
$$

$$
P(E)=12 / 35
$$

Break for Friday/ announcements

Announcements

Section sign-ups
Preference form: out
Due:
Results: latest Monday

Concept check
Due:
Tuesday 1:00pm

Python tutorial

When:
Location:
Recorded?
Notes:
Installation:

Friday 3:30-4:20pm Hewlett 102

Yes!
to be posted online
On Piazza

Any Poker Straight

Consider 5-card poker hands.

- "straight" is 5 consecutive rank cards of any suit

What is P (Poker straight)?

- What is an example of an outcome?
- Is each outcome equally likely?
- Should objects be ordered or unordered?

Any Poker Straight

Consider 5-card poker hands.

- "straight" is 5 consecutive rank cards of any suit

What is P (Poker straight)?

Define

- S (unordered)

$$
|S|=\binom{52}{5}
$$

- What is an example of an outcome?
- Is each outcome equally likely?
- E (unordered, consistent with S)

$$
|E|=10 \cdot\binom{4}{1}^{5}
$$

- Should objects be ordered or unordered?

Compute $\quad P($ Poker straight $)=\frac{|E|}{|S|}=\frac{10 \cdot\binom{4}{1}^{5}}{\binom{52}{5}} \approx 0.00394$

"Official" Poker Straight

Consider 5-card poker hands.

- "straight" is 5 consecutive rank cards of any suit
- "straight flush" is 5 consecutive rank cards of same suit

What is P (Poker straight, but not straight flush)?
Define

- S (unordered)

$$
|S|=\binom{52}{5}
$$

- E (unordered, consistent with S)

$$
|E|=10 \cdot\binom{4}{1}^{5}-10 \cdot\binom{4}{1}
$$

Compute $\quad P($ Official Poker straight $)=\frac{|E|}{|S|}=\frac{10 \cdot\binom{4}{1}^{5}-10 \cdot\binom{4}{1}}{\binom{52}{5}} \approx 0.00392$

Chip defect detection

n chips are manufactured, 1 of which is defective. k chips are randomly selected from n for testing.
What is P (defective chip is in k selected chips?)

Define

- S (unordered)

$$
|S|=\binom{n}{k}
$$

- E (unordered, consistent with S)

$$
|E|=\binom{1}{1}\binom{n-1}{k-1} \quad \begin{aligned}
& \text { 1. Choose defective chip } \\
& \text { 2. Choose } k-1 \text { other chips }
\end{aligned}
$$

Compute $P(E)=\frac{\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{\frac{(n-1)!}{(k-1)!(n-k)!}}{\frac{n!}{k!(n-k)!}}=\frac{(n-1)!k!}{n!(k-1)!}=\frac{k}{n}$

Chip defect detection, solution \#2

n chips are manufactured, 1 of which is defective. k chips are randomly selected from n for testing. What is P (defective chip is in k selected chips?)

Redefine experiment

1. Choose k indistinct chips (1 way)
2. Throw a dart and make one defective

Define

- S (unordered)

$$
|S|=1 \cdot n
$$

- E (unordered, consistent with S)

$$
|E|=1 \cdot k
$$

$$
P(E)=\frac{k}{n}
$$

Today's plan

Key definitions: sample spaces and events

Axioms of Probability

Equally likely outcomes (counting)

Corollaries of Axioms of Probability

Definition of probability: $\quad P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n}$

Axiom 1:
$0 \leq P(E) \leq 1$

Axiom 2:
$P(S)=1$

Axiom 3:
If E and F are mutually exclusive ($E \cap F=\emptyset$), then $P(E \cup F)=P(E)+P(F)$

3 Corollaries of Axioms of Probability

Corollary 1 :

$$
P\left(E^{C}\right)=1-P(E)
$$

Proof of Corollary 1

Corollary 1 :

$$
P\left(E^{C}\right)=1-P(E)
$$

Proof:
E, E^{C} are mutually exclusive

$$
\begin{aligned}
& P\left(E \cup E^{C}\right)=P(E)+P\left(E^{C}\right) \\
& S=E \cup E^{C}
\end{aligned}
$$

$$
1=P(S)=P(E)+P\left(E^{C}\right)
$$

$$
P\left(E^{C}\right)=1-P(E)
$$

Definition of E^{C}
Axiom 3
Everything must either be in E or E^{C}, by definition

Axiom 2
Rearrange

Corollary 1 :

$$
P\left(E^{C}\right)=1-P(E)
$$

Corollary 2 :
If $E \subseteq F$, then $P(E) \leq P(F)$

Corollary 3:

$$
P(E \cup F)=P(E)+P(F)-P(E F)
$$

(Inclusion-Exclusion Principle for Probability)

Inclusion-Exclusion Principle (Corollary 3)

Corollary 3 :

$$
P(E \cup F)=P(E)+P(F)-P(E F)
$$

(Inclusion-Exclusion Principle for Probability)

General form:

$$
\begin{aligned}
& P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{r=1}^{n}(-1)^{(r+1)} \sum_{i_{1}<\cdots<i_{r}} P\left(\bigcap_{j=1}^{r} E_{i_{j}}\right) \\
& P(E \cup F \cup G)= \\
& r=1: \quad P(E)+P(F)+P(G) \\
& r=2: \quad-P(E \cap F)-P(E \cap G)-P(F \cap G) \\
& r=3: \quad+P(E \cap F \cap G)
\end{aligned}
$$

Takeaway: Mutually exclusive events

Axiom 3,
Mutually exclusive events

Inclusion-Exclusion Principle

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right) \quad P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{r=1}^{n}(-1)^{(r+1)} \sum_{i_{i} \lll<i_{r}} P\left(\left(_{j=1}^{r} E_{i_{i}}\right)\right.
$$

Serendipity

Let it find you.

SERENDIPITY

the effect by which one accidentally stumbles upon something truely wonderful, especially while looking for something entirely unrelated.

WHEN YOU MEET YOUR BEST FRIEND
Somewhere you didn't expect to.

Serendipity

- The population of Stanford is $n=17,000$ people.
- You are friends with $r=$? people.
- Walk into a room, see $k=268$ random people.
- Assume you are equally likely to see each person at Stanford.

What is the probability that you see someone you know?

Define

- S (unordered)

$$
|S|=\binom{n}{k}=\binom{17000}{268}
$$

- E : see ≥ 1 friend in the room

How should we compute $P(E)$?
A. $\quad P$ (exactly 1$)+P$ (exactly 2$)$ $P($ exactly 3$)+\cdots$
B. $1-P$ (see no friends)

The Birthday Paradox Problem

What is the probability that in a set of n people, at least one pair of them will share the same birthday?

For you to think about (and discuss in section!)

