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Summary of Combinatorics

2

Sort objects
(permutations)

Distinct
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Counting tasks on 𝑛 objects

Choose 𝑘 objects
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Put objects in 𝑟
buckets



Lisa Yan, CS109, 2019

Summary of Combinatorics

3

Counting tasks on 𝑛 objects

Sort objects
(permutations)

Choose 𝑘 objects
(combinations)

Put objects in 𝑟
buckets

Distinct
(distinguishable)

Some
distinct Distinct Indistinct

Distinct

1 group 𝑟 groups

Review

• Determine if objects are distinct
• Use Product Rule if several steps 
• Use Inclusion-Exclusion if different cases

👉
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For a DNA tree, we need to 
calculate the DNA distance 
between each pair of animals.
How many calculations are 
needed, i.e, how many distinct 
pairs of 𝑛 animals are there?

4

DNA distance Review
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DNA distance Review
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The Count Chance The Rapper
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Today’s plan

Key definitions: sample spaces and events

Axioms of Probability

Equally likely outcomes (counting)

Corollaries of Axioms of Probability

7
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Key definitions

An experiment in probability:

Sample Space, 𝑆: The set of all possible outcomes of an experiment
Event, 𝐸: Some subset of 𝑆 (𝐸 ⊆ 𝑆).

Outcome

8

Experiment

𝑆

𝐸
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Key definitions
Event, 𝐸
• Flip lands heads
𝐸 = Heads

• ≥ 1 head on 2 coin flips
𝐸 = (H,H), (H,T), (T,H)

• Roll is 3 or less:
𝐸 = 1, 2, 3

• Low email day (≤ 20 emails)
𝐸 = 𝑥 | 𝑥 ∈ ℤ, 0 ≤ 𝑥 ≤ 20

• Wasted day (≥ 5 YT hours):
𝐸 = 𝑥 | 𝑥 ∈ ℝ, 5 ≤ 𝑥 ≤ 24

Sample Space, 𝑆
• Coin flip
𝑆 = Heads, Tails

• Flipping two coins
𝑆 = (H,H), (H,T), (T,H), (T,T)

• Roll of 6-sided die
𝑆 =	{1,	2,	3,	4,	5,	6}	

• # emails in a day
𝑆 = 𝑥 | 𝑥 ∈ ℤ, 𝑥 ≥ 0

• YouTube hours in a day
𝑆 = 𝑥 | 𝑥 ∈ ℝ, 0 ≤ 𝑥 ≤ 24
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What is a probability?

A number between 0 and 1
to which we ascribe meaning.*

10

*our belief that an event 𝐸 occurs.
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What is a probability?

𝑃 𝐸 = lim
+→O

𝑛(𝐸)
𝑛

𝑛 = # of total trials
𝑛(𝐸) = # trials where 𝐸 occurs

11

Let 𝐸 = the set of outcomes
where you hit the target.
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What is a probability?

𝑃 𝐸 = lim
+→O

𝑛(𝐸)
𝑛

𝑛 = # of total trials
𝑛(𝐸) = # trials where 𝐸 occurs

14

Let 𝐸 = the set of outcomes
where you hit the target.

𝑃 𝐸 = 0.66
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What is a probability?

𝑃 𝐸 = lim
+→O

𝑛(𝐸)
𝑛

𝑛 = # of total trials
𝑛(𝐸) = # trials where 𝐸 occurs

15

Let 𝐸 = the set of outcomes
where you hit the target.
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Not just yet…
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Today’s plan

Key definitions: sample spaces and events

Axioms of Probability

Equally likely outcomes (counting)

Corollaries of Axioms of Probability

17
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Quick review of sets

18

Review of Sets

E F

S 𝐸 and 𝐹 are events in 𝑆.
Experiment:

Dice roll
𝑆 = 1, 2, 3, 4, 5, 6
Let 𝐸 = 1, 2 , and 𝐹 = 2,3
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Quick review of sets
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Review of Sets

𝐸 and 𝐹 are events in 𝑆.
Experiment:

Dice roll
𝑆 = 1, 2, 3, 4, 5, 6
Let 𝐸 = 1, 2 , and 𝐹 = 2,3

E

S

F

def Union of events, 𝐸 ∪ 𝐹
The event containing all outcomes 
in 𝐸 or 𝐹.

𝐸 ∪ 𝐹 = {1,2,3}
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Quick review of sets
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Review of Sets

𝐸 and 𝐹 are events in 𝑆.
Experiment:

Dice roll
𝑆 = 1, 2, 3, 4, 5, 6
Let 𝐸 = 1, 2 , and 𝐹 = 2,3

E

S

F

def Intersection of events, 𝐸 ∩ 𝐹
The event containing all outcomes 
in 𝐸 and 𝐹.

𝐸 ∩ 𝐹 = 𝐸𝐹 = {2}

def Mutually exclusive events 𝐹
and 𝐺 means that 𝐹 ∩ 𝐺 = ∅

G
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Quick review of sets
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Review of Sets

𝐸 and 𝐹 are events in 𝑆.
Experiment:

Dice roll
𝑆 = 1, 2, 3, 4, 5, 6
Let 𝐸 = 1, 2 , and 𝐹 = 2,3

E

S

F

def Complement of event 𝐸, 𝐸V

The event containing all outcomes 
in that are not in 𝐸.

𝐸V = {3, 4, 5, 6}
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3 Axioms of Probability

Definition of probability: 𝑃 𝐸 = lim
+→O

+(W)
+

Axiom 1: 0 ≤ 𝑃 𝐸 ≤ 1

Axiom 2: 𝑃 𝑆 = 1

Axiom 3: If 𝐸 and 𝐹 are mutually exclusive (𝐸 ∩ 𝐹 = ∅),
then 𝑃 𝐸 ∪ 𝐹 = 𝑃 𝐸 + 𝑃 𝐹

22
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Axiom 3 is the (analytically) useful Axiom

Axiom 3: If 𝐸 and 𝐹 are mutually exclusive (𝐸 ∩ 𝐹 = ∅),
then 𝑃 𝐸 ∪ 𝐹 = 𝑃 𝐸 + 𝑃 𝐹

More generally, for any sequence of
mutually exclusive events 𝐸%, 𝐸&, … :

23

(like the Sum Rule 
of Counting, but for 
probabilities)

𝑃 Y
Z[%

O
𝐸Z =\

Z[%

O

𝑃 𝐸Z

𝑆

𝐸% 𝐸&

𝐸]
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Today’s plan

Key definitions: sample spaces and events

Axioms of Probability

Equally likely outcomes (counting)

Corollaries of Axioms of Probability

24
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Equally Likely Outcomes

Some sample spaces have equally likely outcomes.
• Coin flip: S = {Head, Tails}
• Flipping two coins: S = {(H, H), (H, T), (T, H), (T, T)}
• Roll of 6-sided die: S = {1, 2, 3, 4, 5, 6}

P(Each outcome)

In that case,

25

(by Axiom 3)

=
1
|𝑆|

𝑃(𝐸) =
# outcomes in E
# outcomes in S =

|𝐸|
|𝑆|
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Roll two dice

Roll two 6-sided dice. What is P(sum = 7)?

𝑆 = { (1, 1) , (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1) , (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1) , (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1) , (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1) , (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1) , (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

𝐸 = { (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

26

=
6
36

=
1
6

𝑃 𝐸 =
|𝐸|
|𝑆|

𝑃 𝐸 =
|𝐸|
|𝑆|

Equally likely 
outcomes
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Target revisited

27
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Target revisited
The dart is equally likely to land 
anywhere on the screen.
What is 𝑃 𝐸 , the probability of hitting 
the target?

Screen size = 800 ×800
Radius of target: 200

𝑃 𝐸 =
𝐸
𝑆
=
𝜋 ⋅ 200&

800&
≈ 0.1963

28

Let 𝐸 = the set of outcomes
where you hit the target.

𝑆 = 800&

𝐸 = 𝜋 ⋅ 200&

𝑃 𝐸 =
|𝐸|
|𝑆|

Equally likely 
outcomes
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Target revisited

29

The dart is equally likely to land 
anywhere on the screen.
What is 𝑃 𝐸 , the probability of hitting 
the target?

Screen size = 800 ×800
Radius of target: 200

𝑃 𝐸 =
𝐸
𝑆
=
𝜋 ⋅ 200&

800&
≈ 0.1963

𝑆 = 800&

𝐸 = 𝜋 ⋅ 200&

𝑃 𝐸 =
|𝐸|
|𝑆|

Equally likely 
outcomes

Let 𝐸 = the set of outcomes
where you hit the target.
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Play the lottery.
What is 𝑃 win ?

𝑆 = {Lose,Win}
𝐸 = {Win}

𝑃 𝐸 =
|𝐸|
|𝑆|

=
1
2
= 50%?

30

Not equally likely outcomes

The hard part: defining equally 
likely outcomes consistently
across sample space and events

👉

𝑃 𝐸 =
|𝐸|
|𝑆|

Equally likely 
outcomes
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🤔
31

Cats and carrots

4 cats and 3 carrots in a bag. 3 drawn.
What is P(1 cat and 2 carrots drawn)?

Note: Do indistinct objects give you 
an equally likely sample space?

A.
]
q

B.
%
r
⋅ &
]

C.
r
q
+ 2 ⋅ ]

s

D.
%&
]t

E. Zero/other

𝑃 𝐸 =
|𝐸|
|𝑆|

Equally likely 
outcomes
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🤔
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Cats and carrots

4 cats and 3 carrots in a bag. 3 drawn.
What is P(1 cat and 2 carrots drawn)?

Note: Do indistinct objects give you 
an equally likely sample space?

Make indistinct items distinct
to get equally likely outcomes.👉

A.
]
q

B.
%
r
⋅ &
]

C.
r
q
+ 2 ⋅ ]

s

D.
%&
]t

E. Zero/other

𝑃 𝐸 =
|𝐸|
|𝑆|

Equally likely 
outcomes
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🤔Compute
34

Cats and carrots
4 cats and 3 carrots in a bag. 3 drawn.
What is P(1 cat and 2 carrots drawn)?

Define
• 𝑆 = Pick 3 distinct 

items

• 𝐸 = 1 distinct cat,
2 distinct 
carrots

D.
%&
]t

Ordered

𝑆 = 7 ⋅ 6 ⋅ 5 = 210

Pick Cat 1st, 2nd, or 3rd

𝐸 = 4 ⋅ 3 ⋅ 2 + 3 ⋅ 4 ⋅ 2
+ 3 ⋅ 2 ⋅ 4

= 72
𝑃 𝐸 = 72/210 = 12/35

Unordered

𝑃 𝐸 =
|𝐸|
|𝑆|

Equally likely 
outcomes
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🤔
35

Cats and carrots
4 cats and 3 carrots in a bag. 3 drawn.
What is P(1 cat and 2 carrots drawn)?

Define
• 𝑆 = Pick 3 distinct 

items
• 𝐸 = 1 distinct cat,

2 distinct 
carrots

D.
%&
]t

Ordered Unordered

𝑃 𝐸 = 12/35

𝐸 =
4
1

3
2

𝑆 =
7
3

𝑃 𝐸 =
|𝐸|
|𝑆|

Equally likely 
outcomes

Compute

𝑆 = 7 ⋅ 6 ⋅ 5 = 210

Pick Cat 1st, 2nd, or 3rd

𝐸 = 4 ⋅ 3 ⋅ 2 + 3 ⋅ 4 ⋅ 2
+ 3 ⋅ 2 ⋅ 4

= 72
𝑃 𝐸 = 72/210 = 12/35



Break for Friday/
announcements

36
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Announcements

37

Section sign-ups

Preference form: out
Due: Saturday 9/28
Results: latest Monday

Python tutorial

When: Friday 3:30-4:20pm
Location: Hewlett 102
Recorded? Yes!
Notes: to be posted online
Installation: On PiazzaConcept check

Due: Tuesday 1:00pm
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🤔
38

Any Poker Straight
Consider 5-card poker hands.
• “straight” is 5 consecutive rank cards of any suit

What is P(Poker straight)?

• What is an example
of an outcome?

• Is each outcome
equally likely?

• Should objects be
ordered or unordered?

👉
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Any Poker Straight
Consider 5-card poker hands.
• “straight” is 5 consecutive rank cards of any suit

What is P(Poker straight)?

• What is an example
of an outcome?

• Is each outcome
equally likely?

• Should objects be
ordered or unordered?

Define
• 𝑆 (unordered)

• 𝐸 (unordered,
consistent with S)

Compute

𝑆 =
52
5

𝐸 = 10 ⋅
4
1

t

𝑃 Poker straight =
𝐸
𝑆
=
10 ⋅ r

%
t

t&
t

≈ 0.00394

👉
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Consider 5-card poker hands.
• “straight” is 5 consecutive rank cards of any suit
• “straight flush” is 5 consecutive rank cards of same suit

What is P(Poker straight, but not straight flush)?

40

“Official” Poker Straight

𝑆 =
52
5

𝐸 = 10 ⋅
4
1

t

− 10 ⋅
4
1

Define
• 𝑆 (unordered)

• 𝐸 (unordered,
consistent with S)

Compute 𝑃 Of~icial Poker straight =
𝐸
𝑆
=
10 ⋅ r

%
t
− 10 ⋅ r

%
t&
t

≈ 0.00392



Lisa Yan, CS109, 2019

Define
• 𝑆 (unordered)

• 𝐸 (unordered,
consistent with S)

Compute =

𝑛 − 1 !
𝑘 − 1 ! 𝑛 − 𝑘 !

𝑛!
𝑘! 𝑛 − 𝑘 !

=
𝑛 − 1 ! 𝑘!
𝑛! 𝑘 − 1 !

𝑛 chips are manufactured, 1 of which is defective.
𝑘 chips are randomly selected from 𝑛 for testing.
What is P(defective chip is in 𝑘 selected chips?)

41

Chip defect detection

𝑆 =
𝑛
𝑘

𝐸 =
1
1

𝑛 − 1
𝑘 − 1

1. Choose defective chip
2. Choose 𝑘 − 1 other chips

𝑃 𝐸 =
𝑛 − 1
𝑘 − 1
𝑛
𝑘

=
𝑘
𝑛
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𝑛 chips are manufactured, 1 of which is defective.
𝑘 chips are randomly selected from 𝑛 for testing.
What is P(defective chip is in 𝑘 selected chips?)

42

Chip defect detection, solution #2

Redefine experiment
1. Choose 𝑘 indistinct chips (1 way)
2. Throw a dart and make one defective

Define
• 𝑆 (unordered)
• 𝐸 (unordered,

consistent with S)

𝑆 = 1 ⋅ 𝑛

𝐸 = 1 ⋅ 𝑘
𝑘
𝑛

𝑃 𝐸 =
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Today’s plan

Key definitions: sample spaces and events

Axioms of Probability

Equally likely outcomes (counting)

Corollaries of Axioms of Probability

43
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Axioms of Probability

Definition of probability: 𝑃 𝐸 = lim
+→O

+(W)
+

Axiom 1: 0 ≤ 𝑃 𝐸 ≤ 1

Axiom 2: 𝑃 𝑆 = 1

Axiom 3: If 𝐸 and 𝐹 are mutually exclusive (𝐸 ∩ 𝐹 = ∅),
then 𝑃 𝐸 ∪ 𝐹 = 𝑃 𝐸 + 𝑃 𝐹

44

Review
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3 Corollaries of Axioms of Probability

Corollary 1: 𝑃 𝐸V = 1 − 𝑃(𝐸)

45
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Proof of Corollary 1
Corollary 1: 𝑃 𝐸V = 1 − 𝑃(𝐸)

Proof:

𝐸, 𝐸V are mutually exclusive Definition of 𝐸V

𝑃 𝐸 ∪ 𝐸V = 𝑃 𝐸 + 𝑃 𝐸V Axiom 3

𝑆 = 𝐸 ∪ 𝐸V Everything must either be
in 𝐸 or 𝐸V, by definition

1 = 𝑃 𝑆 = 𝑃 𝐸 + 𝑃 𝐸V Axiom 2

𝑃 𝐸V = 1 − 𝑃(𝐸) Rearrange

46
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3 Corollaries of Axioms of Probability

Corollary 1: 𝑃 𝐸V = 1 − 𝑃(𝐸)

Corollary 2: If 𝐸 ⊆ 𝐹, then 𝑃 𝐸 ≤ 𝑃(𝐹)

Corollary 3: 𝑃 𝐸 ∪ 𝐹 = 𝑃 𝐸 + 𝑃 𝐹 − 𝑃 𝐸𝐹
(Inclusion-Exclusion Principle for Probability)

47
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Corollary 3: 𝑃 𝐸 ∪ 𝐹 = 𝑃 𝐸 + 𝑃 𝐹 − 𝑃 𝐸𝐹
(Inclusion-Exclusion Principle for Probability)

General form:

Inclusion-Exclusion Principle (Corollary 3)

𝑃 𝐸 ∪ 𝐹 ∪ 𝐺 =
𝑃 𝐸 + 𝑃 𝐹 + 𝑃(𝐺)

− 𝑃 𝐸 ∩ 𝐹 − 𝑃 𝐸 ∩ 𝐺 − 𝑃 𝐹 ∩ 𝐺

+ 𝑃 𝐸 ∩ 𝐹 ∩ 𝐺

48

𝑃 ∪
+

Z[%
𝐸Z = \

([%

+

−1 (�% \
Z��⋯�Z�

𝑃 ∩
(

�[%
𝐸Z�

E

F
G

r = 1:

r = 2:

r = 3:
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Takeaway: Mutually exclusive events

53

𝑃 Y
Z[%

O
𝐸Z =\

Z[%

O

𝑃 𝐸Z

𝑆

𝐸% 𝐸&

𝐸]

Design your experiment to compute 
easier probabilities.👉

Axiom 3,
Mutually exclusive events

E

F
G

Inclusion-Exclusion Principle

𝑃 ∪
+

Z[%
𝐸Z = \

([%

+

−1 (�% \
Z��⋯�Z�

𝑃 ∩
(

�[%
𝐸Z�
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Serendipity

54
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🤔
55

Serendipity
• The population of Stanford is 𝑛 = 17,000 people.
• You are friends with 𝑟 = ? people.
• Walk into a room, see 𝑘 = 268 random people.
• Assume you are equally likely to see each person at Stanford.

What is the probability that you see someone you know? 

Define
• 𝑆 (unordered)    
• 𝐸: see ≥ 1 friend in the room     

How should we compute 𝑃 𝐸 ?

It is often much easier 
to compute 𝑃 𝐸� .👉

𝑆 =
𝑛
𝑘

=
17000
268

A. 𝑃 exactly 1 + 𝑃 exactly 2
𝑃 exactly 3 +⋯

B. 1 − 𝑃 see no friends
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The Birthday Paradox Problem

What is the probability that in a set of n people, at least one pair of them 
will share the same birthday?

For you to think about (and discuss in section!)

56


