05: Independence

Lisa Yan
October 2, 2019

Two Dice

- Roll two 6-sided dice, yielding values D_{1} and D_{2}.
- Let event $E: \quad D_{1}=5$
event $F: \quad D_{2}=5$

1. Roll a 5 on one of the rolls
2. Roll a 5 on both rolls
3. Neither roll is 5
4. Roll a 5 on roll 2
5. Do not roll a 5 on one of the rolls
A. $P(F)$
B. $P(E \cup F)$
C. $P\left(E^{C} \cup F^{C}\right)$
D. $P(E F)$
E. $P\left(E^{C} F^{C}\right)$

Two Dice

- Roll two 6-sided dice, yielding values D_{1} and D_{2}.
- Let event $E: \quad D_{1}=5$
event $F: \quad D_{2}=5$

1. Roll a 5 on one of the rolls
2. Roll a 5 on both rolls
3. Neither roll is 5
4. Roll a 5 on roll 2
5. Do not roll a 5 on one of the rolls

Monty Hall, 1000 envelope version

Start with 1000 envelopes (of which 1 is the prize).

1. You choose 1 envelope.

$$
\left\{\begin{array}{l}
\frac{1}{1000}=\mathrm{P}(\text { envelope is prize }) \\
\frac{999}{1000}=\mathrm{P}(\text { other } 999 \text { envelopes have prize })
\end{array}\right.
$$

$$
\frac{999}{1000}=P(998 \text { empty envelopes had prize })
$$ + P(last other envelope has prize) = P (last other envelope has prize)

3. Should you switch? $\quad P($ you win without switching $)=\frac{1}{\text { original \# envelopes }}$

P (you win with switching) $=\frac{\text { original \# envelopes - } 1}{\text { original \# envelopes }}$

This class going forward

For most of this course

Not equally likely events

Probability of events

Probability of events

Selecting Programmers

- $\mathrm{P}($ student programs in Java) $=0.28$
- $P($ student programs in Python) $=0.07$
- $\quad \mathrm{P}($ student programs in Java and Python) $=0.05$.

What is P(student does not program in (Java or Python))?

1. Define events \& state goal
2. Identify known
3. Solve probabilities

Selecting Programmers

- $P($ student programs in Java $)=0.28$
- $P($ student programs in Python) $=0.07$
- $\quad \mathrm{P}($ student programs in Java and Python) $=0.05$.

What is P(student does not program in (Java or Python))?

1. Define events \& state goal

2. Identify known

 probabilitiesLet: $\quad E$: Student programs in Java
F : Student programs in Python

Want: $P\left((E \cup F)^{C}\right)$

Selecting Programmers

- $P($ student programs in Java) $=0.28$

$$
\begin{array}{r}
P(E) \\
P(F) \\
P(E \cap F)=P(E F)
\end{array}
$$

- $P($ student programs in Python) $=0.07$
- $\quad \mathrm{P}$ (student programs in Java and Python) $=0.05$.

What is $\mathrm{P}($ student does not program in (Java or Python))?

1. Define events \& state goal
2. Identify known probabilities
3. Solve

Let: $\quad E$: Student programs in Java
F : Student programs in Python
Want: $P\left((E \cup F)^{C}\right)$

Selecting Programmers

- $P($ student programs in Java $)=0.28$

$$
P(E)
$$

- $P($ student programs in Python) $=0.07$
- $\quad \mathrm{P}$ (student programs in Java and Python) $=0.05$.
$P(E \cap F)=P(E F)$
What is $\mathrm{P}($ student does not program in (Java or Python))?

1. Define events \& state goal

Let: E : Student programs in Java
F : Student programs in Python
Want: $P\left((E \cup F)^{C}\right)$

2. Identify known probabilities

$$
\begin{aligned}
P\left((E \cup F)^{C}\right) & =1-P(E \cup F) \\
& =1-[P(E)+P(F)-P(E \cap F)] \\
& =1-[0.28+0.07-0.05] \\
& =0.70
\end{aligned}
$$

Probability of events

$$
P(E)+P(F) \quad P(E)+P(F)-P(E \cap F)
$$

Chain Rule

Definition of conditional probability:

$$
P(E \mid F)=\frac{P(E F)}{P(F)}
$$

The Chain Rule:

$$
P(E F)=P(E \mid F) P(F)
$$

Generalized Chain Rule

$$
\begin{aligned}
& P\left(E_{1} E_{2} E_{3} \ldots E_{n}\right) \\
& \quad=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) \ldots P\left(E_{n} \mid E_{1} E_{2} \ldots E_{n-1}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
P\left(E_{1} E_{2} E_{3} \ldots E_{n}\right)= & \text { Chain } \\
P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) \ldots P\left(E_{n} \mid E_{1} E_{2} \ldots E_{n-1}\right) & \text { Rule }
\end{array}
$$

You are going to a friend's Halloween party.
Let $\quad C=$ there is candy
$W=$ you wear a costume
$M=$ there is music
$E=$ no one wears your costume
An awesome party means that all of these events must occur.
What is P (awesome party) $=P(C M W E)$?
A. $\quad P(C) P(M \mid C) P(W \mid C M) P(E \mid C M W)$
B. $P(M) P(C \mid M) P(W \mid M C) P(E \mid M C W)$
C. $P(W) P(E \mid W) P(C M \mid E W)$
D. A, B, and C
E. None/other

$$
\begin{array}{cl}
P\left(E_{1} E_{2} E_{3} \ldots E_{n}\right)= & \text { Chain } \\
P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) \ldots P\left(E_{n} \mid E_{1} E_{2} \ldots E_{n-1}\right) & \text { Rule }
\end{array}
$$

You are going to a friend's Halloween party.
Let $\quad C=$ there is candy
$E=$ no one wears your costume
$M=$ there is music
$W=$ you wear a costume
An awesome party means that all of these events must occur.
What is P (awesome party) $=P(C M E W)$?
A. $P(C) P(M \mid C) P(E \mid C M) P(W \mid C M E)$
B. $P(M) P(C \mid M) P(E \mid M C) P(W \mid M C E)$
C. $P(W) P(E \mid W) P(C M \mid E W)$
D. A, B , and C
E. None/other

Probability of events

Probability of events

Today's plan

\Rightarrow Independence

Independent trials

De Morgan's Laws

Conditional independence (if time)

On this day in 1958, Guinea declared independence from France.

Independence

Two events E and F are defined as independent if:

$$
P(E F)=P(E) P(F)
$$

Otherwise E and F are called dependent events.

An equivalent definition:

$$
P(E \mid F)=P(E)
$$

Intuition through proof

Statement:

$$
\text { If } E \text { and } F \text { are independent, then } P(E \mid F)=P(E) \text {. }
$$

Proof:

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E F)}{P(F)} \\
& =\frac{P(E) P(F)}{P(F)} \\
& =P(E)
\end{aligned}
$$

Definition of conditional probability

Independence of E and F

Taking the bus to cancellation city

Knowing that F happened does not change our belief that E happened.

- Roll two 6-sided dice, yielding values D_{1} and D_{2}.
- Let event $E: \quad D_{1}=1$
event $F: \quad D_{2}=6$
event $G: \quad D_{1}+D_{2}=5 \quad G=\{(1,4),(2,3),(3,2),(4,1)\}$

1. Are E and F independent?

$$
\begin{aligned}
& P(E)=1 / 6 \\
& P(F)=1 / 6 \\
& P(E F)=1 / 36
\end{aligned}
$$

independent
2. Are E and G independent?

$$
\begin{aligned}
& P(E)=1 / 6 \\
& P(G)=4 / 36=1 / 9 \\
& P(E G)=1 / 36 \neq P(E) P(G)
\end{aligned}
$$

dependent

Independence?

Independent
$P(E F)=P(E) P(F)$ events E and F $P(E \mid F)=P(E)$

Independence?

Independent
$P(E F)=P(E) P(F)$ events E and F

(Def. 1, assuming equally likely outcomes)

$$
\frac{|A B|^{0}}{|S|}=\frac{|A|}{|S|} \times \frac{|B|}{|S|}
$$

$$
P(A B)=P(A) P(B)
$$

$$
\frac{|A B|}{|S|}=\frac{|A|}{|S|} \times \frac{|B|}{|S|}
$$

Independence?

Independent
$P(E F)=P(E) P(F)$ events E and F $P(E \mid F)=P(E)$

Independence?

(Def. 2, assuming equally likely outcomes)

$$
P(A \mid B)=P(A)
$$

$$
\frac{|A B|}{|B|} \neq \frac{|A|}{|S|} \quad \frac{|A B|}{|B|}=\frac{|A|}{|S|}
$$

Independence of complements

Statement:
If E and F are independent, then E and F^{C} are independent.
Proof:

$$
\begin{aligned}
P\left(E F^{C}\right) & =P(E)-P(E F) & & \text { Intersection } \\
& =P(E)-P(E) P(F) & & \text { Independence of } E \text { and } F \\
& =P(E)[1-P(F)] & & \text { Factoring } \\
& =P(E) P\left(F^{C}\right) & & \text { Complement } \\
E \text { and } F^{C} & \text { are independent } & & \text { Definition of independence }
\end{aligned}
$$

Knowing that F didn't happen does not change our belief that E happened.

Today's plan

Independence

Independent trials

De Morgan's Laws

Conditional independence (if time)

Generalizing independence

Three events E, F, and G are independent if:
$\left\{\begin{array}{l}P(E F G)=P(E) P(F) P(G), \text { and } \\ P(E F)=P(E) P(F), \text { and } \\ P(E G)=P(E) P(G), \text { and } \\ P(F G)=P(F) P(G)\end{array}\right.$
$\left\{\begin{array}{r}\text { for } r=1, \ldots, n \text { : } \\ \text { for every subset } E_{1}, E_{2}, \ldots, E_{r} \text { : }\end{array}\right.$

$$
P\left(E_{1}, E_{2}, \ldots, E_{r}\right)=P\left(E_{1}\right) P\left(E_{2}\right) \cdots P\left(E_{r}\right)
$$

Independent trials:

Outcomes of n separate flips of a coin are all independent of one another. Each flip in this case is a trial of the experiment.

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_{1} and D_{2}.
- Let event $E: \quad D_{1}=1$
event F : $\quad D_{2}=6$ event $G: \quad D_{1}+D_{2}=7 \quad G=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$

1. Are E and F
∇ independent?

$$
\begin{aligned}
& P(E)=1 / 6 \\
& P(F)=1 / 6 \\
& P(E F)=1 / 36
\end{aligned}
$$

2. Are E and G independent?
3. Are F and G 4. Are E, F, G independent? independent?

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_{1} and D_{2}.
- Let event $E: \quad D_{1}=1$
event F : $\quad D_{2}=6$
event $G: \quad D_{1}+D_{2}=7 \quad G=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$

1. Are E and F independent?
2. Are E and G independent?
3. Are F and G 4. Are E, F, G independent? independent?

$$
\begin{array}{lllc}
P(E)=1 / 6 & P(E)=1 / 6 & P(F)=1 / 6 & P(E F G)=1 / 36 \\
P(F)=1 / 6 & P(G)=1 / 6 & P(G)=1 / 6 & \neq \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}
\end{array}
$$

Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_{i} of functioning (where $1 \leq i \leq n$)
- $E=$ functional path from A to B exists.

What is $P(E)$?

$$
\begin{aligned}
P(E) & =P(\geq 1 \text { one router works }) \\
& =1-P(\text { all routers fail }) \\
& =1-\left(1-p_{1}\right)\left(1-p_{2}\right) \cdots\left(1-p_{n}\right) \\
& =1-\prod_{i=1}^{n}\left(1-p_{i}\right)
\end{aligned}
$$

(biased) Coin Flips

Suppose we flip a coin n times.

- A coin comes up heads with probability p.
- Each coin flip is an independent trial.

1. $\quad P(n$ heads on n coin flips)
2. $\quad P$ (n tails on n coin flips)

$$
\begin{gathered}
p^{n} \\
(1-p)^{n}
\end{gathered}
$$

(biased) Coin Flips

Suppose we flip a coin n times.

- A coin comes up heads with probability p.
- Each coin flip is an independent trial.

1. $\quad P(n$ heads on n coin flips)
2. $\quad P$ (n tails on n coin flips)
$(1-p)^{n}$
3. $\quad P$ (first k heads, then $n-k$ tails)
4. $\quad P$ (exactly k heads on n coin flips)

(biased) Coin Flips

Suppose we flip a coin n times.

- A coin comes up heads with probability p.
- Each coin flip is an independent trial.

1. $\quad P(n$ heads on n coin flips)
2. $\quad P$ (n tails on n coin flips)

$$
\begin{gathered}
p^{n} \\
(1-p)^{n} \\
p^{k}(1-p)^{n-k}
\end{gathered}
$$

3. $\quad P$ (first k heads, then $n-k$ tails)
4. $\quad P$ (exactly k heads on n coin flips)

$$
\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Break for jokes/
 announcements

Announcements

Section
 Starts: today
 Late signups/changes: by end of day Solutions: end of week

Concept checks

Due date: every Tuesday 1:00pm You can edit your response, so don't be afraid of submitting multiple times.

Problem Set 1

Gradescope: entry code M7B45K Assignment portal: available

This quarter
 Beginning: fast-paced Later: deep into concepts Counting: the hardest part!

Today's plan

Independence

Independent trials

De Morgan's Laws

Conditional independence

Augustus De Morgan

Augustus De Morgan (1806-1871):
British mathematician who wrote the book Formal Logic (1847).

He looked remarkably similar to Jason Alexander (George from Seinfeld)
(but that's not important right now)

De Morgan's Laws

$$
\begin{aligned}
& (E \cup F)^{C}=E^{C} \cap F^{C} \\
& \left(\bigcup_{i=1}^{n} E_{i}\right)^{C}=\bigcap_{i=1}^{n} E_{i}^{C}
\end{aligned}
$$

In probability:

$$
\begin{array}{ll}
P\left(E_{1} E_{2} \cdots E_{n}\right)=1-P\left(E_{1}^{C} \cup E_{2}^{c} \cup \cdots \cup E_{n}^{c}\right) & \text { Great if } E_{i}^{C} \text { mutually exclusive! } \\
P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)=1-P\left(E_{1}^{c} E_{2}^{c} \cdots E_{n}^{c}\right) & \text { Great if } E_{i} \text { independent! }
\end{array}
$$

Hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

1. $E=$ bucket 1 has ≥ 1 string hashed into it.

What is $P(E)$?

$$
=1-P\left(S_{1}^{C} S_{2}^{C} \cdots S_{m}^{C}\right) \quad \text { De Morgan's Law }
$$

Define $\quad S_{i}=$ string i is hashed into bucket 1 $S_{i}^{C}=$ string i is not hashed into bucket 1

Complement

$$
\begin{gathered}
P\left(S_{i}\right)=p_{1} \\
P\left(S_{i}^{C}\right)=1-p_{1}
\end{gathered}
$$

$P(E)=P\left(S_{1} \cup S_{2} \cup \cdots \cup S_{m}\right)$
$=1-P\left(\left(S_{1} \cup S_{2} \cup \cdots \cup S_{m}\right)^{C}\right)$

$$
=1-P\left(S_{1}^{C}\right) P\left(S_{2}^{C}\right) \cdots P\left(S_{m}^{C}\right)=1-\left(P\left(S_{1}^{C}\right)\right)^{m}
$$

$$
S_{i} \text { independent trials }
$$

$$
=1-\left(1-p_{1}\right)^{m}
$$

More hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

1. $E=$ bucket 1 has ≥ 1 string hashed into it.
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it.

What is $P(E)$?
WTF (not-real acronym for Want To Find)
Define $\quad F_{i}=$ bucket i has at least one string in it

$$
\begin{aligned}
P(E)= & \text { A. } P\left(F_{1} F_{2} \ldots F_{k}\right) \\
& \text { B. } 1-P\left(F_{1}^{C}\right) P\left(F_{2}^{C}\right) \cdots P\left(F_{k}^{c}\right) \\
& \text { C. } P\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right) \\
& \text { D. } P\left(F_{1}\right)+P\left(F_{2}\right)+\cdots+P\left(F_{k}\right) \\
& \text { E. None/other }
\end{aligned}
$$

More hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

1. $E=$ bucket 1 has ≥ 1 string hashed into it.
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it.

What is $P(E)$?
WTF (not-real acronym for Want To Find)

$$
\begin{aligned}
& P(E)= \text { A. } P\left(F_{1} F_{2} \ldots F_{k}\right) \\
& \text { B. } 1-P\left(F_{1}^{C}\right) P\left(F_{2}^{C}\right) \cdots P\left(F_{k}^{c}\right) \\
& \text { C. } P\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right) \\
& \text { D. } P\left(F_{1}\right)+P\left(F_{2}\right)+\cdots+P\left(F_{k}\right)
\end{aligned}
$$

E. None/other define well before

More hash table fun

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

1. $E=$ bucket 1 has ≥ 1 string hashed into it.
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it.

What is $P(E)$?
WTF: $P(E)=P\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right)$

$$
=1-P\left(\left(F_{1} \cup F_{2} \cup \cdots \cup F_{k}\right)^{C}\right)
$$

$$
=1-P\left(F_{1}^{C} F_{2}^{C} \cdots F_{k}^{C}\right) \longrightarrow=P(\text { no strings hashed to buckets } 1 \text { to } k)
$$

$$
=(P(\text { string hashed outside bkts } 1 \text { to } k))^{m}
$$

$P(E)=1-\left(1-p_{1}-p_{2} \ldots-p_{k}\right)^{m}=\left(1-p_{1}-p_{2} \cdots-p_{k}\right)^{m}$

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

1. $E=$ bucket 1 has ≥ 1 string hashed into it.
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it.
3. $E=$ each of of buckets 1 to k has ≥ 1 string hashed into it. What is $P(E)$?

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

1. $E=$ bucket 1 has ≥ 1 string hashed into it.
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it.
3. $E=$ each of of buckets 1 to k has ≥ 1 string hashed into it. What is $P(E)$?

WTF: $\quad P(E)=P\left(F_{1} F_{2} \cdots F_{k}\right)$

$$
=1-P\left(\left(F_{1} F_{2} \cdots F_{k}\right)^{C}\right)
$$

$$
=1-P\left(F_{1}^{C} \cup F_{2}^{C} \cup \cdots \cup F_{k}^{C}\right) \quad \text { De Morgan's Law }
$$

$$
=1-P\left({\left.\left.\underset{i=1}{k} F_{i}^{c}\right)=1-\sum_{r=1}^{k}(-1)^{(r+1)} \sum_{i_{1}<\cdots<i_{r}} P\left(F_{i_{1}}^{c} F_{i_{2}}^{c} \ldots F_{i_{r}}^{c}\right)\right) ~}_{\text {in }}\right.
$$

$$
\text { where } P\left(F_{i_{1}}^{c} F_{i_{2}}^{c} \ldots F_{i_{r}}^{c}\right)=\left(1-p_{i_{1}}-p_{i_{2}} \ldots-p_{i_{r}}\right)^{m}
$$

It is expected that this last example will need some review!

Probability of events

Just add!

InclusionExclusion Principle

$$
P(E)+P(F)
$$

Just multiply!
Chain Rule

$$
P(E)+P(F)-P(E \cap F)
$$

$$
P(E) P(F)
$$

$P(E) P(F \mid E)$
$P(F) P(E \mid F)$

Today's plan

Independence

Independent trials

De Morgan’s Laws

Conditional independence (if time)

