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The fun never stops with hash tables

*  m strings are hashed (unequally) into a hash table with n buckets.
* Each string hashed is an independent trial w.p. p; of getting hashed into bucket i.

3. E =each of of buckets 1to k has = 1 string hashed into it.
What is P(E)?
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Probability of events

P ~
1
”  DeMorgan’s -
Cm—mm - -
Mutually

exclusive? \ndependent?

Inclusion-
Just add! Exclusion Just multiply! Chain Rule

Principle

P(E)P(F|E)
P(F)P(E|F)
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The fun never stops with hash tables

m strings are hashed (unequally) into a hash table with n buckets.
Each string hashed is an independent trial w.p. p; of getting hashed into bucket i.

E =each of of buckets 1 to k has = 1 string hashed into it.

What is P(E)?
Define  F; = bucket i has at

WTF: P(E) = P(F1Fz Fk) least one string in it
=1-— P((F1F2 Fk)c) Complement
= 1—P(F16UF2CU---UFC) De Morgan’s Law
=1-P (igl Ff) =1-Y5_ (-D)TVY, o P(FEFE .. FE)
where P(FEFS .. FE) = (1 —pi, — Dy D)™
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It Is expected that this last example will
need some review!




. . B P(E|F)P(F) Bayes’
DNA paternity testing PUEIE) = B @EIFP(E) + PEEIFOPGES) Theorem

Child is born with (A, a) gene pair (event By ;)
* Mother has (A, A) gene pair.
* Two possible fathers: M;: (a, a), where P(M, is father) = p
M,: (a, A), where P(M, is father) = P(Mf) =1 —1p

What is P(M;|By4)?

1. Define events 2. ldentify known
& state goal probabilities
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. . 3 P(E|F)P(F) Bayes'’
DNA paternity testing PUEIE) = B @EIFP(E) + PEEIFOPGES) Theorem

Child is born with (A, a) gene pair (event By ;)
Mother has (A, A) gene pair.

Two possible fathers: M;: (a, a), where P(M, is father) = p
M,: (a, A), where P(M, is father) = P(Mf) =1 —1p

What is P(M;|By4)?

Solve

P(Byq|My1)P(My)
P(Byq|M;)P(My) + P(Byq|Mz)P(My)

1-p 2p 2 - M; more likely to be father
1t » P -~ P than he was before, since

B 1 14
1-p+5(1—p) P P(My|Bag) > P(My)
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Today’s plan

=) Conditional Independence
Random Variables
PMFs and CDFs

Expectation
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Conditional Independence

Conditional Probability Independence
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Conditional Paradigm

For any events A, B, and E, you can condition consistently on E,

and all formulas still hold:

Axiom 1 0<P(A|E) <1
Corollary 1 (complement) P(A|E) =1—P(A“|E)
Transitivity P(AB|E) = P(BA|E)
Chain Rule P(AB|E) = P(B|E)P(A|BE)
P(A|BE) = P(B|AE)P(A|E)
Bayes’ Theorem = P(B|E)
: : does NOT
Independence relationships Aand B necessarily

. can change with conditioning. | independent
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mean

L A 4

-

BAES theorem?

A and B
independent
given E.
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.. Independent P(EF) = P(E)P(F)
Conditional Independence events E and F P(EIF) = P(E)

Two events A and B are defined as conditionally independent given E if:
P(AB|E) = P(A|E)P(B|E)

An equivalent definition:
A. P(A|B) = P(4)
B. P(A|BE) = P(A)
C. P(A|BE) = P(A|E) A
D. P(AB|E) = P(A|B) o/
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Independent P(EF) = P(E)P(F)

Conditional Independence events E and F P(EIF) = P(E)

Two events A and B are defined as conditionally independent given E' if:
P(AB|E) = P(A|E)P(B|E)

An equivalent definition:
A. P(A
B. P(A
P(A

B) — P(A) Regular independence
BE) = P(A)
BE) = P(A|E)

D, P(AB|E) = P(A|B) )
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Netflix and Condition

Let E = a user watches Life is Beautiful.
Let F = a user watches Amelie.
What is P(E)?

# people who have watched movie _ 10,234,231 ~O

P(E) = # people on Netflix ~ 50,923,123

What is the probability that a user watches
Life is Beautiful, given they watched Amelie?

P(EF) _ # people who have watched both
P(F)  # people who have watched Amelie

P(E|F) =

~ 0.42
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Netflix and Condition Review

Let E be the event that a user watches the given movie.
Let F be the event that the same user watches Amelie.

NETFLIX

P(E) = 0.19 P(E) = 0.32 P(E)=020 | P(E)=0.09 P(E)=0.20

P(E|F) =0.14 P(E|F) =035 |P(E|F)=020) P(E|F)=0.72 P(E|F) = 0.42
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Netflix and Condition

Watched: watch? I

What if E{E,E3E, are not independent? (e.g,, all international emotional comedies)

# people who have watched all 4
P(E\E,E3E,) — # people who watch any 4 movies

# people who have watched those 3
P(E,E;E3) p 7 POOP .
# people who watch any 3 movies

P(E4|E1E2E3) —

? » Big numbers = tiny
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. .. Cond. independent P(EF|G) = P(E|G)P(F|G)
Netflix and Condition Serd R e @ ) B = B

K: likes international emotional comedies

Watched:

What if E; E,E5E, are conditionally independent given K?

P(E4|E1E;E3K) = P(E4|K)

J/
~ An easier probability to store and compute!
-
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. .. Cond. independent P(EF|G) = P(E|G)P(F|G)
Netflix and Condition Serd R e @ ) B = B

K: likes international emotional comedies

NAIROBI HALF LIFE

‘n‘ﬂw ( )“
g“r \:ll =

E,E>ESE, are
conditionally independent
given K

E,E,ESE, are
dependent

“= Dependent events can become

“&W  conditionally independent.
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. . Cond. independent P(EF|G) = P(E|G)P(F|G)
Not-so-independent dice FanaFgvenc & pEIFG) = P(EID

® ©® S
iR L)
< :
%

Roll two 6-sided dice, yielding values D; and D,.

Letevent E: D; =1
event F: D, =6

eventG: Dy +D, =7 G ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
Are E and F independent?
P(E)=1/6 P(F)=1/6 P(EF) =1/36

Are E and F independent given G?
P(E|G) =1/6 P(F|G) =1/6 P(EF|G) =1/6
P(EF|G) + P(E|G)P(F|G)

= Independent events can become

- E|G, F|G dependent “&W  conditionally dependent.
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The beauty of conditional independence

Generalized Chain Rule:
P(E1E2E3 ...EnF) =
P(F)P(E1|F)P(E2|E1F)P(E3|E1E2F) ...P(En|E1E2 ...En_lF)

If £, E,, ..., E,, are all conditionally independent given F:
P(ElEZEB ---EnF) — P(F)P(EllF)P(Ele) "'P(Ean)

More on this in a future lecture!
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Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of
decomposing hard probability questions.

“Exploiting conditional independence to generate fast
probabilistic computations is one of the main

contributions CS has made to probability theory.”

—Judea Pearl wins 2011 Turing Award,
“For fundamental contributions to artificial intelligence
through the development of a calculus for probabilistic and causal reasoning”

Independence relationships
C can change with conditioning.
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A and B
independent

does NOT
necessarily
mean

A and B
independent
given E.
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Next Episode Playing in

¥z

Back to Browse More Episodes
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Today's plan

=> Random Variables
PMFs and CDFs

Expectation
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Random variables are like typed variables

e nhame
) by
/(/@

int a = 5;

double b = 4.2;

bit ¢ = 1;

CS variables

A is the number of Pokemon we
bring to our future battle.

A€f1,2,..,6}

B is the amount of money we get
after we win a battle.

B € R*

C is 1 if we successfully beat the
Elite Four. O otherwise.

C € {0,1})

*=» Random variables are like typed variables

Random
variables

-
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(with uncertainty)

Stanford University 25



Random Variable

A random variable is a real-valued function defined on a sample space.

) Outcome > X =x

1. What is the value of X for the outcomes:

Example:
* (T,T,T)?
3 coins are flipped. © (HH,T)?
Let X = # of heads. 2. What is the event (set of outcomes) where X = 27?

X IS a random variable.

3. Whatis P(X = 2)? &\?.J
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Random Variable

A random variable is a real-valued function defined on a sample space.

) Outcome > X =x

1. What is the value of X for the outcomes:

Example:
- (TT,D? 0
3 coins are flipped. © (HHT)? 2
Let X = # of heads. 2. What is the event (set of outcomes) where X = 27
X IS a random variable. {(H,H, T), (H, T, H), (T, H, H)}

3. Whatis P(X = 2)? 3/8 K‘?y
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Random variables are NOT events!

It is confusing that random variables and events use the same notation.
Random variables # events.

We can define an event to be a particular assignment
of a random variable.

X=x P(X=x) Setofoutcomes Possible event E
Example: X=0 1/8 {(T, T, T) Flip O heads
X=1 3/8 {(H, T, T), (T, H, T) .
| | (T.T. H)) Flip exactly 1 head
3 coins are ﬂlpped. X=2 3/8 (H,H, 1), (1, T, H), The event where X = 2
Let X = # of heads. (T, H, H)}
X Is arandom variable. X=3 1/8 {(H, H, H)} Flip O tails
X =4 0 {} Flip 4 or more heads
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Example random variable

Consider 5 flips of a coin which comes up heads with probability p.
Each coin flip is an independent trial.

Recall P(2 heads) = (3)p?(1 - p)?, P(3 heads) = (g) p*(1—p)?

Let Y = # of heads on 5 flips.

What is the range of Y?

In other words, what are the values that Y
can take on with non-zero probability?

What is P(Y = k), where k is
in the range of Y? \?9
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Example random variable

Consider 5 flips of a coin which comes up heads with probability p.
Each coin flip is an independent trial.

Recall P(2 heads) = (3)p?(1 - p)?, P(3 heads) = (g) p*(1—p)?

Let Y = # of heads on 5 flips.

What is the range of Y?

In other words, what are the values thatY  {0,1,2,3,4,5}
can take on with non-zero probability?

What is P(Y = k), where k is P(Y = k) = (Ii) (1 — p)5—F
In the range of Y7 \?{j
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Today's plan

=> PMFs and CDFs

Expectation
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Probability Mass Function

number
Yy =2 P(Y = 2)
event probability
Y (number b/t 0 and 1)
random variable
(e.g., # of heads in variable
5 coin flips, <L

unbiased coin) P(Y — k)

function on k with
range O and 1
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Probability Mass Function

P(Y = k)

b=t 0.03125
Y Input k: output:
a valueof Y probability of the event
random variable Y = k
(e.g., # of heads in
5 coin flips, N'=5
. : P=20.5
unbiased coin)

def eventProbability(k):
n_ways = scipy.special.binom(N, k)
p_way = np.power(P, k) * np.power(l - P, N-k)
return n_ways * p_way
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Discrete RVs and Probability Mass Functions

A random variable X is discrete if its range has countably many values.
* X = x, where x € {x{,x,,x3, ...}

The probability mass function (PMF) of a discrete random variable is
P(X =x) =px) = px(x)

| |
shorthand notation

* Probabilities must sum to 1: z p(x;) =1
=1

l

“=» This last bullet is a good way to
e verify any PMF you create.
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PMF for a single 6-sided die

Let X be a random variable that

represents the result of a single 1/6
dice roll.
5
- Rangeof X:{1,2,3,4,5,6} |
* Therefore X is a discrete E—f/

random variable.
 PMF of X: 0
1/6 x€{l,..,6
p(x) ={ / { }

0 otherwise
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PMF for the sum of two dice

Let Y be a random variable that represents the sum of
two independent dice rolls.

6/36
Rangeof Y: {2,3,...,11,12} 5/36
r  4/36
y—1
— YEL2<y<6 13/36
p(y) =1 B Y ' 2
o yez,7s?z312 mi/zz g é
0 otherwise /O @ g 7 %
2 3 4 5 10 11 12

12
Sanity check:
Z p(y) =1

y=2
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Break for Friday/
announcements




Announcements

/Problem Set 1 A /Problem Set 2 A
Due: an hour ago Out: today
On-time grades:  next Friday Due: Monday 10/14

ions: i Covers: through toda

G,olutlons. next Frlday/ \ g y/

) 4 )
Loncept checks Optional readings:
Due date: | every Tuesday 1:OO|E)m Lecture notes: website
You can edit your response, so don't .
be afraid of submitting multiple times Textbook sections: - (scroll down)
N % \ /

Lisa Yan, CS109, 2019
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Cumulative Distribution Functions

For a random variable X, the cumulative distribution function (CDF) is
defined as

F(a) =Fy(a) =P(X <a),where —co<a< o
For a discrete RV X, the CDF is:

F@=PX<a)= ) p®

all x<a
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CDFs as graphs

CDF (cumulative
distribution function)

Fla)=P(X <a)

Let X be a random variable that
represents the result of a single
dice roll.

CDF of X

5/6

4/6
S
— 3/6
R,

2/6

1/6

. -
‘

— P(X<6)=1

—o-

P(X<0)=0

Lisa Yan, CS109, 2019
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Today's plan

) Expectation
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Expectation

The expectation of a discrete random variable X is defined as:

* Note: sum over all values of X = x that have non-zero probability.

* Other names: mean, expected value, weighted average,
center of mass, first moment
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E[X] = z p(x) - x Expectation

Expectation of a die roll of X

x:p(x)>0

What is the expected value of a 6-sided die roll?

1. Define random X = RV for value of roll
variables
1/6 x€{1,...,6}
P(X =x) = ’
( x) { 0 otherwise

2. Solve

E[X] =1 (%)+2(%)+3(%)+4(%)+5(%)+6(%):;
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Lying with statistics

“There are three kinds of lies:
lies, damned lies, and statistics”
—popularized by Mark Twain, 1906
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Lying with statistics

A school has 3 classes with 5, 10, and 150 students.
What is the average class size?

Interpretation #1 Interpretation #2
Randomly choose a class Randomly choose a student
with equal probability. with equal probability.
X = size of chosen class Y = size of chosen class
E[X] =5 (1) +10 (1) + 150 (1) E[Y] =5 (i) +10 (ﬂ) + 150 (@)
3 3 3 165 165 165
= 1—65 = 55 = 22635 ~ 137
3 @ 165 @
What universities Average student

usually report perception of class size
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Important properties of expectation

1. Linearity:
ElaX + bl = aE|X]|+ b

2. Expectation of a sum = sum of expectation:

ElX +Y] =E[X]|+ E|Y]

3. Unconscious statistician:

Elg00] = ) g@p@)

Lisa Yan, CS109, 2019

* Let X = 6-sided dice roll,

Y =2X — 1.
. E[X] =35
. E[Y]=6

Sum of two dice rolls:
* Let X =roll of die 1
Y =roll of die 2
- E[X+Y]=354+35=7
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. « e e . _ Expectation
Being a statistician unconsciously =~ “9* Zg(x)p(x) of 9(X)

Let X be a discrete random variable.
P(X = x) = -forx € {~1,0,1}

Let Y = |X|. What is E[Y]?

l.1+l.0+1._1 =0
3 3 3

E[Y] = E[0] =0
3 3

1 1 1 2
S =1+ 0]+ 21 =3
C

and D \A'?‘)
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. ¢ Lo . _ Expectation
Being a statistician unconsciously =~ “9* ZW)“’” of g(X)

Let X be a discrete random variable.
P(X = x) = -forx € {~1,0,1}

Let Y = |X|. What is E[Y]?

1 1 1 N

S 14-:045--1 =0 E[X

ElY] = E[0] =0 E[E[X]]

1942 2 Find PMF of ¥: py(0) = =, py(1) =

3 3 - Compute E[Y]

§'|—1|+%°|0|+%|1| =§ Use LOTUS by using PMF of X:

CandD P(X =x) - [x] Kl&
Sum up
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_ Expectation
LOTUS proof Flatol = Z‘g PP ot g0x0)

Let Y = g(X), where g is a real-valued function.

Elg(X)] = z vip(y;)

—zy,- > p)
J

g (x)=y;

=z 2 Vi p(x;)

Jj tgxi)=y;

= > > gt
For you to review

j tgxp)d=y;
so that you can

z g(x;) p(x;) sleep at night
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Flg(ol = ) gCop(x) ExPectation

[ want to play a game of g(X)
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Elg] = ) glapCo  EPecaton

St. Petersburg Paradox

A fair coin (comes up “heads” with p = 0.5)
Define Y = number of coin flips (“heads”) before first “tails”
You win $2Y

How much would you pay to play? (How much you expect to win?)

$10000

$oo

$1

$0.50

$0 but let me play

| will not play =)
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Elg] = ) glapCo  EPecaton

St. Petersburg Paradox

A fair coin (comes up “heads” with p = 0.5)
Define Y = number of coin flips (“heads”) before first “tails”
You win $2Y

How much would you pay to play? (How much you expect to win?)

i+1
Define random Fori>0: P(Y =i) = (_)
variables A2, .
Let W = your winnings, 2°.
1\ 1\°
o s 2 () 7o) 2

1 i+1

G () =

Lisa Yan, C$109, 2019 Stanford University 53



. _ Expectation
St. Petersburg + Reality <) Zg L

What if Lisa has only $65,5367
- Same game -+ DefineY = # heads before first tails
* Youwin W = $2Y

- If you win over $65,536, | leave the country

i+1
1. Definerandom Fori>0: P(Y =i) = (_)
variables _ 2_ v
Let W = your winnings, 2°.
1\ 1\° 1\°
2. Solve EIW :(_) 20 (_) 21 (_) 22 4 ...
W] 2 T 2 T 2
K

k =log,(65,536)

—
= 16 =

B -5 =05 IS
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