o6: Random Variables

Lisa Yan
October 4, 2019

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

1. $E=$ bucket 1 has ≥ 1 string hashed into it.
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it.
3. $E=$ each of of buckets 1 to k has ≥ 1 string hashed into it. What is $P(E)$?

Probability of events

Just add!

Inclusion-
Exclusion Principle
$P(E)+P(F)$
$P(E)+P(F)-P(E \cap F)$
$P(E) P(F)$

Just multiply!
Chain Rule
$P(E) P(F \mid E)$
$P(F) P(E \mid F)$

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_{i} of getting hashed into bucket i.

1. $E=$ bucket 1 has ≥ 1 string hashed into it.
2. $E=$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it.
3. $E=$ each of of buckets 1 to k has ≥ 1 string hashed into it. What is $P(E)$?

WTF: $\quad P(E)=P\left(F_{1} F_{2} \cdots F_{k}\right)$

$$
=1-P\left(\left(F_{1} F_{2} \cdots F_{k}\right)^{C}\right)
$$

$$
=1-P\left(F_{1}^{C} \cup F_{2}^{C} \cup \cdots \cup F_{k}^{C}\right) \quad \text { De Morgan's Law }
$$

$$
=1-P\left({\left.\left.\underset{i=1}{k} F_{i}^{c}\right)=1-\sum_{r=1}^{k}(-1)^{(r+1)} \sum_{i_{1}<\cdots<i_{r}} P\left(F_{i_{1}}^{c} F_{i_{2}}^{c} \ldots F_{i_{r}}^{c}\right)\right) ~}_{\text {in }}\right.
$$

$$
\text { where } P\left(F_{i_{1}}^{c} F_{i_{2}}^{c} \ldots F_{i_{r}}^{c}\right)=\left(1-p_{i_{1}}-p_{i_{2}} \ldots-p_{i_{r}}\right)^{m}
$$

It is expected that this last example will need some review!

DNA paternity testing

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)} \text { Bayes' } \text { Theorem }
$$

Child is born with (A, a) gene pair (event $B_{A, a}$)

- Mother has (A, A) gene pair.
- Two possible fathers:
$M_{1}:(\mathrm{a}, \mathrm{a})$, where $P\left(M_{1}\right.$ is father $)=p$
$M_{2}:(\mathrm{a}, \mathrm{A})$, where $P\left(M_{2}\right.$ is father $)=P\left(M_{1}^{C}\right)=1-p$
What is $P\left(M_{1} \mid B_{A, a}\right)$?

1. Define events \& state goal
 2. Identify known probabilities
 3. Solve ,

DNA paternity testing

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{C}\right) P\left(F^{C}\right)} \text { Bayes' } \text { Theorem }
$$

Child is born with (A, a) gene pair (event $B_{A, a}$)

- Mother has (A, A) gene pair.
- Two possible fathers:
$M_{1}:(\mathrm{a}, \mathrm{a})$, where $P\left(M_{1}\right.$ is father $)=p$
$M_{2}:(\mathrm{a}, \mathrm{A})$, where $P\left(M_{2}\right.$ is father $)=P\left(M_{1}^{C}\right)=1-p$
What is $P\left(M_{1} \mid B_{A, a}\right)$?

1. Define events \& state goal

$$
\begin{aligned}
P\left(M_{1} \mid B_{A, a}\right) & =\frac{P\left(B_{A, a} \mid M_{1}\right) P\left(M_{1}\right)}{P\left(B_{A, a} \mid M_{1}\right) P\left(M_{1}\right)+P\left(B_{A, a} \mid M_{2}\right) P\left(M_{2}\right)} \\
& =\frac{1 \cdot p}{1 \cdot p+\frac{1}{2}(1-p)}=\frac{2 p}{1+p} \quad=\frac{2}{1+p} p>p
\end{aligned}
$$

M_{1} more likely to be father than he was before, since $P\left(M_{1} \mid B_{A, a}\right)>P\left(M_{1}\right)$

Today's plan

Conditional Independence

Random Variables

PMFs and CDFs

Expectation

Conditional Independence

Conditional Probability
Independence

Conditional Paradigm

For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

Axiom 1
Corollary 1 (complement)
Transitivity
Chain Rule

Bayes' Theorem

$$
0 \leq P(A \mid E) \leq 1
$$

$$
P(A \mid E)=1-P\left(A^{C} \mid E\right)
$$

$$
P(A B \mid E)=P(B A \mid E)
$$

$$
P(A B \mid E)=P(B \mid E) P(A \mid B E)
$$

$$
P(A \mid B E)=\frac{P(B \mid A E) P(A \mid E)}{P(B \mid E)}
$$

RAE's theorem?

Conditional Independence

Two events A and B are defined as conditionally independent given E if:

$$
P(A B \mid E)=P(A \mid E) P(B \mid E)
$$

An equivalent definition:

$$
\begin{aligned}
& \text { A. } P(A \mid B)=P(A) \\
& \text { B. } P(A \mid B E)=P(A) \\
& \text { C. } P(A \mid B E)=P(A \mid E) \\
& \text { D. } P(A B \mid E)=P(A \mid B)
\end{aligned}
$$

Conditional Independence

Two events A and B are defined as conditionally independent given E if:

$$
P(A B \mid E)=P(A \mid E) P(B \mid E)
$$

An equivalent definition:

$$
\begin{aligned}
& \text { A. } P(A \mid B)=P(A) \quad \text { Regular independence } \\
& \text { B. } P(A \mid B E)=P(A) \\
& \text { C. } P(A \mid B E)=P(A \mid E) \\
& \text { D. } P(A B \mid E)=P(A \mid B)
\end{aligned}
$$

Netflix and Condition

Let $E=$ a user watches Life is Beautiful.
Let $F=$ a user watches Amelie.
What is $P(E) ?$

$$
P(E) \approx \frac{\# \text { people who have watched movie }}{\# \text { people on Netflix }}=\frac{10,234,231}{50,923,123} \approx 0.20
$$

What is the probability that a user watches
Life is Beautiful, given they watched Amelie?

$$
P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{\text { \# people who have watched both }}{\# \text { people who have watched Amelie }} \approx 0.42
$$

Let E be the event that a user watches the given movie. Let F be the event that the same user watches Amelie.

$$
P(E)=0.19 \quad P(E)=0.32
$$

$$
P(E \mid F)=0.14 \quad P(E \mid F)=0.35
$$

$$
\begin{gathered}
P(E)=0.20 \\
P(E \mid F)=0.20
\end{gathered}
$$

Independent!

$P(E)=0.09$

$$
P(E)=0.20
$$

$P(E \mid F)=0.72$
$P(E \mid F)=0.42$

Netflix and Condition

Watched:

What if $E_{1} E_{2} E_{3} E_{4}$ are not independent? (e.g., all international emotional comedies)

$$
P\left(E_{4} \mid E_{1} E_{2} E_{3}\right)=\frac{P\left(E_{1} E_{2} E_{3} E_{4}\right)}{P\left(E_{1} E_{2} E_{3}\right)} \rightarrow \begin{aligned}
& \frac{\text { \# people who have watched all 4 }}{\# \text { people who watch any } 4 \text { movies }}
\end{aligned}
$$

Netflix and Condition

Cond. independent $\Leftrightarrow P(E F \mid G)=P(E \mid G) P(F \mid G)$ E and F given $G \neg P(E \mid F G)=P(E \mid G)$

K: likes international emotional comedies

Watched:

What if $E_{1} E_{2} E_{3} E_{4}$ are conditionally independent given K ?

$$
P\left(E_{4} \mid E_{1} E_{2} E_{3}\right)=\frac{P\left(E_{1} E_{2} E_{3} E_{4}\right)}{P\left(E_{1} E_{2} E_{3}\right)} \quad P\left(E_{4} \mid E_{1} E_{2} E_{3} K\right)=P\left(E_{4} \mid K\right)
$$

An easier probability to store and compute!

Netflix and Condition

Cond. independent $\Leftrightarrow P(E F \mid G)=P(E \mid G) P(F \mid G)$ E and F given $G \quad P(E \mid F G)=P(E \mid G)$
K : likes international emotional comedies

$E_{1} E_{2} E_{3} E_{4}$ are dependent

$$
E_{1} E_{2} E_{3} E_{4} \text { are }
$$

conditionally independent given K

Dependent events can become conditionally independent.

Not-so-independent dice

Cond. independent $\Leftrightarrow P(E F \mid G)=P(E \mid G) P(F \mid G)$
E and F given G $P(E \mid F G)=P(E \mid G)$

Roll two 6-sided dice, yielding values D_{1} and D_{2}.
Let event E : $D_{1}=1$
event F : $D_{2}=6$
event $G: D_{1}+D_{2}=7 \quad G=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$

1. Are E and F independent?

$$
P(E)=1 / 6 \quad P(F)=1 / 6 \quad P(E F)=1 / 36
$$

2. Are E and F independent given G ?

$$
\begin{array}{lll}
P(E \mid G)=1 / 6 & P(F \mid G)=1 / 6 & P(E F \mid G)=1 / 6 \\
P(E F \mid G) \neq P(E \mid G) P(F \mid G) &
\end{array}
$$

$\rightarrow E|G, F| G$ dependent

The beauty of conditional independence

Generalized Chain Rule:

$$
\begin{aligned}
& P\left(E_{1} E_{2} E_{3} \ldots E_{n} F\right)= \\
& P(F) P\left(E_{1} \mid F\right) P\left(E_{2} \mid E_{1} F\right) P\left(E_{3} \mid E_{1} E_{2} F\right) \ldots P\left(E_{n} \mid E_{1} E_{2} \ldots E_{n-1} F\right)
\end{aligned}
$$

If $E_{1}, E_{2}, \ldots, E_{n}$ are all conditionally independent given F :

$$
P\left(E_{1} E_{2} E_{3} \ldots E_{n} F\right)=P(F) P\left(E_{1} \mid F\right) P\left(E_{2} \mid F\right) \cdots P\left(E_{n} \mid F\right)
$$

Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of decomposing hard probability questions.

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory."

-Judea Pearl wins 2011 Turing Award,
"For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

A and B
independent

A and B independent given E .

Next Episode Playing in 5 seconds

*)

Today's plan

Conditional Independence

Random Variables

PMFs and CDFs

Expectation

Random variables are like typed variables

double $\mathrm{b}=4.2$;
bit c = 1;
A is the number of Pokemon we bring to our future battle.

$$
A \in\{1,2, \ldots, 6\}
$$

B is the amount of money we get after we win a battle.

$$
B \in \mathbb{R}^{+}
$$

C is 1 if we successfully beat the Elite Four. 0 otherwise.
$C \in\{0,1\}$

Random
variables
Random variables are like typed variables (with uncertainty)

Random Variable

A random variable is a real-valued function defined on a sample space.

Outcome

$$
X=x
$$

Example:

3 coins are flipped.
Let $X=\#$ of heads. X is a random variable.

1. What is the value of X for the outcomes:

- (T,T,T)?
- (H,H,T)?

2. What is the event (set of outcomes) where $X=2$?
3. What is $P(X=2)$?

Random Variable

A random variable is a real-valued function defined on a sample space.

Outcome

$$
X=x
$$

Example:

3 coins are flipped.
Let $X=$ \# of heads.
X is a random variable.

1. What is the value of X for the outcomes:

- (T,T,T)? 0
- (H,H,T)? 2

2. What is the event (set of outcomes) where $X=2$? $\{(\mathrm{H}, \mathrm{H}, \mathrm{T}),(\mathrm{H}, \mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{H})\}$
3. What is $P(X=2)$? $3 / 8$

Random variables are NOT events!

It is confusing that random variables and events use the same notation.

- Random variables \neq events.
- We can define an event to be a particular assignment of a random variable.

Example:

$X=x$	$P(X=x)$	Set of outcomes	Possible event E
$X=\mathbf{0}$	$1 / 8$	$\{(\mathrm{~T}, \mathrm{~T}, \mathrm{~T})\}$	Flip 0 heads
$X=\mathbf{1}$	$3 / 8$	$\{(\mathrm{H}, \mathrm{T}, \mathrm{T}),(\mathrm{T}, \mathrm{H}, \mathrm{T})$,	Flip exactly 1 head
		$(\mathrm{T}, \mathrm{T}, \mathrm{H})\}$	
$X=\mathbf{2}$	$3 / 8$	$\{(\mathrm{H}, \mathrm{H}, \mathrm{T}),(\mathrm{H}, \mathrm{T}, \mathrm{H})$,	The event where $X=2$
$X=\mathbf{3}$	$1 / 8$	$(\mathrm{~T}, \mathrm{H}, \mathrm{H})\}$	
$X \geq 4$	0	$\{(\mathrm{H}, \mathrm{H}, \mathrm{H})\}$	Flip 0 tails
X	$\}$	Flip 4 or more heads	

Example random variable

Consider 5 flips of a coin which comes up heads with probability p.

- Each coin flip is an independent trial.
- Recall $P(2$ heads $)=\binom{5}{2} p^{2}(1-p)^{3}, \quad P(3$ heads $)=\binom{5}{3} p^{3}(1-p)^{2}$

Let $Y=\#$ of heads on 5 flips.

1. What is the range of Y ?

In other words, what are the values that Y can take on with non-zero probability?
2. What is $P(Y=k)$, where k is in the range of Y ?

Example random variable

Consider 5 flips of a coin which comes up heads with probability p.

- Each coin flip is an independent trial.
- Recall $P(2$ heads $)=\binom{5}{2} p^{2}(1-p)^{3}, \quad P(3$ heads $)=\binom{5}{3} p^{3}(1-p)^{2}$

Let $Y=\#$ of heads on 5 flips.

1. What is the range of Y ?

In other words, what are the values that $Y \quad\{0,1,2,3,4,5\}$ can take on with non-zero probability?
2. What is $P(Y=k)$, where k is in the range of Y ?

Today's plan

Conditional Independence

Random Variables

PMFs and CDFs

Expectation

Probability Mass Function

Probability Mass Function


```
\(P(Y=k)\)
\(k=5\)
Input \(k\) : a value of \(Y\)
0.03125
output:
probability of the event
\[
Y=k
\]
```

$\mathrm{N}=5$

```
\(\mathrm{N}=5\)
\(P=0.5\)
\(P=0.5\)
def eventProbability(k):
def eventProbability(k):
    n_ways = scipy.special.binom(N, k)
    n_ways = scipy.special.binom(N, k)
    p_way \(=\) np.power \((P, k)\) * np.power(1 - P, N-k)
    p_way \(=\) np.power \((P, k)\) * np.power(1 - P, N-k)
    return n_ways * p_way
```

```
    return n_ways * p_way
```

```

\section*{Discrete RVs and Probability Mass Functions}

A random variable \(X\) is discrete if its range has countably many values.
- \(X=x\), where \(x \in\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}\)

The probability mass function (PMF) of a discrete random variable is
\[
P(X=x)=p(x)=p_{X}(x)
\]
shorthand notation
- Probabilities must sum to 1 :
\[
\sum_{i=1}^{\infty} p\left(x_{i}\right)=1
\]

\section*{PMF for a single 6-sided die}

Let \(X\) be a random variable that represents the result of a single dice roll.
- Range of \(X:\{1,2,3,4,5,6\}\)
- Therefore \(X\) is a discrete random variable.
- PMF of \(X\) :
\[
p(x)=\left\{\begin{array}{cl}
1 / 6 & x \in\{1, \ldots, 6\} \\
0 & \text { otherwise }
\end{array}\right.
\]


\section*{PMF for the sum of two dice}

Let \(Y\) be a random variable that represents the sum of two independent dice rolls.

Range of \(Y:\{2,3, \ldots, 11,12\}\)
\(p(y)=\left\{\begin{array}{cc}\frac{y-1}{36} & y \in \mathbb{Z}, 2 \leq y \leq 6 \\ \frac{13-y}{36} & y \in \mathbb{Z}, 7 \leq y \leq 12 \\ 0 & \text { otherwise }\end{array}\right.\)
Sanity check: \(\quad \sum_{y=2}^{12} p(y)=1\)


\title{
Break for Friday/ announcements
}

\section*{Announcements}

\section*{Problem Set 1}

Due:
On-time grades:
Solutions:
an hour ago next Friday next Friday

Problem Set 2
Out:
Due:
Covers:
today
Monday 10/14 through today

Concept checks
Due date: every Tuesday 1:00pm You can edit your response, so don't be afraid of submitting multiple times.

Optional readings:
Lecture notes: website
Textbook sections: (scroll down)

\section*{Cumulative Distribution Functions}

For a random variable \(X\), the cumulative distribution function (CDF) is defined as
\[
F(a)=F_{X}(a)=P(X \leq a) \text {, where }-\infty<a<\infty
\]

For a discrete \(\mathrm{RV} X\), the CDF is:
\[
F(a)=P(X \leq a)=\sum_{\text {all } x \leq a} p(x)
\]

\section*{CDFs as graphs}

CDF (cumulative distribution function) \(F(a)=P(X \leq a)\)

Let \(X\) be a random variable that represents the result of a single
dice roll.

\section*{CDF of \(X\)}


\section*{Today's plan}

\section*{Conditional Independence}

\section*{Random Variables}

PMFs and CDFs

\author{
Expectation
}

\section*{Expectation}

The expectation of a discrete random variable \(X\) is defined as:
\[
E[X]=\sum_{x: p(x)>0} p(x) \cdot x
\]
- Note: sum over all values of \(X=x\) that have non-zero probability.
- Other names: mean, expected value, weighted average, center of mass, first moment

\section*{Expectation of a die roll}
\[
E[X]=\sum_{x: p(x)>0} p(x) \cdot x \quad \begin{array}{ll}
\text { Expectation } \\
\text { of } X
\end{array}
\]

What is the expected value of a 6-sided die roll?
1. Define random \(X=\mathrm{RV}\) for value of roll variables
\[
P(X=x)=\left\{\begin{array}{cl}
1 / 6 & x \in\{1, \ldots, 6\} \\
0 & \text { otherwise }
\end{array}\right.
\]
2. Solve
\[
E[X]=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right)=\frac{7}{2}
\]

\section*{Lying with statistics}
"There are three kinds of lies:
lies, damned lies, and statistics" -popularized by Mark Twain, 1906


\section*{Lying with statistics}

A school has 3 classes with 5,10 , and 150 students.
What is the average class size?
1. Interpretation \#1
- Randomly choose a class with equal probability.
- \(X=\) size of chosen class
\[
\begin{aligned}
E[X]= & 5\left(\frac{1}{3}\right)+10\left(\frac{1}{3}\right)+150\left(\frac{1}{3}\right) \\
& =\frac{165}{3}=55
\end{aligned}
\]
2. Interpretation \#2
- Randomly choose a student with equal probability.
- \(Y=\) size of chosen class
\[
E[Y]=5\left(\frac{5}{165}\right)+10\left(\frac{10}{165}\right)+150\left(\frac{150}{165}\right)
\]
\[
=\frac{22635}{165} \approx 137 .
\]

Average student

\section*{Important properties of expectation}
1. Linearity:
\[
E[a X+b]=a E[X]+b
\]
2. Expectation of a sum = sum of expectation:
\[
E[X+Y]=\mathrm{E}[X]+E[Y]
\]
- Let \(X=6\)-sided dice roll,
\[
Y=2 X-1 .
\]
- \(E[X]=3.5\)
- \(E[Y]=6\)

Sum of two dice rolls:
- Let \(X=\) roll of die 1
\(Y=\) roll of die 2
- \(E[X+Y]=3.5+3.5=7\)
3. Unconscious statistician:
\[
E[g(X)]=\sum_{x} g(x) p(x)
\]

Let \(X\) be a discrete random variable.
- \(P(X=x)=\frac{1}{3}\) for \(x \in\{-1,0,1\}\)

Let \(Y=|X|\). What is \(E[Y]\) ?
A. \(\frac{1}{3} \cdot 1+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot-1=0\)
B. \(E[Y]=E[0]=0\)
C. \(\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 1=\frac{2}{3}\)
D. \(\frac{1}{3} \cdot|-1|+\frac{1}{3} \cdot|0|+\frac{1}{3}|1|=\frac{2}{3}\)
E. C and D
\[
E[g(X)]=\sum_{x} g(x) p(x) \quad \begin{aligned}
& \text { Expectation } \\
& \text { of } g(X)
\end{aligned}
\]

Let \(X\) be a discrete random variable.
- \(P(X=x)=\frac{1}{3}\) for \(x \in\{-1,0,1\}\)

Let \(Y=|X|\). What is \(E[Y]\) ?
A. \(\frac{1}{3} \cdot 1+\frac{1}{3} \cdot 0+\frac{1}{3} \cdot-1=0 \quad E[X]\)
B. \(E[Y]=E[0] \quad=0 \quad E[E[X]]\)
C. \(\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 1=\frac{2}{3}\)
1. Find PMF of \(Y: p_{Y}(0)=\frac{1}{3}, p_{Y}(1)=\frac{2}{3}\)
2. Compute \(E[Y]\)
D. \(\frac{1}{3} \cdot|-1|+\frac{1}{3} \cdot|0|+\frac{1}{3}|1|=\frac{2}{3}\)

C and D

\section*{LOTUS proof}
\[
E[g(X)]=\sum_{x} g(x) p(x) \quad \begin{aligned}
& \text { Expectation } \\
& \text { of } g(X)
\end{aligned}
\]

Let \(Y=g(X)\), where \(g\) is a real-valued function.
\[
\begin{aligned}
& E[g(X)]=E[Y]=\sum_{j} y_{j} p\left(y_{j}\right) \\
&=\sum_{j} y_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} p\left(x_{i}\right) \\
&=\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} y_{j} p\left(x_{i}\right) \\
&=\sum_{j} \sum_{j: g\left(x_{i}\right)=y_{j}} g\left(x_{i}\right) p\left(x_{i}\right) \\
&=\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right) \\
& \text { Lsesem.cosiog,2019 }
\end{aligned}
\]

For you to review

I want to play a game
\[
E[g(x)]=\sum_{x} g(x) p(x) \quad \begin{array}{ll}
\text { Expectation } \\
\text { of } g(X)
\end{array}
\]

\section*{St. Petersburg Paradox}
\[
E[g(x)]=\sum_{x} g(x) p(x) \quad \begin{aligned}
& \text { Expectation } \\
& \text { of } g(X)
\end{aligned}
\]
- A fair coin (comes up "heads" with \(p=0.5\) )
- Define \(Y=\) number of coin flips ("heads") before first "tails"
- You win \(\$ 2^{Y}\)

How much would you pay to play? (How much you expect to win?)
A. \(\$ 10000\)
B. \(\$ \infty\)
C. \(\$ 1\)
D. \(\$ 0.50\)
E. \$0 but let me play
F. I will not play

\section*{St. Petersburg Paradox}
\[
E[g(x)]=\sum_{x} g(x) p(x) \quad \begin{aligned}
& \text { Expectation } \\
& \text { of } g(X)
\end{aligned}
\]
- A fair coin (comes up "heads" with \(p=0.5\) )
- Define \(Y\) = number of coin flips ("heads") before first "tails"
- You win \$2 \({ }^{Y}\)

How much would you pay to play? (How much you expect to win?)
1. Define random For \(i \geq 0: \quad P(Y=i)=\left(\frac{1}{2}\right)^{i+1}\)
variables
\[
\begin{aligned}
& \text { Let } W=\text { your winnings, } 2^{Y} . \\
& E[W]=E\left[2^{Y}\right]=\left(\frac{1}{2}\right)^{1} 2^{0}+\left(\frac{1}{2}\right)^{2} 2^{1}+\left(\frac{1}{2}\right)^{3} 2^{2}+\cdots \\
& \\
& =\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i+1} 2^{i}=\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)=\infty
\end{aligned}
\]
2. Solve

\section*{St. Petersburg + Reality}
\[
E[g(x)]=\sum_{x} g(x) p(x) \quad \begin{aligned}
& \text { Expectation } \\
& \text { of } g(X)
\end{aligned}
\]

\section*{What if Lisa has only \(\$ 65,536\) ?}
- Same game - Define \(Y\) = \# heads before first tails
- You win \(W=\$ 2^{Y}\)
- If you win over \(\$ 65,536\), I leave the country
1. Define random
variables \(\quad\) For \(i \geq 0: \quad P(Y=i)=\left(\frac{1}{2}\right)^{i+1}\)
\[
\text { Let } \quad W=\text { your winnings, } 2^{Y} \text {. }
\]
2. Solve
\[
E[W]=\left(\frac{1}{2}\right)^{1} 2^{0}+\left(\frac{1}{2}\right)^{2} 2^{1}+\left(\frac{1}{2}\right)^{3} 2^{2}+\cdots
\]
\[
\begin{aligned}
k & =\log _{2}(65,536) \\
& =16
\end{aligned}
\]
\[
=\sum_{i=0}^{k}\left(\frac{1}{2}\right)^{i+1} 2^{i}=\sum_{i=0}^{16}\left(\frac{1}{2}\right)=8.5
\]```

