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The fun never stops with hash tables
• 𝑚 strings are hashed (unequally) into a hash table with 𝑛 buckets.
• Each string hashed is an independent trial w.p. 𝑝$ of getting hashed into bucket 𝑖.

1. 𝐸 = bucket 1 has ≥ 1 string hashed into it.
2. 𝐸 = at least 1 of buckets 1 to 𝑘 has ≥ 1 string hashed into it.
3. 𝐸 = each of of buckets 1 to 𝑘 has ≥ 1 string hashed into it.

What is 𝑃 𝐸 ?
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Probability of events

3

E or F
𝑃 𝐸 ∪ 𝐹

E and F
𝑃 𝐸𝐹

Just add!
Inclusion-
Exclusion 
Principle

Just multiply! Chain Rule

De Morgan’s

Mutually 

exclusive? Independent?

𝑃 𝐸 + 𝑃(𝐹) 𝑃 𝐸 + 𝑃 𝐹 − 𝑃(𝐸 ∩ 𝐹) 𝑃 𝐸 𝑃 𝐹 𝐸
𝑃 𝐹 𝑃(𝐸|𝐹)𝑃 𝐸 𝑃 𝐹



Lisa Yan, CS109, 2019

• 𝑚 strings are hashed (unequally) into a hash table with 𝑛 buckets.
• Each string hashed is an independent trial w.p. 𝑝$ of getting hashed into bucket 𝑖.

1. 𝐸 = bucket 1 has ≥ 1 string hashed into it.
2. 𝐸 = at least 1 of buckets 1 to 𝑘 has ≥ 1 string hashed into it.
3. 𝐸 = each of of buckets 1 to 𝑘 has ≥ 1 string hashed into it.

What is 𝑃 𝐸 ?

WTF: 𝑃 𝐸 = 𝑃 𝐹4𝐹5 ⋯𝐹7
= 1 − 𝑃 𝐹4𝐹5 ⋯𝐹7 8 Complement

= 1 − 𝑃 𝐹48 ∪ 𝐹58∪ ⋯∪ 𝐹78 De Morgan’s Law

= 1 − 𝑃 ∪
7

$94
𝐹$: = 1	– ∑>947 −1 >?4 ∑$@A⋯A$B 𝑃 𝐹$@

: 𝐹$C
: …𝐹$B

:

where 𝑃 𝐹$@
: 𝐹$C

: …𝐹$B
: = (1 − 𝑝$@ − 𝑝$C…– 𝑝$B)

E

4

The fun never stops with hash tables

Define 𝐹$ = bucket 𝑖 has at 
least one string in it



It is expected that this last example will 
need some review!

5
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Child is born with (A, a) gene pair  (event 𝐵G,I)
• Mother has (A, A) gene pair.
• Two possible fathers: 𝑀4: (a, a), where 𝑃 𝑀4 is father = 𝑝

𝑀5: (a, A), where 𝑃 𝑀5 is father = 𝑃 𝑀48 = 1 − 𝑝

What is 𝑃 𝑀4|𝐵G,I ?

8

DNA paternity testing

1. Define events
& state goal

2. Identify known
probabilities

3. Solve

𝑃 𝐹 𝐸 =
𝑃 𝐸 𝐹 𝑃 𝐹

𝑃 𝐸|𝐹 𝑃 𝐹 + 𝑃 𝐸 𝐹8 𝑃(𝐹8)
Bayes’ 
Theorem
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Child is born with (A, a) gene pair  (event 𝐵G,I)
• Mother has (A, A) gene pair.
• Two possible fathers: 𝑀4: (a, a), where 𝑃 𝑀4 is father = 𝑝

𝑀5: (a, A), where 𝑃 𝑀5 is father = 𝑃 𝑀48 = 1 − 𝑝

What is 𝑃 𝑀4|𝐵G,I ?

9

DNA paternity testing

1. Define events
& state goal

2. Identify known
probabilities

3. Solve

𝑃 𝑀4|𝐵G,I =
𝑃 𝐵G,I 𝑀4 𝑃 𝑀4

𝑃 𝐵G,I|𝑀4 𝑃 𝑀4 + 𝑃 𝐵G,I 𝑀5 𝑃(𝑀5)

=
1 ⋅ 𝑝

1 ⋅ 𝑝 + 12 (1 − 𝑝)
=

2𝑝
1 + 𝑝

=
2

1 + 𝑝
𝑝 > 𝑝

𝑀4 more likely to be father
than he was before, since
𝑃 𝑀4|𝐵G,I > 𝑃 𝑀4

𝑃 𝐹 𝐸 =
𝑃 𝐸 𝐹 𝑃 𝐹

𝑃 𝐸|𝐹 𝑃 𝐹 + 𝑃 𝐸 𝐹8 𝑃(𝐹8)
Bayes’ 
Theorem
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Today’s plan

Conditional Independence

Random Variables

PMFs and CDFs

Expectation

10
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Conditional Independence

11

Conditional Probability Independence
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Conditional Paradigm
For any events A, B, and E, you can condition consistently on E,

and all formulas still hold:
Axiom 1 0 ≤ 𝑃 𝐴 𝐸 ≤ 1
Corollary 1 (complement) 𝑃 𝐴 𝐸 = 1 − 𝑃 𝐴8|𝐸
Transitivity 𝑃 𝐴𝐵 𝐸 = 𝑃(𝐵𝐴|𝐸)
Chain Rule 𝑃 𝐴𝐵 𝐸 = 𝑃(𝐵|𝐸)𝑃 𝐴 𝐵𝐸

Bayes’ Theorem

Independence relationships
can change with conditioning.

12

𝑃 𝐴 𝐵𝐸 =
𝑃 𝐵 𝐴𝐸 𝑃 𝐴|𝐸

𝑃(𝐵|𝐸) ‘s theorem?

⚠
does NOT 

necessarily 
mean

A and B 
independent

A and B 
independent

given E.
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🤔
13

Conditional Independence

Two events 𝐴 and 𝐵 are defined as conditionally independent given 𝐸 if:
𝑃 𝐴𝐵|𝐸 = 𝑃 𝐴|𝐸 𝑃(𝐵|𝐸)

An equivalent definition:

𝑃 𝐸|𝐹 = 𝑃(𝐸)
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)Independent

events 𝐸 and 𝐹

A. 𝑃 𝐴 𝐵 = 𝑃 𝐴
B. 𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴
C. 𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴|𝐸
D. 𝑃 𝐴𝐵 𝐸 = 𝑃 𝐴|𝐵
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🤔
14

Conditional Independence

Two events 𝐴 and 𝐵 are defined as conditionally independent given 𝐸 if:
𝑃 𝐴𝐵|𝐸 = 𝑃 𝐴|𝐸 𝑃(𝐵|𝐸)

An equivalent definition:
A. 𝑃 𝐴 𝐵 = 𝑃 𝐴
B. 𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴
C. 𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴|𝐸
D. 𝑃 𝐴𝐵 𝐸 = 𝑃 𝐴|𝐵

𝑃 𝐸|𝐹 = 𝑃(𝐸)
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)Independent

events 𝐸 and 𝐹

Regular independence
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Netflix and Condition
Let 𝐸 = a user watches Life is Beautiful.
Let 𝐹 = a user watches Amelie.
What is 𝑃 𝐸 ?

𝑃 𝐸 ≈ # people who have watched movie
# people on Netflix = 4R,5ST,5S4

UR,V5S,45S
≈ 0.20

What is the probability that a user watches
Life is Beautiful, given they watched Amelie?

𝑃 𝐸|𝐹 =

15

𝑃 𝐸𝐹
𝑃(𝐹)

=
# people who have watched both

# people who have watched Amelie
≈ 0.42

Review
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Netflix and Condition

Let 𝐸 be the event that a user watches the given movie.
Let 𝐹 be the event that the same user watches Amelie.

16

𝑃 𝐸 = 0.19 𝑃 𝐸 = 0.32 𝑃 𝐸 = 0.20 𝑃 𝐸 = 0.20𝑃 𝐸 = 0.09

𝑃 𝐸|𝐹 = 0.14 𝑃 𝐸|𝐹 = 0.35 𝑃 𝐸|𝐹 = 0.20 𝑃 𝐸|𝐹 = 0.72 𝑃 𝐸|𝐹 = 0.42
Independent!

Review
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What if 𝐸4𝐸5𝐸S𝐸T are not independent? (e.g., all international emotional comedies)

Watched: Will they 
watch?

𝐸4 𝐸5 𝐸S 𝐸T

Netflix and Condition

17

𝑃 𝐸T|𝐸4𝐸5𝐸S =
𝑃 𝐸4𝐸5𝐸S𝐸T
𝑃 𝐸4𝐸5𝐸S

# people who have watched all 4
# people who watch any 4 movies

# people who have watched those 3
# people who watch any 3 movies

Big numbers à tiny 
probabilities à underflow!👉
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Netflix and Condition

What if 𝐸4𝐸5𝐸S𝐸T are conditionally independent given 𝐾?

18

Watched: Will they 
watch?

𝐸4 𝐸5 𝐸S 𝐸T

𝐾: likes international emotional comedies

𝑃 𝐸T|𝐸4𝐸5𝐸S𝐾 = 𝑃 𝐸T|𝐾𝑃 𝐸T|𝐸4𝐸5𝐸S =
𝑃 𝐸4𝐸5𝐸S𝐸T
𝑃 𝐸4𝐸5𝐸S

An easier probability to store and compute!👉

𝑃 𝐸|𝐹𝐺 = 𝑃(𝐸|𝐺)
𝑃 𝐸𝐹|𝐺 = 𝑃 𝐸|𝐺 𝑃(𝐹|𝐺)Cond. independent 

𝐸 and 𝐹 given 𝐺
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Netflix and Condition

19

𝐸4 𝐸5 𝐸S 𝐸T

𝐾: likes international emotional comedies

𝐸4𝐸5𝐸S𝐸T are
dependent

𝐸4𝐸5𝐸S𝐸T are
conditionally independent 

given 𝐾
Dependent events can become 
conditionally independent.👉

𝑃 𝐸|𝐹𝐺 = 𝑃(𝐸|𝐺)
𝑃 𝐸𝐹|𝐺 = 𝑃 𝐸|𝐺 𝑃(𝐹|𝐺)Cond. independent 

𝐸 and 𝐹 given 𝐺
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Not-so-independent dice
Roll two 6-sided dice, yielding values 𝐷4 and 𝐷5.
Let event 𝐸: 𝐷4 = 1

event 𝐹: 𝐷5 = 6
event 𝐺: 𝐷4 + 𝐷5 = 7

1. Are 𝐸 and 𝐹 independent?

2. Are 𝐸 and 𝐹 independent given 𝐺?

20

𝑃 𝐸 = 1/6 𝑃 𝐹 = 1/6 𝑃 𝐸𝐹 = 1/36

𝑃 𝐸|𝐺 = 1/6 𝑃 𝐹|𝐺 = 1/6 𝑃 𝐸𝐹|𝐺 = 1/6

𝑃 𝐸𝐹|𝐺 ≠ 𝑃 𝐸 𝐺 𝑃(𝐹|𝐺)

→ 𝐸 𝐺, 𝐹 𝐺 dependent

𝐺 = { 1,6 , 2,5 , 3,4 , 4,3 , 5,2 , 6,1 }

𝑃 𝐸|𝐹𝐺 = 𝑃(𝐸|𝐺)
𝑃 𝐸𝐹|𝐺 = 𝑃 𝐸|𝐺 𝑃(𝐹|𝐺)Cond. independent 

𝐸 and 𝐹 given 𝐺

Independent events can become 
conditionally dependent.👉
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The beauty of conditional independence

Generalized Chain Rule:
𝑃 𝐸4𝐸5𝐸S …𝐸f𝐹 =
𝑃 𝐹 𝑃 𝐸4|𝐹 𝑃 𝐸5 𝐸4𝐹 𝑃 𝐸S 𝐸4𝐸5𝐹 …𝑃 𝐸f|𝐸4𝐸5 …𝐸fg4𝐹

If 𝐸4, 𝐸5, … , 𝐸f are all conditionally independent given 𝐹:

𝑃 𝐸4𝐸5𝐸S …𝐸f𝐹 = 𝑃 𝐹 𝑃 𝐸4|𝐹 𝑃 𝐸5|𝐹 ⋯𝑃 𝐸f|𝐹

21

More on this in a future lecture!
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Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of 
decomposing hard probability questions.

“Exploiting conditional independence to generate fast 
probabilistic computations is one of the main 

contributions CS has made to probability theory.” 
–Judea Pearl wins 2011 Turing Award,

“For fundamental contributions to artificial intelligence
through the development of a calculus for probabilistic and causal reasoning” 

22

⚠ A and B 
independent

A and B 
independent

given E.
Independence relationships
can change with conditioning.

does NOT 
necessarily 

mean
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Conditional independence review

23

Next Episode Playing in 5 seconds

𝑃(𝑋
= 𝑘

) 𝐸[𝑋]
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Today’s plan

Conditional Independence

Random Variables

PMFs and CDFs

Expectation
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int a = 5;

double b = 4.2;

bit c = 1;

𝐴 is the number of Pokemon we 
bring to our future battle.

𝐴 ∈ 1, 2, … , 6

𝐵 is the amount of money we get 
after we win a battle.

𝐵 ∈ ℝ?

𝐶 is 1 if we successfully beat the 
Elite Four. 0 otherwise.

𝐶 ∈ {0,1}

25

Random variables are like typed variables

Random variables are like typed variables 
(with uncertainty)👉

type name value

Random 
variablesCS variables
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🤔
26

Random Variable
A random variable is a real-valued function defined on a sample space.

Experiment 𝑋 = 𝑥

2. What is the event (set of outcomes) where 𝑋 = 2?

Outcome

Example:

3 coins are flipped.
Let 𝑋 = # of heads.
𝑋 is a random variable.

1. What is the value of 𝑋 for the outcomes:
• (T,T,T)?
• (H,H,T)?

3. What is 𝑃 𝑋 = 2 ?
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🤔
27

Random Variable
A random variable is a real-valued function defined on a sample space.

Experiment 𝑋 = 𝑥

2. What is the event (set of outcomes) where 𝑋 = 2?

Outcome

1. What is the value of 𝑋 for the outcomes:
• (T,T,T)?
• (H,H,T)?

3. What is 𝑃 𝑋 = 2 ?

Example:

3 coins are flipped.
Let 𝑋 = # of heads.
𝑋 is a random variable.

0
2

{(H, H, T), (H, T, H), (T, H, H)}

3/8
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Random variables are NOT events!
It is confusing that random variables and events use the same notation.
• Random variables ≠ events.
• We can define an event to be a particular assignment

of a random variable.

28

𝑋 = 𝑥 𝑃 𝑋 = 𝑥 Set of outcomes Possible event 𝐸
𝑋 = 𝟎 1/8 {(T, T, T)} Flip 0 heads
𝑋 = 𝟏 3/8 {(H, T, T), (T, H, T), 

(T, T, H)} Flip exactly 1 head

𝑋 = 𝟐 3/8 {(H, H, T), (H, T, H), 
(T, H, H)} The event where 𝑋 = 𝟐

𝑋 = 𝟑 1/8 {(H, H, H)} Flip 0 tails
𝑋 ≥ 4 0 { } Flip 4 or more heads

Example:

3 coins are flipped.
Let 𝑋 = # of heads.
𝑋 is a random variable.
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🤔
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Example random variable
Consider 5 flips of a coin which comes up heads with probability 𝑝.
• Each coin flip is an independent trial.

• Recall 𝑃 2 heads = 5
2 𝑝5 1 − 𝑝 S, 𝑃 3 heads = 5

3 𝑝S 1 − 𝑝 5

Let 𝑌 = # of heads on 5 flips.

1. What is the range of 𝑌?
In other words, what are the values that 𝑌
can take on with non-zero probability?

2. What is 𝑃 𝑌 = 𝑘 , where 𝑘 is
in the range of 𝑌?
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🤔
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Example random variable
Consider 5 flips of a coin which comes up heads with probability 𝑝.
• Each coin flip is an independent trial.

• Recall 𝑃 2 heads = 5
2 𝑝5 1 − 𝑝 S, 𝑃 3 heads = 5

3 𝑝S 1 − 𝑝 5

Let 𝑌 = # of heads on 5 flips.

1. What is the range of 𝑌?
In other words, what are the values that 𝑌
can take on with non-zero probability?

2. What is 𝑃 𝑌 = 𝑘 , where 𝑘 is
in the range of 𝑌?

0, 1, 2, 3, 4, 5

𝑃 𝑌 = 𝑘 = 5
𝑘 𝑝7 1 − 𝑝 Ug7
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Today’s plan

Conditional Independence

Random Variables

PMFs and CDFs

Expectation
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Probability Mass Function

32

event

𝑌 = 2
probability

(number b/t 0 and 1)

𝑃(𝑌 = 2)

𝑃(𝑌 = 𝑘)

variable

function on 𝑘 with
range 0 and 1

number

𝑌
random variable

(e.g., # of heads in
5 coin flips,

unbiased coin)



Lisa Yan, CS109, 2019

Probability Mass Function

33

𝑃(𝑌 = 𝑘)

𝑘 = 5 0.03125
output:
probability of the event

𝑌 = 𝑘

Input 𝑘:
a value of 𝑌

N = 5
P = 0.5

def eventProbability(k):
n_ways = scipy.special.binom(N, k)
p_way = np.power(P, k) * np.power(1 - P, N-k)
return n_ways * p_way

𝑌
random variable

(e.g., # of heads in
5 coin flips,

unbiased coin)
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Discrete RVs and Probability Mass Functions
A random variable 𝑋 is discrete if its range has countably many values.
• 𝑋 = 𝑥, where 𝑥 ∈ 𝑥4, 𝑥5, 𝑥S, …

The probability mass function (PMF) of a discrete random variable is
𝑃 𝑋 = 𝑥

• Probabilities must sum to 1: 

34

t
$94

u

𝑝 𝑥$ = 1

This last bullet is a good way to 
verify any PMF you create.👉

shorthand notation

= 𝑝 𝑥 = 𝑝v(𝑥)
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PMF for a single 6-sided die

Let 𝑋 be a random variable that 
represents the result of a single
dice roll.

• Range of 𝑋 : 1, 2, 3, 4, 5, 6
• Therefore 𝑋 is a discrete

random variable.
• PMF of X:

𝑝 𝑥 = w 1/6 𝑥 ∈ {1,… , 6}
0 otherwise

35

1/6

1 2 3 4 5 6
0

𝑋 = 𝑥

𝑃
𝑋
=
𝑥
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PMF for the sum of two dice

Let 𝑌 be a random variable that represents the sum of
two independent dice rolls.

Range of 𝑌: 2, 3, … , 11, 12

𝑝 𝑦 =

yg4
Sz 𝑦 ∈ ℤ, 2 ≤ 𝑦 ≤ 6
4Sgy
Sz 𝑦 ∈ ℤ, 7 ≤ 𝑦 ≤ 12
0 otherwise

Sanity check:

36

6/36

0

𝑌 = 𝑦

5/36

2 3 4 5 6 7 8 9 10 11 12

4/36

3/36

2/36

1/36

𝑃
𝑌
=
𝑦

t
y95

45

𝑝 𝑦 = 1



Break for Friday/ 
announcements

37
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Announcements

38

Problem Set 2

Out: today
Due: Monday 10/14
Covers: through today

Concept checks

Due date: every Tuesday 1:00pm
You can edit your response, so don’t 
be afraid of submitting multiple times.

Optional readings:

Lecture notes: website
Textbook sections: (scroll down)

Problem Set 1

Due: an hour ago
On-time grades: next Friday
Solutions: next Friday
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Cumulative Distribution Functions

For a random variable 𝑋, the cumulative distribution function (CDF) is 
defined as

𝐹 𝑎 = 𝐹v 𝑎 = 𝑃 𝑋 ≤ 𝑎 ,where −∞ < 𝑎 < ∞

For a discrete RV 𝑋, the CDF is:

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = t
all ��I

𝑝(𝑥)

39
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Let 𝑋 be a random variable that 
represents the result of a single 
dice roll.

40

1/6

1 2 3 4 5 60

𝑋 = 𝑥

𝑃
𝑋
=
𝑥

CDFs as graphs
CDF (cumulative 

distribution function) 𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎

𝐹
𝑎

𝑋 = 𝑥

5/6

4/6

3/6

2/6

1/6

PMF of 𝑋

CDF of 𝑋

𝑃 𝑋 ≤ 0 = 0

𝑃 𝑋 ≤ 6 = 1
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PMFs and CDFs

Expectation
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Expectation

The expectation of a discrete random variable 𝑋 is defined as:

𝐸 𝑋 = t
�:� � �R

𝑝 𝑥 ⋅ 𝑥

• Note: sum over all values of 𝑋 = 𝑥 that have non-zero probability.

• Other names: mean, expected value, weighted average,
center of mass, first moment

42
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Expectation of a die roll

What is the expected value of a 6-sided die roll?

43

Expectation 
of 𝑋

𝐸 𝑋 = t
�:� � �R

𝑝 𝑥 ⋅ 𝑥

1. Define random 
variables

2. Solve

𝑃 𝑋 = 𝑥 = w 1/6 𝑥 ∈ {1,… , 6}
0 otherwise

𝑋 = RV for value of roll

𝐸 𝑋 = 1
1
6
+ 2

1
6
+ 3

1
6
+ 4

1
6
+ 5

1
6
+ 6

1
6

=
7
2
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Lying with statistics

44

“There are three kinds of lies:
lies, damned lies, and statistics” 

–popularized by Mark Twain, 1906
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Lying with statistics
A school has 3 classes with 5, 10, and 150 students.
What is the average class size?

45

1. Interpretation #1
• Randomly choose a class

with equal probability.
• 𝑋 = size of chosen class

𝐸 𝑋 = 5
1
3
+ 10

1
3
+ 150

1
3

=
165
3

= 55

2. Interpretation #2
• Randomly choose a student

with equal probability.
• 𝑌 = size of chosen class

𝐸 𝑌 = 5
5
165

+ 10
10
165

+ 150
150
165

=
22635
165

≈ 137

Average student 
perception of class size

What universities
usually report
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Important properties of expectation
1. Linearity:

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

2. Expectation of a sum = sum of expectation:

𝐸 𝑋 + 𝑌 = E 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋 =t
�

𝑔 𝑥 𝑝(𝑥)

46

• Let 𝑋 = 6-sided dice roll,
𝑌 = 2𝑋 − 1.

• 𝐸 𝑋 = 3.5
• 𝐸 𝑌 = 6

Sum of two dice rolls:
• Let 𝑋 = roll of die 1

𝑌 = roll of die 2
• 𝐸 𝑋 + 𝑌 = 3.5 + 3.5 = 7
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🤔
47

Being a statistician unconsciously
Let 𝑋 be a discrete random variable.
• 𝑃 𝑋 = 𝑥 = 4

S
for 𝑥 ∈ {−1, 0, 1}

Let 𝑌 = |𝑋|. What is 𝐸 𝑌 ?

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑋 =t
�

𝑔 𝑥 𝑝(𝑥)

A. 4
S
⋅ 1 + 4

S
⋅ 0 + 4

S
⋅ −1 = 0

B. 𝐸 𝑌 = 𝐸 0 = 0

C. 4
S
⋅ 0 + 5

S
⋅ 1 = 5

S

D. 4
S
⋅ −1 + 4

S
⋅ 0 + 4

S
1 = 5

S
E. C and D
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🤔

A. 4
S
⋅ 1 + 4

S
⋅ 0 + 4

S
⋅ −1 = 0

B. 𝐸 𝑌 = 𝐸 0 = 0

C. 4
S
⋅ 0 + 5

S
⋅ 1 = 5

S

D. 4
S
⋅ −1 + 4

S
⋅ 0 + 4

S
1 = 5

S
E. C and D
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Being a statistician unconsciously
Let 𝑋 be a discrete random variable.
• 𝑃 𝑋 = 𝑥 = 4

S
for 𝑥 ∈ {−1, 0, 1}

Let 𝑌 = |𝑋|. What is 𝐸 𝑌 ?

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑋 =t
�

𝑔 𝑥 𝑝(𝑥)

𝐸 𝑋

1. Find PMF of 𝑌: 𝑝� 0 = 4
S
, 𝑝� 1 = 5

S
2. Compute 𝐸[𝑌]

Use LOTUS by using PMF of X:
1. 𝑃 𝑋 = 𝑥 ⋅ 𝑥
2. Sum up

𝐸 𝐸 𝑋
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LOTUS proof

49

Let 𝑌 = 𝑔(𝑋), where 𝑔 is a real-valued function.

𝐸 𝑔 𝑋 = 𝐸 𝑌 = t
�

𝑦�𝑝(𝑦�)

= t
�

𝑦� t
$:� �� 9 y�

𝑝(𝑥$)

= t
�

t
$:� �� 9 y�

𝑦� 𝑝(𝑥$)

= t
�

t
$:� �� 9 y�

𝑔(𝑥$) 𝑝(𝑥$)

=t
$

𝑔(𝑥$) 𝑝(𝑥$)

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑋 =t
�

𝑔 𝑥 𝑝(𝑥)

For you to review
so that you can

sleep at night
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I want to play a game

51

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑥 =t
�

𝑔 𝑥 𝑝(𝑥)
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🤔

St. Petersburg Paradox
Expectation 
of 𝑔 𝑋

52

• A fair coin (comes up “heads” with 𝑝 = 0.5)
• Define 𝑌 = number of coin flips (“heads”) before first “tails”
• You win $2�

How much would you pay to play? (How much you expect to win?)

A. $10000
B. $∞
C. $1
D. $0.50
E. $0 but let me play
F. I will not play

𝐸 𝑔 𝑥 =t
�

𝑔 𝑥 𝑝(𝑥)
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• A fair coin (comes up “heads” with 𝑝 = 0.5)
• Define 𝑌 = number of coin flips (“heads”) before first “tails”
• You win $2�

How much would you pay to play? (How much you expect to win?)

53

St. Petersburg Paradox

1. Define random 
variables

2. Solve

For 𝑖 ≥ 0:

Let 𝑊 = your winnings, 2�.

𝐸 𝑊 = 𝐸 2� =
1
2

4

2R +
1
2

5

24 +
1
2

S

25 + ⋯

𝑃 𝑌 = 𝑖 =
1
2

$?4

=t
$9R

u
1
2

$?4

2$ =t
$9R

u
1
2 = ∞

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑥 =t
�

𝑔 𝑥 𝑝(𝑥)
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St. Petersburg + Reality

1. Define random 
variables

2. Solve 𝐸 𝑊 =
1
2

4

2R +
1
2

5

24 +
1
2

S

25 + ⋯

=t
$9R

7
1
2

$?4

2$ =t
$9R

4z
1
2 = 8.5

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑥 =t
�

𝑔 𝑥 𝑝(𝑥)

What if Lisa has only $65,536?
• Same game

• If you win over $65,536, I leave the country

• Define 𝑌 = # heads before first tails
• You win 𝑊 = $2�

𝑘 = log5 65,536
= 16

For 𝑖 ≥ 0:

Let 𝑊 = your winnings, 2�.

𝑃 𝑌 = 𝑖 =
1
2

$?4


