o6: Random Variables

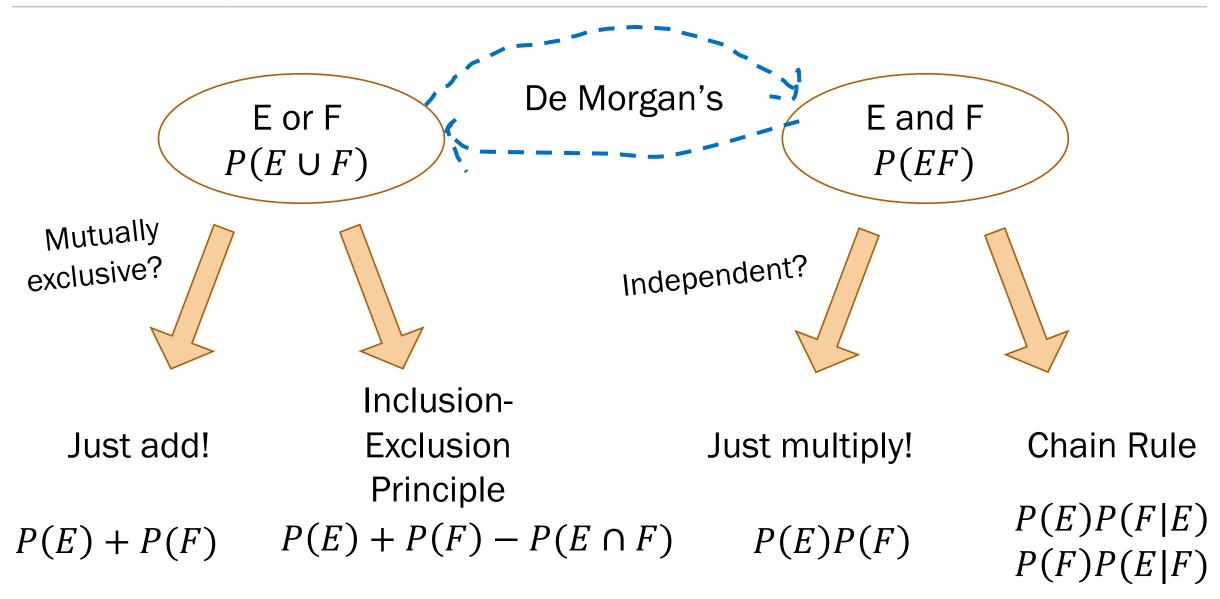
Lisa Yan October 4, 2019

The fun never stops with hash tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

1. E = bucket 1 has \geq 1 string hashed into it.2. E = at least 1 of buckets 1 to k has \geq 1 string hashed into it.3. E = each of of buckets 1 to k has \geq 1 string hashed into it.What is P(E)?

Probability of events



Lisa Yan, CS109, 2019

The fun never stops with hash tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

1. E = bucket 1 has \ge 1 string hashed into it. 2. E = at least 1 of buckets 1 to k has \ge 1 string hashed into it. 3. E = each of of buckets 1 to k has \ge 1 string hashed into it. What is P(E)? Define F_i = bucket i has at

WTF:
$$P(E) = P(F_1F_2 \cdots F_k)$$

$$= 1 - P((F_1F_2 \cdots F_k)^C)$$
 Complement

$$= 1 - P(F_1^C \cup F_2^C \cup \cdots \cup F_k^C)$$
 De Morgan's Law

$$= 1 - P\begin{pmatrix}k\\ \cup\\i=1\\ F_i^c\end{pmatrix} = 1 - \sum_{r=1}^k (-1)^{(r+1)} \sum_{i_1 < \cdots < i_r} P(F_{i_1}^cF_{i_2}^c \dots F_{i_r}^c)$$

where $P(F_{i_1}^cF_{i_2}^c \dots F_{i_r}^c) = (1 - p_{i_1} - p_{i_2} \dots - p_{i_r})^m$

It is expected that this last example will need some review!

DNA paternity testing

 $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})} \frac{\text{Bayes'}}{\text{Theorem}}$

Child is born with (A, a) gene pair (event $B_{A,a}$)

- Mother has (A, A) gene pair.
- Two possible fathers:

 M_1 : (a, a), where $P(M_1 \text{ is father}) = p$ M_2 : (a, A), where $P(M_2 \text{ is father}) = P(M_1^C) = 1 - p$

What is $P(M_1|B_{A,a})$?

1. Define events & state goal

2. Identify <u>known</u> probabilities

3. Solve

DNA paternity testing

 $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})} \frac{\text{Bayes'}}{\text{Theorem}}$

Child is born with (A, a) gene pair (event $B_{A,a}$)

- Mother has (A, A) gene pair.
- Two possible fathers:

 M_1 : (a, a), where $P(M_1 \text{ is father}) = p$ M_2 : (a, A), where $P(M_2 \text{ is father}) = P(M_1^C) = 1 - p$

What is $P(M_1|B_{A,a})$?

1. Define events
& state goal2. Identify known
probabilities3. Solve

$$P(M_{1}|B_{A,a}) = \frac{P(B_{A,a}|M_{1})P(M_{1})}{P(B_{A,a}|M_{1})P(M_{1}) + P(B_{A,a}|M_{2})P(M_{2})}$$
$$= \frac{1 \cdot p}{1 \cdot p + \frac{1}{2}(1-p)} = \frac{2p}{1+p} = \frac{2}{1+p}p > p \quad \underset{P(M_{1} \text{ than h})}{M_{1} \text{ than h}}$$

 M_1 more likely to be father than he was before, since $P(M_1|B_{A,a}) > P(M_1)$

Stanford University 9

Conditional Independence

Random Variables

PMFs and CDFs

Expectation

Conditional Independence

Conditional Probability

Independence

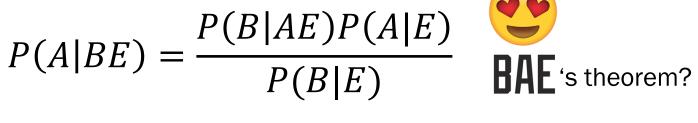
Lisa Yan, CS109, 2019

Conditional Paradigm

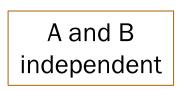
For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

Axiom 1 Corollary 1 (complement) Transitivity Chain Rule $0 \le P(A|E) \le 1$ $P(A|E) = 1 - P(A^{C}|E)$ P(AB|E) = P(BA|E) P(AB|E) = P(B|E)P(A|BE)P(B|AE)P(A|E)

Bayes' Theorem



Independence relationships can change with conditioning.



does NOT necessarily mean

A and B independent given E. Stanford University 12

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

Two events *A* and *B* are defined as <u>conditionally independent given *E*</u> if: P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A. P(A|B) = P(A)B. P(A|BE) = P(A)C. P(A|BE) = P(A|E)D. P(AB|E) = P(A|B)

Lisa Yan, CS109, 2019

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

Two events *A* and *B* are defined as <u>conditionally independent given *E*</u> if: P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A. P(A|B) = P(A)B. P(A|BE) = P(A)C. P(A|BE) = P(A|E)D. P(AB|E) = P(A|B)

Regular independence

Let E = a user watches Life is Beautiful. Let F = a user watches Amelie. What is P(E)?

 $P(E) \approx \frac{\text{\# people who have watched movie}}{\text{\# people on Netflix}} = \frac{10,234,231}{50,923,123} \approx 0.20$

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

 $P(E|F) = \frac{P(EF)}{P(F)} = \frac{\# \text{ people who have watched both}}{\# \text{ people who have watched Amelie}} \approx 0.42$

Let *E* be the event that a user watches the given movie. Let *F* be the event that the same user watches Amelie. Review

INCEY TAILTON

			<text></text>	
P(E) = 0.19	P(E) = 0.32	P(E) = 0.20	P(E) = 0.09	P(E) = 0.20
P(E F) = 0.14	P(E F) = 0.35	P(E F) = 0.20	P(E F) = 0.72	P(E F) = 0.42
		Independent!		Stanford University 16

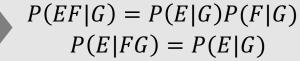


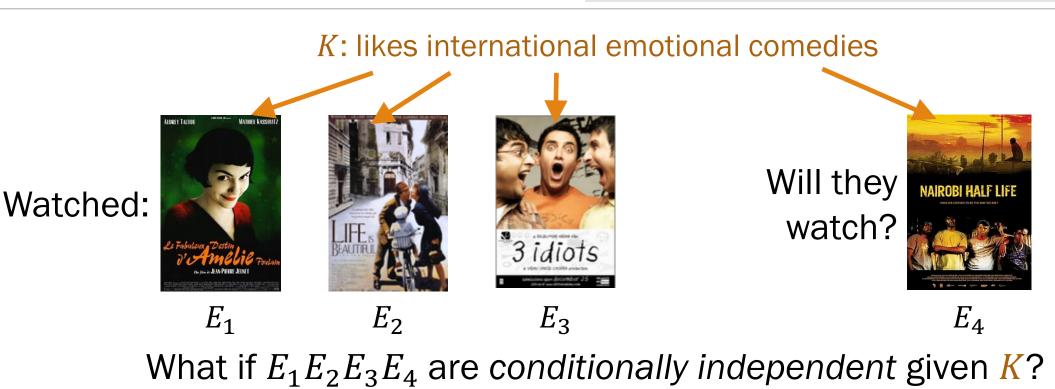
What if $E_1E_2E_3E_4$ are not independent? (e.g., all international emotional comedies)

$$P(E_4 | E_1 E_2 E_3) = \frac{P(E_1 E_2 E_3 E_4)}{P(E_1 E_2 E_3)}$$

$$\frac{P(E_1 E_2 E_3)}{P(E_1 E_2 E_3)}$$

Cond. independent E and F given G



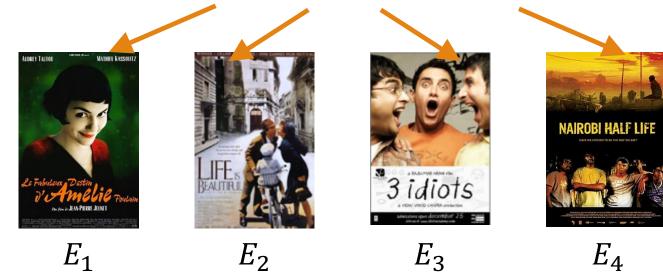


$$P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)}$$

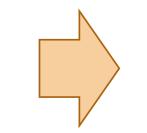
$$P(E_4|E_1E_2E_3K) = P(E_4|K)$$

Cond. independent *E* and *F* given *G*

K: likes international emotional comedies



 $E_1 E_2 E_3 E_4$ are dependent



$E_1E_2E_3E_4$ are conditionally independent given K

Dependent events can become conditionally independent. Stanford University 19

P(EF|G) = P(E|G)P(F|G)

P(E|FG) = P(E|G)

Lisa Yan, CS109, 2019

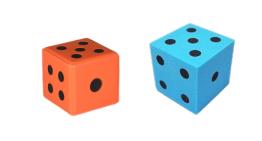
Roll two 6-sided dice, yielding values D_1 and D_2 .

- Let event E: $D_1 = 1$ event F: $D_2 = 6$ event G: $D_1 + D_2 = 7$
- **1.** Are *E* and *F* independent?
 - P(E) = 1/6 P(F) = 1/6 P(EF) = 1/36
- 2. Are E and F independent given G?

P(E|G) = 1/6 P(F|G) = 1/6 P(EF|G) = 1/6

 $P(EF|G) \neq P(E|G)P(F|G)$

 $\rightarrow E|G, F|G$ dependent



P(EF|G) = P(E|G)P(F|G)

P(E|FG) = P(E|G)

 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

Cond. independent

$$P(EF|G) = 1/6$$

Generalized Chain Rule: $P(E_1E_2E_3 ... E_nF) =$ $P(F)P(E_1|F)P(E_2|E_1F)P(E_3|E_1E_2F) ... P(E_n|E_1E_2 ... E_{n-1}F)$

If E_1, E_2, \dots, E_n are all <u>conditionally independent</u> given F: $P(E_1E_2E_3 \dots E_nF) = P(F)P(E_1|F)P(E_2|F) \cdots P(E_n|F)$

More on this in a future lecture!

Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of decomposing hard probability questions.

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory."

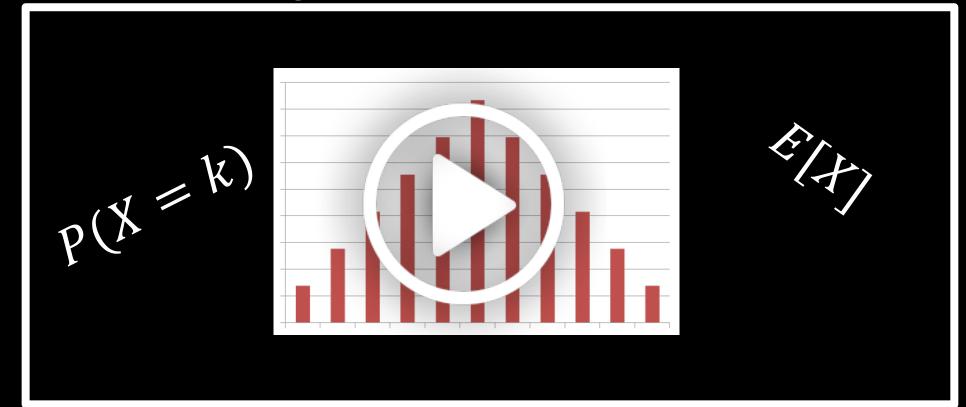
-Judea Pearl wins 2011 Turing Award,

"For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

Independence relationships can change with conditioning.

A and B independent does NOT necessarily mean A and B independent given E.

Next Episode Playing in 5 seconds



Back to Browse

More Episodes

Lisa Yan, CS109, 2019

Stanford University

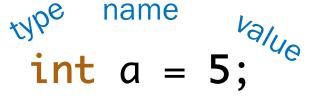
Conditional Independence

Random Variables

PMFs and CDFs

Expectation

Random variables are like typed variables



double b = 4.2;

bit c = 1;

CS variables

A is the number of Pokemon we bring to our *future* battle. $A \in \{1, 2, ..., 6\}$

B is the amount of money we get after we win a battle. $B \in \mathbb{R}^+$

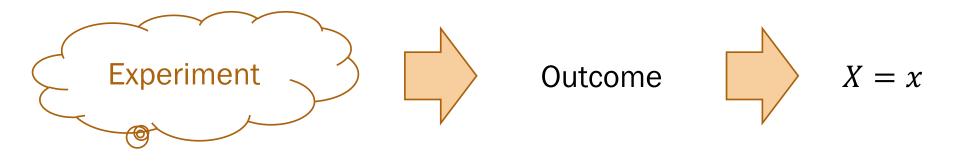
C is 1 if we successfully beat the Elite Four. 0 otherwise. $C \in \{0,1\}$

Random variables

Random variables are like typed variables (with uncertainty) Stanford University 25

Random Variable

A random variable is a real-valued function defined on a sample space.



Example:

3 coins are flipped. Let X = # of heads. X is a random variable.

- **1**. What is the value of *X* for the outcomes:
- (T,T,T)?
- (H,H,T)?
- 2. What is the event (set of outcomes) where X = 2?

3. What is
$$P(X = 2)$$
?

Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped. Let X = # of heads. X is a random variable.

- **1**. What is the value of *X* for the outcomes:
- (T,T,T)? <mark>(</mark>
- (H,H,T)? 2
- 2. What is the event (set of outcomes) where X = 2? {(H, H, T), (H, T, H), (T, H, H)}

3. What is
$$P(X = 2)$$
? 3/8

Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.

- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable.

	X = x	P(X=x)	Set of outcomes	Possible event E
Example:	X = 0	1/8	{(T, T, T)}	Flip 0 heads
	X = 1	3/8	{(H, T, T), (T, H, T), (T, T, H)}	Flip exactly 1 head
3 coins are flipped. Let $X = #$ of heads.	X = 2	3/8	{(H, H, T), (H, T, H), (T, H, H)}	The event where $X = 2$
X is a random variable.	X = 3	1/8	{(H, H, H)}	Flip O tails
	$X \ge 4$	0	{ }	Flip 4 or more heads

Example random variable

Consider 5 flips of a coin which comes up heads with probability p.

- Each coin flip is an independent trial.
- Recall $P(2 \text{ heads}) = {5 \choose 2} p^2 (1-p)^3$, $P(3 \text{ heads}) = {5 \choose 3} p^3 (1-p)^2$

Let Y = # of heads on 5 flips.

- 1. What is the range of *Y*? In other words, what are the values that *Y* can take on with non-zero probability?
- 2. What is P(Y = k), where k is in the range of Y?

Example random variable

Consider 5 flips of a coin which comes up heads with probability p.

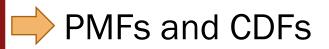
- Each coin flip is an independent trial.
- Recall $P(2 \text{ heads}) = {5 \choose 2} p^2 (1-p)^3$, $P(3 \text{ heads}) = {5 \choose 3} p^3 (1-p)^2$
- Let Y = # of heads on 5 flips.
- 1. What is the range of *Y*? In other words, what are the values that *Y* can take on with non-zero probability?
- 2. What is P(Y = k), where k is in the range of Y?

 $\{0, 1, 2, 3, 4, 5\}$

 $P(Y=k) = {\binom{5}{k}} p^k (1-p)^{5-k}$

Conditional Independence

Random Variables



Expectation

Probability Mass Function



Y = 2

event

$$P(Y=2)$$

number

probability (number b/t 0 and 1)

P(Y = k)

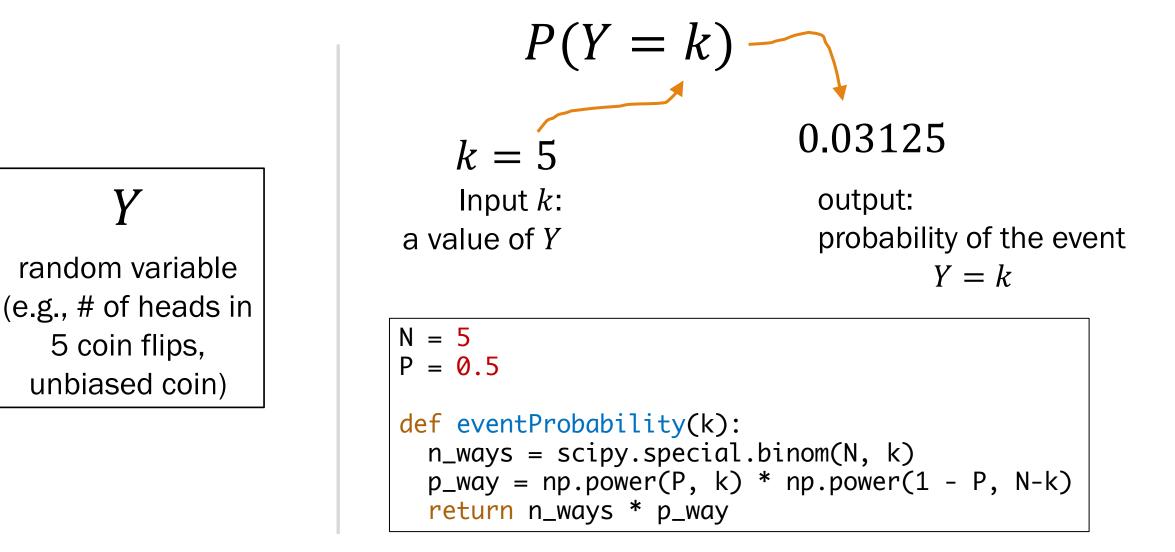
function on k with range 0 and 1

Probability Mass Function

random variable

5 coin flips,

unbiased coin)



Discrete RVs and Probability Mass Functions

A random variable X is discrete if its range has countably many values. • X = x, where $x \in \{x_1, x_2, x_3, ...\}$

The probability mass function (PMF) of a discrete random variable is

 \sim

$$P(X = x) = p(x) = p_X(x)$$

shorthand notation

Probabilities must sum to 1:

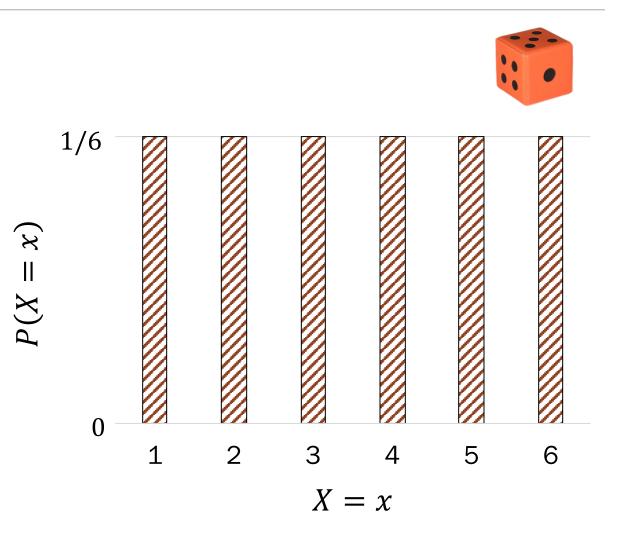
$$\sum_{i=1}^{\infty} p(x_i) = 1$$

This last bullet is a good way to verify any PMF you create.

Let *X* be a random variable that represents the result of a single dice roll.

- Range of *X* : {1, 2, 3, 4, 5, 6}
- Therefore *X* is a discrete random variable.

PMF of X: $p(x) = \begin{cases} 1/6 & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$



Lisa Yan, CS109, 2019

PMF for the sum of two dice

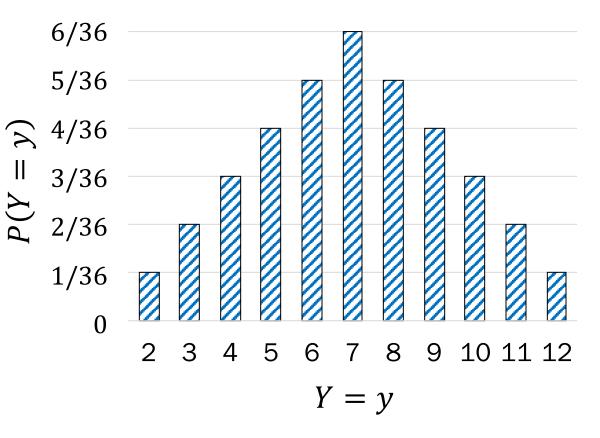
Let *Y* be a random variable that represents the sum of two independent dice rolls.

Range of *Y*: {2, 3, ..., 11, 12}

$$p(y) = \begin{cases} \frac{y-1}{36} & y \in \mathbb{Z}, 2 \le y \le 6\\ \frac{13-y}{36} & y \in \mathbb{Z}, 7 \le y \le 12\\ 0 & \text{otherwise} \end{cases}$$

Sanity check:

$$\sum_{y=2}^{12} p(y) = 1$$



Break for Friday/ announcements

Problem Set 1	Problem Set 2	
Due:an hour agoOn-time grades:next FridaySolutions:next Friday	Out: Due: Covers:	today Monday 10/14 through today

Concept checks

Due date:every Tuesday 1:00pmYou can edit your response, so don'tbe afraid of submitting multiple times.

Optional readings:

Lecture notes: website Textbook sections: (scroll down) For a random variable *X*, the cumulative distribution function (CDF) is defined as

$$F(a) = F_X(a) = P(X \le a)$$
, where $-\infty < a < \infty$

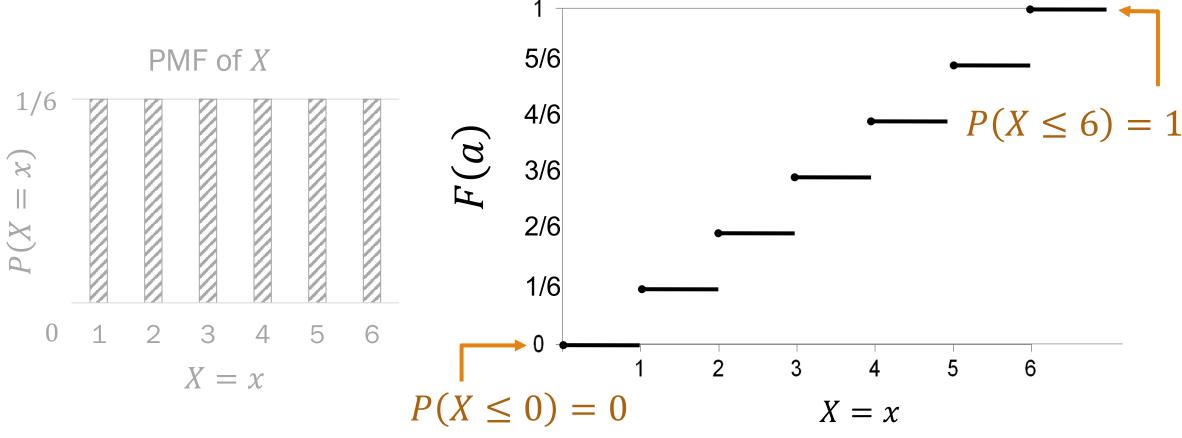
For a discrete RV *X*, the CDF is:

$$F(a) = P(X \le a) = \sum_{\text{all } x \le a} p(x)$$

CDFs as graphs

CDF of X

Let *X* be a random variable that represents the result of a single dice roll.



Conditional Independence

Random Variables

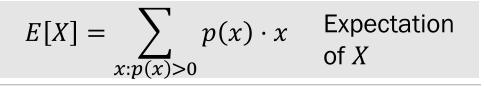
PMFs and CDFs

Expectation

The expectation of a discrete random variable *X* is defined as:

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

- Note: sum over all values of X = x that have non-zero probability.
- Other names: mean, expected value, weighted average, center of mass, first moment



What is the expected value of a 6-sided die roll?

1. Define random variables

$$X = \mathsf{RV}$$
 for value of roll

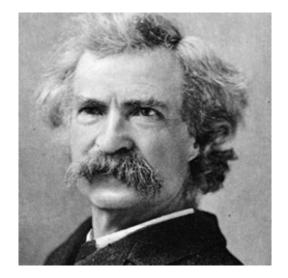
$$P(X = x) = \begin{cases} 1/6 & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$$

2. Solve

$$E[X] = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{7}{2}$$

Lying with statistics

"There are three kinds of lies: lies, damned lies, and statistics" –popularized by Mark Twain, 1906



Lying with statistics

A school has 3 classes with 5, 10, and 150 students. What is the average class size?

- **1.** Interpretation #1
- Randomly choose a <u>class</u> with equal probability.
- X =size of chosen class

 $=\frac{165}{3}=55$,

$$E[X] = 5\left(\frac{1}{3}\right) + 10\left(\frac{1}{3}\right) + 150\left(\frac{1}{3}\right)$$

What universities usually report

Lisa Yan, CS109, 2019

- 2. Interpretation #2
- Randomly choose a <u>student</u> with equal probability.

•
$$Y =$$
 size of chosen class

$$E[Y] = 5\left(\frac{5}{165}\right) + 10\left(\frac{10}{165}\right) + 150\left(\frac{150}{165}\right)$$

$$=\frac{22635}{165}\approx 137$$

Average student perception of class size Stanford University 45

Important properties of expectation

1. Linearity: $E[\alpha Y \perp b] =$

$$E[aX + b] = aE[X] + b$$

2. Expectation of a sum = sum of expectation: E[X + Y] = E[X] + E[Y] • Let X = 6-sided dice roll, Y = 2X - 1.

•
$$E[X] = 3.5$$

•
$$E[Y] = 6$$

Sum of two dice rolls:

- Let X = roll of die 1 Y = roll of die 2
- E[X + Y] = 3.5 + 3.5 = 7

3. Unconscious statistician:

$$E[g(X)] = \sum_{x} g(x)p(x)$$

Being a statistician unconsciously

Let X be a discrete random variable. • $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$ Let Y = |X|. What is E[Y]? A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1$ = 0**B.** E[Y] = E[0]= 0 $=\frac{2}{3}$ C. $\frac{1}{3} \cdot 0 + \frac{2}{2} \cdot 1$ D. $\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} |1| = \frac{2}{3}$ E. C and D

Expectation

of q(X)

 $E[g(X)] = \sum g(x)p(x)$

Being a statistician unconsciou		usly	$E[g(X)] = \sum_{x} g(x)p(x)$	Expectation of $g(X)$
Let X be a discrete random v • $P(X = x) = \frac{1}{3}$ for $x \in \{-1\}$				
Let $Y = X $. What is $E[Y]$?				
A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1$	= 0	E[X]		
B. $E[Y] = E[0]$	= 0	E[E[[X]]	
C. $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1$	$=\frac{2}{3}$	1. F	Find PMF of $Y: p_Y(0) =$ Compute $E[Y]$	$\frac{1}{3}$, $p_Y(1) = \frac{2}{3}$
D. $\frac{1}{3} \cdot -1 + \frac{1}{3} \cdot 0 + \frac{1}{3} 1 $ E. C and D	$=\frac{2}{3}$	Use L 1. <i>P</i> 2. S	OTUS by using PMF of $X = x \cdot x $ Sum up	Κ:

Lisa Yan, CS109, 2019

LOTUS proof

$$E[g(X)] = \sum_{x} g(x)p(x)$$
 Expectation
of $g(X)$

Let Y = g(X), where g is a real-valued function.

$$E[g(X)] = E[Y] = \sum_{j} y_{j} p(y_{j})$$

$$= \sum_{j} y_{j} \sum_{i:g(x_{i})=y_{j}} p(x_{i})$$

$$= \sum_{j} \sum_{i:g(x_{i})=y_{j}} y_{j} p(x_{i})$$

$$= \sum_{j} \sum_{i:g(x_{i})=y_{j}} g(x_{i}) p(x_{i})$$

$$= \sum_{i} g(x_{i}) p(x_{i})$$

Lisa Yan, CS109, 2019

For you to review so that you can sleep at night

Stanford University 49

I want to play a game

Expectation of g(X) $E[g(x)] = \sum g(x)p(x)$ Y

St. Petersburg Paradox

 $E[g(x)] = \sum_{x} g(x)p(x)$ Expectation of g(X)

- A fair coin (comes up "heads" with p = 0.5)
- Define Y = number of coin flips ("heads") before first "tails"
- You win $\$2^Y$

How much would you pay to play? (How much you expect to win?)

- A. \$10000
- <mark>B.</mark> \$∞
- **C.** \$1
- D. \$0.50
- E. \$0 but let me play
- F. I will not play

St. Petersburg Paradox

$$E[g(x)] = \sum_{x} g(x)p(x)$$
 Expectation
of $g(X)$

- A fair coin (comes up "heads" with p = 0.5)
- Define Y = number of coin flips ("heads") before first "tails"
- You win $\$2^{Y}$

How much would you pay to play? (How much you expect to win?)

For $i \ge 0$: $P(Y = i) = \left(\frac{1}{2}\right)^{i+1}$ Define random variables Let W = your winnings, 2^{Y} . $E[W] = E[2^{Y}] = \left(\frac{1}{2}\right)^{1} 2^{0} + \left(\frac{1}{2}\right)^{2} 2^{1} + \left(\frac{1}{2}\right)^{3} 2^{2} + \cdots$ 2. Solve $=\sum_{i=1}^{\infty} \left(\frac{1}{2}\right)^{i+1} 2^{i} = \sum_{i=1}^{\infty} \left(\frac{1}{2}\right) = \infty$

Lisa Yan, CS109, 2019

Stanford University 53

St. Petersburg + Reality

Expectation $E[g(x)] = \sum g(x)p(x)$ of q(X)

What if Lisa has only \$65,536?

Same game
 Define Y = # heads before first tails

• You win
$$W = \$2^Y$$

- If you win over \$65,536, I leave the country
- Define random For $i \ge 0$: $P(Y = i) = \left(\frac{1}{2}\right)^{i_1}$ variables Let $W = vour winnings 2^{Y}$

2. Solve

$$E[W] = \left(\frac{1}{2}\right)^{1} 2^{0} + \left(\frac{1}{2}\right)^{2} 2^{1} + \left(\frac{1}{2}\right)^{3} 2^{2} + \cdots$$

$$k = \log_{2}(65,536) = \sum_{i=0}^{k} \left(\frac{1}{2}\right)^{i+1} 2^{i} = \sum_{i=0}^{16} \left(\frac{1}{2}\right) = 8.5$$
Stanford University 54

