o7: Variance,
 Bernoulli, Binomial

Lisa Yan
October 7, 2019

Discrete random variables

Important properties of expectation

1. Linearity:

$$
E[a X+b]=a E[X]+b
$$

- Let $X=6$-sided dice roll,

$$
Y=2 X-1 .
$$

- $E[X]=3.5$
- $E[Y]=6$

2. Expectation of a sum = sum of expectation:

$$
E[X+Y]=E[X]+E[Y]
$$

Sum of two dice rolls:

- Let $X=$ roll of die 1
$Y=$ roll of die 2
- $E[X+Y]=3.5+3.5=7$

3. Unconscious statistician:

$$
E[g(X)]=\sum_{x} g(x) p(x)
$$

Linearity of Expectation proof

$$
E[a X+b]=a E[X]+b
$$

Proof:

$$
\begin{aligned}
E[a X+b] & =\sum_{x}(a x+b) p(x)=\sum_{x} a x p(x)+b p(x) \\
& =a \sum_{x} x p(x)+b \sum_{x} p(x) \\
& =a E[X]+b \cdot 1
\end{aligned}
$$

Expectation of Sum intuition

$$
E[X]=\sum_{x: p(x)>0} p(x) \cdot x
$$

Intuition	X	Y	$X+Y$
for now:	3	6	4
	2	12	9
	6	20	18
	10	-2	30
Average:	-1	0	-3
	0	16	24
	$\frac{1}{n} \sum_{i=1}^{n} x_{i}$	$+\frac{1}{n} \sum_{i=1}^{n} y_{i}$	$=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}+y_{i}\right)$
	$\frac{1}{7}(28)$	$+\quad \frac{1}{7}(56)$	$=\frac{1}{7}(84)$

Today's plan

Variance

Bernoulli (Indicator) RVs

Binomial RVs

Average annual weather

Stanford, CA
$E[$ high $]=68^{\circ} \mathrm{F}$
$E[$ low $]=52^{\circ} \mathrm{F}$

Washington, DC
$E[$ high $]=67^{\circ} \mathrm{F}$
$E[$ low $]=51^{\circ} \mathrm{F}$

Is $E[X]$ enough?

Average annual weather

Stanford, CA
$E[$ high $]=68^{\circ} \mathrm{F}$
$E[$ low $]=52^{\circ} \mathrm{F}$
Stanford high temps

Washington, DC

$$
\begin{aligned}
& E[\text { high }]=67^{\circ} \mathrm{F} \\
& E[\text { low }]=51^{\circ} \mathrm{F}
\end{aligned}
$$

Washington high temps

Variance = "spread"

Consider the following three distributions (PMFs):

- Expectation: $E[X]=3$ for all distributions
- But the "spread" in the distributions is different!
- Variance, $\operatorname{Var}(X)$: a formal quantification of "spread"

Variance

The variance of a random variable X with mean $E[X]=\mu$ is

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]
$$

- Also written as: $E\left[(X-E[X])^{2}\right]$
- Note: $\operatorname{Var}(X) \geq 0$
- Other names: $2^{\text {nd }}$ central moment, or square of the standard deviation
- An easier way to compute variance: $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$
we'll come back to this

Variance of Stanford weather

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right] \begin{aligned}
& \text { Variance } \\
& \text { of } X
\end{aligned}
$$

Stanford, CA

$$
\begin{gathered}
E[\text { high }]=68^{\circ} \mathrm{F} \\
E[\text { low }]=52^{\circ} \mathrm{F}
\end{gathered}
$$

Stanford high temps

Variance $E\left[(X-\mu)^{2}\right]=39\left({ }^{\circ} \mathrm{F}\right) 2$
Standard deviation $=6.2^{\circ} \mathrm{F}$

Comparing variance

$$
\begin{array}{ll}
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right] & \begin{array}{l}
\text { Variance } \\
\text { of } X
\end{array}
\end{array}
$$

Stanford, CA
$E[$ high $]=68^{\circ} \mathrm{F}$

Washington, DC
$E[$ high $]=67^{\circ} \mathrm{F}$

Stanford high temps

Washington high temps

Variance, definition (cont.)

The variance of a random variable X with mean $E[X]=\mu$ is

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]
$$

- Also written as: $E\left[(X-E[X])^{2}\right]$
- Note: $\operatorname{Var}(X) \geq 0$
- Other names: $2^{\text {nd }}$ central moment, or square of the standard deviation
- An easier way to compute variance: $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$

Computing variance, a proof

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right] \quad \text { Variance } \\
& =E\left[X^{2}\right]-(E[X])^{2} \text { of } X
\end{aligned}
$$

$\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[(X-\mu)^{2}\right] \quad$ Let $E[X]=\mu$

Everyone,

$$
\begin{aligned}
& =\sum_{x}(x-\mu)^{2} p(x) \\
& =\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
& =\sum_{x} x^{2} p(x)-2 \mu \sum_{x} x p(x)+\mu^{2} \sum_{x} p(x)
\end{aligned}
$$

$$
\underset{\text { please }}{\substack{\text { ple the }}}=E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} \cdot 1
$$

$$
\begin{aligned}
& \text { second } \\
& \text { moment! }
\end{aligned}=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2}
$$

$$
=E\left[X^{2}\right]-\mu^{2}
$$

$$
=E\left[X^{2}\right]-(E[X])^{2}
$$

Let $\mathrm{Y}=$ outcome of a single die roll. Recall $E[Y]=7 / 2$. Calculate the variance of Y .

1. Approach \#1: Definition

$$
\begin{aligned}
\operatorname{Var}(Y)= & \frac{1}{6}\left(1-\frac{7}{2}\right)^{2}+\frac{1}{6}\left(2-\frac{7}{2}\right)^{2} \\
& +\frac{1}{6}\left(3-\frac{7}{2}\right)^{2}+\frac{1}{6}\left(4-\frac{7}{2}\right)^{2} \\
& +\frac{1}{6}\left(5-\frac{7}{2}\right)^{2}+\frac{1}{6}\left(6-\frac{7}{2}\right)^{2} \\
= & 35 / 12
\end{aligned}
$$

2. Approach \#2: A property

$$
\begin{gathered}
2_{E\left[Y^{2}\right]=\frac{1}{6}\left[1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right]}=91 / 6
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{Var}(Y) & =91 / 6-(7 / 2)^{2} \\
& =35 / 12
\end{aligned}
$$

Properties of variance

$$
\begin{array}{lll}
\text { Definition } \quad \operatorname{Var}(X)=E\left[(X-E[X])^{2}\right] & \text { Units of } X^{2} \\
\text { def standard deviation } & \operatorname{SD}(X)=\sqrt{\operatorname{Var}(X)} & \text { Units of } X
\end{array}
$$

Property $1 \quad \operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$
Property $2 \quad \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Properties of variance

Definition $\quad \operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]$
def standard deviation $\quad \mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}$

Units of X^{2}

Units of X

Property 1
Property 2
$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Unlike expectation, variance is NOT linear!!

Proof: $\operatorname{Var}(a X+b)$

$$
\begin{aligned}
& =E\left[(a X+b)^{2}\right]-(E[a X+b])^{2} \quad \text { Property } 1 \\
& =E\left[a^{2} X^{2}+2 a b X+b^{2}\right]-(a E[X]+b)^{2} \\
& \left.=a^{2} E\left[X^{2}\right]+2 a b E[X]+b^{2}-\left(a^{2}(E[X])^{2}+2 a b E[X]+b^{2}\right)\right] \begin{array}{l}
\text { Factoring/ } \\
=a^{2} E\left[X^{2}\right]-a^{2}(E[X])^{2} \\
\text { Linearity of } \\
\text { Expectation }
\end{array}
\end{aligned}
$$

$$
=a^{2}\left(E\left[X^{2}\right]-(E[X])^{2}\right)
$$

$$
=a^{2} \operatorname{Var}(X) \quad \text { Property } 1
$$

Discrete random variables

Lots of fun with classic RVs

Today's plan

Variance

Bernoulli (Indicator) RVs

Binomial RVs

Jacob Bernoulli

Jacob Bernoulli (1654-1705), also known as "James", was a Swiss mathematician

One of many mathematicians in Bernoulli family
The Bernoulli Random Variable is named for him My academic great ${ }^{14}$ grandfather

Bernoulli Random Variable

Consider an experiment with two outcomes: "success" and "failure." def A Bernoulli random variable X maps "success" to 1 and "failure" to 0. Other names: indicator random variable, boolean random variable

$$
\begin{array}{cll}
& \text { PMF } & P(X=1)=p(1)=p \\
X \sim \operatorname{Ber}(p) & & P(X=0)=p(0)=1-p \\
& \text { Expectation } & E[X]=p \\
\text { Range: }\{0,1\} & \text { Variance } & \operatorname{Var}(X)=p(1-p)
\end{array}
$$

Examples:

- Coin flip
- Random binary digit
- Whether a disk drive crashed

Defining Bernoulli RVs

$$
\begin{array}{ll}
X \sim \operatorname{Ber}(p) & p_{X}(1)=p \\
E[X]=p & p_{X}(0)=1-p
\end{array}
$$

Run a program

- Crashes w.p. p
- Works w.p. $1-p$

Let X : 1 if crash

$$
\begin{gathered}
X \sim \operatorname{Ber}(p) \\
P(X=1)=p \\
P(X=0)=1-p
\end{gathered}
$$

Serve an ad.

- Clicked w.p. p
- Ignored w.p. $1-p$

Let $X: 1$ if clicked

$$
X \sim \operatorname{Ber}(p)
$$

$$
\begin{aligned}
& P(X=1)=p \\
& P(X=0)=1-p
\end{aligned}
$$

$$
X \sim \operatorname{Ber}(p)
$$

$$
E[X]=\text { ? }
$$

Roll two dice.

- Success: roll two 6's
- Failure: anything else

Let $X: 1$ if success

Defining Bernoulli RVs

$$
\begin{array}{ll}
X \sim \operatorname{Ber}(p) & p_{X}(1)=p \\
E[X]=p & p_{X}(0)=1-p
\end{array}
$$

Run a program

- Crashes w.p. p
- Works w.p. $1-p$

Let X : 1 if crash

$$
\begin{gathered}
X \sim \operatorname{Ber}(p) \\
P(X=1)=p \\
P(X=0)=1-p
\end{gathered}
$$

Serve an ad.

- Clicked w.p. p
- Ignored w.p. $1-p$

Let $X: 1$ if clicked

$$
X \sim \operatorname{Ber}(p)
$$

$$
\begin{aligned}
& P(X=1)=p \\
& P(X=0)=1-p
\end{aligned}
$$

$$
\begin{gather*}
X \sim \operatorname{Ber}(p) \\
E[X]=1 / 36 \tag{i}
\end{gather*}
$$

Roll two dice.

- Success: roll two 6's
- Failure: anything else

Let $X: 1$ if success

Today's plan

KEEP

Variance

Bernoulli (Indicator) RVs

Binomial RVs

GOING

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

$$
\begin{array}{cll}
& \text { PMF } & k=0,1, \ldots, n: \\
& & P(X=k)=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
\text { Range: }\{0,1, \ldots, n\} & \text { Expectation } & E[X]=n p \\
& \text { Variance } & \operatorname{Var}(X)=n p(1-p)
\end{array}
$$

Examples:

- \# heads in n coin flips
- \# of 1's in randomly generated length n bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

By Binomial Theorem, we can prove

$$
\sum_{k=0}^{n} P(X=k)=1
$$

Reiterating notation

1. The random variable

The parameters of a Binomial random variable:

- n : number of independent trials
- p: probability of success on each trial

Reiterating notation

$$
X \sim \operatorname{Bin}(n, p)
$$

If X is a binomial with parameters n and p, the PMF of X is

Three coin flips

Three fair ("heads" with $p=0.5$) coins are flipped.

- X is number of heads
- $X \sim \operatorname{Bin}(3,0.5)$

Compute the following event probabilities:

$$
\begin{array}{ll}
P(X=0)=p(0) & =\binom{3}{0} p^{0}(1-p)^{3}=\frac{1}{8} \\
P(X=1)=p(1) & =\binom{3}{1} p^{1}(1-p)^{2}=\frac{3}{8} \\
P(X=2)=p(2) & =\binom{3}{2} p^{2}(1-p)^{1}=\frac{3}{8} \\
P(X=3)=p(3) & =\binom{3}{3} p^{3}(1-p)^{0}=\frac{1}{8} \\
P(X=7)=p(7) & =0
\end{array}
$$

REST AREA

Break for jokes/
 announcements

Announcements

Problem Set 2
 Out:
 Due:
 Covers:
 last Friday
 Monday 10/14 through last Friday

Concept checks
Due date: every Tuesday 1:00pm You can edit your response, so don't be afraid of submitting multiple times.

CS198 Section Leading Applications
Due: Thursday, October
17th at 11:59PM
Online application: cs198.stanford.edu

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

	PMF	$k=0,1, \ldots, n:$
		$P(X=k)=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
		Expectation
Range: $\{0,1, \ldots, n\}$	$E[X]=n p$	
	Variance	$\operatorname{Var}(X)=n p(1-p)$

Examples:

- \# heads in n coin flips
- \# of 1's in randomly generated length n bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

By Binomial Theorem,
we can prove
$\sum_{k=0}^{n} P(X=k)=1$

Binomial RV is sum of Bernoulli RVs

Bernoulli

- $X \sim \operatorname{Ber}(p)$

Binomial

- $Y \sim \operatorname{Bin}(n, p)$
- The sum of n independent Bernoulli RVs

$$
Y=\sum_{i=1}^{n} X_{i}, \quad X_{i} \sim \operatorname{Ber}(p)
$$

$$
\operatorname{Ber}(p)=\operatorname{Bin}(1, p)
$$

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

	PMF	$k=0,1, \ldots, n:$
		$P(X=k)=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
	Expectation	$E[X]=n p$
Range: $\{0,1, \ldots, n\}$	Variance	$\operatorname{Var}(X)=n p(1-p)$

Examples:

- \# heads in n coin flips
- \# of 1's in randomly generated length n bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

No, give me the variance proof right now

To simplify the algebra a bit, let $q=1-p$, so $p+q=1$.

So:

$$
\begin{array}{rlrl}
\mathrm{E}\left(X^{2}\right) & =\sum_{k \geq 0}^{n} k^{2}\binom{n}{k} p^{k} q^{n-k} & & \text { Definition of Binomial Distribution: } p+q=1 \\
& =\sum_{k=0}^{n} k n\binom{n-1}{k-1} p^{k} q^{n-k} & & \text { Factors of Binomial Coefficient: } k\binom{n}{k}=n\binom{n-1}{k-1} \\
& =n p \sum_{k=1}^{n} k\binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)} & & \text { Change of limit: term is zero when } k-1=0 \\
& =n p \sum_{j=0}^{m}(j+1)\binom{m}{j} p^{j} q^{m-j} & & \text { putting } j=k-1, m=n-1 \\
& =n p\left(\sum_{j=0}^{m} j\binom{m}{j} p^{j} q^{m-j}+\sum_{j=0}^{m}\binom{m}{j} p^{j} q^{m-j}\right) & & \text { splitting sum up into two } \\
& =n p\left(\sum_{j=0}^{m} m\binom{m-1}{j-1} p^{j} q^{m-j}+\sum_{j=0}^{m}\binom{m}{j} p^{j} q^{m-j}\right) & & \text { Factors of Binomial Coefficient: } j\binom{m}{j}=m\binom{m-1}{j-1} \\
& =n p\left((n-1) p \sum_{j=1}^{m}\binom{m-1}{j-1} p^{j-1} q^{(m-1)-(j-1)}+\sum_{j=0}^{m}\binom{m}{j} p^{j} q^{m-j}\right) & & \text { Change of limit: term is zero when } j-1=0 \\
& =n p\left((n-1) p(p+q)^{m-1}+(p+q)^{m}\right) & & \text { Binomial Theorem } \\
& =n p((n-1) p+1) & & \text { as } p+q=1 \\
& =n^{2} p^{2}+n p(1-p) & & \text { by algebra } \\
\text { Then: } & & \\
\text { var }(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} & & \\
& =n p(1-p)+n^{2} p^{2}-(n p)^{2} & \text { Expectation of Binomial Distribution: } \mathrm{E}(X)=n p \\
& =n p(1-p) & &
\end{array}
$$

Galton Board

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Let $B=$ the bucket index a ball drops into. B is distributed as a Binomial RV,

$$
B \sim \operatorname{Bin}(n=5, p=0.5)
$$

If B is a sum of Bernoulli RVs, what defines the i th trial, R_{i} ?

Galton Board

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Let $B=$ the bucket index a ball drops into. B is distributed as a Binomial RV,

$$
B \sim \operatorname{Bin}(n=5, p=0.5)
$$

If B is a sum of Bernoulli RVs, what defines the i th trial, R_{i} ?

- When a marble hits a pin, it has an equal chance of going left or right
- Each pin is an independent trial
- One decision made for level $i=1,2, \ldots, 5$

- $R_{i}=1$ if ball went right on level i
- Bucket index $B=$ \# times ball went right

Galton Board

$X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Let $B=$ the bucket index a ball drops into. B is distributed as a Binomial RV,

$$
B \sim \operatorname{Bin}(n=5, p=0.5)
$$

Calculate the probability of a ball landing in bucket k.

$$
\begin{aligned}
& P(B=0)=\binom{5}{0} 0.5^{5} \approx 0.03 \\
& P(B=1)=\binom{5}{1} 0.5^{5} \approx 0.16 \\
& P(B=2)=\binom{5}{2} 0.5^{5} \approx 0.31
\end{aligned}
$$

Galton Board

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Let $B=$ the bucket index a ball drops into. B is distributed as a Binomial RV,

$$
B \sim \operatorname{Bin}(n=5, p=0.5)
$$

Calculate the probability of a ball landing in bucket k.

PMF of Binomial RV!

Visualizing Binomial PMFs

$X \sim \operatorname{Bin}(n, p) \quad p(i)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Match the distribution to the graph:

1. $\operatorname{Bin}(10,0.5)$
2. $\operatorname{Bin}(10,0.3)$
3. $\operatorname{Bin}(10,0.7)$
4. $\operatorname{Bin}(5,0.5)$

Visualizing Binomial PMFs

$X \sim \operatorname{Bin}(n, p) \quad p(i)=\binom{n}{k} p^{k}(1-p)^{n-k}$

C
Match the distribution to the graph:

```
1. \(\operatorname{Bin}(10,0.5)\)(A)
2. \(\operatorname{Bin}(10,0.3)(C)\)
3. \(\operatorname{Bin}(10,0.7)(D)\)
4. \(\operatorname{Bin}(5,0.5) \quad(B)\)
```


NBA Finals (RIP)

Lisa Yan, CS109, 2019

The Golden State Warriors are going to play the Toronto Raptors in a 7 -game series during the 2019 NBA finals.

- The Warriors have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games
 (we play all 7 games).
What is P (Warriors winning)?

1. Define events/ RVs \& state goal
X : \# games Warriors win $X \sim \operatorname{Bin}(7,0.58)$

Want: \qquad

Desired probability? (select all that apply)
A. $P(X>4)$
B. $P(X \geq 4)$
C. $P(X>3)$
D. $1-P(X \leq 3)$
E. $1-P(X<3)$

The Golden State Warriors are going to play the Toronto Raptors in a 7 -game series during the 2019 NBA finals.

- The Warriors have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games
 (we play all 7 games).
What is P (Warriors winning)?

1. Define events/ RVs \& state goal
X : \# games Warriors win
$X \sim \operatorname{Bin}(7,0.58)$
Want: \qquad

Desired probability? (select all that apply)

The Golden State Warriors are going to play the Toronto Raptors in a 7-game series during the 2019 NBA finals.

- The Warriors have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games
 (we play all 7 games).
What is P (Warriors winning)?

1. Define events/ RVs \& state goal
 X: \# games Warriors win $X \sim \operatorname{Bin}(7,0.58)$

Want: $P(X \geq 4)$
2. Solve

$$
P(X \geq 4)=\sum_{k=4}^{7} P(X=k)=\sum_{k=4}^{7}\binom{7}{k} 0.58^{k}(0.42)^{7-k}
$$

Cool Algebra/Probability Fact: this is identical to the probability of winning if we define winning = first to win 4 games

Genetic inheritance

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Each person has 2 genes per trait (e.g., eye color).

- Child receives 1 gene (equally likely) from each parent
- Brown is "dominant", blue is "recessive":
- Child has brown eyes if either (or both) genes are brown
- Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is $\mathrm{P}(3$ children with brown eyes)?

Target strategy:

A. Bayes' Rule
B. Probability tree
C. Bernoulli, success $p=3$ children with brown eyes
D. Binomial, $n=3$ trials, success $p=$ brown-eyed child
E. Binomial, $n=4$ trials, success $p=$ brown-eyed child
F. None/other

Genetic inheritance

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Each person has 2 genes per trait (e.g., eye color).

- Child receives 1 gene (equally likely) from each parent
- Brown is "dominant", blue is "recessive":
- Child has brown eyes if either (or both) genes are brown
- Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is $\mathrm{P}(3$ children with brown eyes)?

Target strategy:

Genetic inheritance

Each person has 2 genes per trait (e.g., eye color).

- Child receives 1 gene (equally likely) from each parent
- Brown is "dominant", blue is "recessive":
- Child has brown eyes if either (or both) genes are brown
- Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is $\mathrm{P}(3$ children with brown eyes)?

1. Define events/
RVs \& state goal

X: \# brown-eyed children, $X \sim \operatorname{Bin}(4, p)$
$p: P$ (brown-eyed child)
Want: $P(X=3)$

2. Identify known probabilities

3. Solve

Genetic inheritance

Each person has 2 genes per trait (e.g., eye color).

- Child receives 1 gene (equally likely) from each parent
- Brown is "dominant", blue is "recessive":
- Child has brown eyes if either (or both) genes are brown
- Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is $\mathrm{P}(3$ children with brown eyes)?

```
1. Define events/
    RVs & state goal
2. Identify known
probabilities
```

$$
\begin{aligned}
p & =1-P(\text { blue-eyed child }) \\
& =1-(1 / 2)(1 / 2) \\
& =0.75
\end{aligned}
$$

```
```

X: \# brown-eyed children,

```
X: # brown-eyed children,
    X~Bin(4,p)
    X~Bin(4,p)
p=1-P(blue-eyed child)
p=1-P(blue-eyed child)
    = 1-(1/2)(1/2)
    = 1-(1/2)(1/2)
p: P(brown-eyed child)
```

p: P(brown-eyed child)

```
2. Identify known probabilities
3. Solve

Want: \(P(X=3)\)

\section*{Genetic inheritance}
\(X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}\)
Each person has 2 genes per trait (e.g., eye color).
- Child receives 1 gene (equally likely) from each parent
- Brown is "dominant", blue is "recessive":
- Child has brown eyes if either (or both) genes are brown
- Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is \(\mathrm{P}(3\) children with brown eyes)?
1. Define events/
RVs \& state goal
\(X\) : \# brown-eyed children, \(X \sim \operatorname{Bin}(4, p)\)
\(p: P(\) brown-eyed child)
2. Identify known probabilities
\[
\begin{aligned}
p & =1-P(\text { blue-eyed child }) \\
& =1-(1 / 2)(1 / 2) \\
& =0.75
\end{aligned}
\]
3. Solve
\[
\begin{aligned}
& X \sim \operatorname{Bin}(4,0.75) \\
& P(X=3)=\binom{4}{3} 0.75^{3}(0.25)^{1} \\
& \quad \approx 0.4219
\end{aligned}
\]

Want: \(P(X=3)\)

\section*{See you next time}
```

