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Discrete random variables Review

Experiment
outcomes

Note: Random Variables
also called distributions

Discrete
Random
Variable, X
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Sum of 2 dice rolls

Review

Sum of 2 dice rolls

Discrete
Random
Variable, X
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Important properties of expectation

Review

1. Linearity:
ElaX + bl = aE|X]|+ b

2. Expectation of a sum = sum of expectation:

ElX+Y]|=E[X]|+E|Y]

3. Unconscious statistician:

Elg00] = ) g@p@)
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* Let X = 6-sided dice roll,

Y =2X — 1.
. E[X] =35
. E[Y]=6

Sum of two dice rolls:
* Let X =roll of die 1
Y =roll of die 2
- E[X+Y]=354+35=7

' These properties let you avoid

defining difficult PMFs.
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Linearity of Expectation proof >

ElaX + b| = aE[X| + b

Proof:

ElaX + b] Z(ax + b)p(x) = z axp(x) + bp(x)

- apr(x) +b2p<x>

X

=aE|X]+b-1
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Expectation of Sum intuition FXl= ), P00
S (we'll prove this
E[X + Y] o E[X] + E[Y] next week)
Intuition X Y X+Y
for now: 3 6 9
2 4 6
6 12 18
10 20 30
1 -2 3
0 0 0
8 16 24
1 " 1 L 1 n
Average: ?lz X + EE y; = EZ('XL + yl)
t=1 i=1 i=1
1 1 _ l
-(28) + 2(56) = -(84)
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Today's plan

=) Variance
Bernoulli (Indicator) RVs

Binomial RVs
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Average annual weather

Stanford, CA Washington, DC
E[high] = 68°F Elhigh] = 67°F
Ellow] = 52°F Ellow] = 51°F

-
o
Yot i

= 1 7 yow > a ) . ¥ s \ N
e il o A 0 R e S R

Is E|X] enough?
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Average annual weather

Stanford, CA Washington, DC
E[high] = 68°F E[high] = 67°F
Stanford high temps Washington high temps
0.4 - 0.4 -
68°F 67°F
~ 0.3 - ~ 0.3 -
= =
0.2 - 0.2 -
o) o)
AL 0.1 - A, 0.1 -
0 - —1 0
35 50 65 80 90 35 50 65 80 90

9 . .
=» Normalized histograms are

- approximations of PMFs.
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Variance = “spread”

Consider the following three distributions (PMFs):

0.6 0.6 0.6

04 04 04
0.2 *] 0.2 I I I 0.2
0 - [ 0 - 0 .
5 3

1 1 2 3 4 5 1

N
&

- Expectation:  E[X] = 3 for all distributions
* But the “spread” in the distributions is different!
- Variance, Var(X) : a formal quantification of “spread”
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Variance

The variance of a random variable X with mean E[X]| = u is

Var(X) = E[(X — p)?]

Also written as: E[(X — E[X])?]
Note: Var(X) =0
Other names: 2M central moment, or square of the standard deviation

An easier way to compute variance: Var(X) = E[X?] — (E[X])?

we’ll come
back to this
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. _ _ 27 Variance
Variance of Stanford weather Var(X) = El(x = EIXDT] - oy

Stanford, CA
Elhigh] = 68°F

X X — w)?
| 57°F 124 (°F)?2
o Stanford high temps 71°F 9 (°F)2
— E[X] = =68 r5°F 49 (°F)2
/;; 03 = 690F 1(°F)2
Il 02 |
e
AL 0.1 -
Variance E[(X — u)?] = 39 (°F)2
0 N I
35 50 65 80 90 Standard deviation =06.2°F
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Var(X) = E[(X — E[X])?] Variance

Comparing variance of X
Stanford, CA Washington, DC
Elhigh] = 68°F Elhigh] = 67°F
Stanford high temps Washington high temps
0.4 - 0.4 -
68°F 67°F
—~ 0.3 - —~ 0.3 -
= =
I 0.2 - I 0.2 -
= =
A, 0.1 - A, 0.1 A
0 - —1 0
35 50 65 80 90 35 50 65 80 90
Var(X) = 39 (°F)? Var(X) = 248 (°F)?
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Variance, definition (cont.)

The variance of a random variable X with mean E[X]| = u is

Var(X) = E[(X — p)?]

- An easier way to compute variance: Var(X) = E[X?] — (E[X])?

D
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. . Var(X) = E[(X — E[X])?] Variance
Computing variance, a proof — E[X2] —(E[X])? Of X

Var(X) = E[(X — E[X])?] = E[(X — w)?] Let E[X] = u

= ) (=)

= ) (7 = 2ux + pp)

= > ()~ 2u Y @) + 12 Y p@)

Everyone, %

please _ rryv21 _ 2
welcome the ELX"] = 2uE[X] + p” 1
second = F[X2] — 2[12 + ,le
moment! ] ]
— EXZ _ ‘uz

= E[X?] - (E[X])?
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. . . Var(X) = E[(X — E[X])?] Variance
Variance of a 6-sided die — E[X2] —(E[X])? Of X

Let Y = outcome of a single die roll. Recall E[Y] =7/2.
Calculate the variance of Y. “

1. Approach #1: Definition 2. Approach #2: A property
, . ) , . ) 'Z“d momem 1
Var(y) = 8(1 _E) +g(2 _E) E[Y?] = —[1? + 22 + 3% + 4° + 5 + 67]
+g(33) w53
6 2 5 6 2 5
+3(6-3) 53
6 2 6 2 Var(Y) = 91/6 — (7/2)?

I
@0)
ol

~
—_
N

= 35/12
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Properties of variance

Definition Var(X) = E[(X — E[X])?] Units of X2
def standard deviation SD(X) = /Var(X) Units of X

~=» Often easier to compute

Property 1 Var(X) — E[Xz] _(E [X])Z “<“  than definition.
Property 2 Var(aX + b) = a?Var(X) = Unlike expectation,

- variance is NOT linear!!

Lisa Yan, C$109, 2019 Stanford University 17




Properties of variance

Property 2 Var(aX + b) = a*Var(X) = Unlike expectation,
—  variance is NOT linear!!
Proof: Var(aX + b)
= E[(aX + b)?] — (E[aX + b])? Property 1
= E[a’X? + 2abX + b?] — (aE[X] + b)? Factoring/
= a’E[X?] + 2abE[X] + b? — (a*(E[X])? + 2abE[X] + b?) [~ Linearity of
Expectation

- @E[X?] - a*(E[X))?
= a*(E[X?] — (E[X]D?)
= a*Var(X) Property 1

Lisa Yan, C$109, 2019 Stanford University 18




Discrete random variables

Experiment
outcomes

Note: PMF also called
P(X =x) =p(x) “probability distribution”

Discrete
Random

Variable, X%% .

S SD(X)
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Lots of fun with classic RVs

e - g
e . Bk
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Today's plan

=) Bernoulli (Indicator) RVs A
Binomial RVs
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Jacob Bernoulli

Jacob Bernoulli (1654-1705), also known as “James”, was a Swiss
mathematician

One of many mathematicians in Bernoulli family
The Bernoulli Random Variable is named for him
My academic greatl4 grandfather
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Bernoulli Random Variable

Consider an experiment with two outcomes: “success” and “failure.”

def A Bernoulli random variable X maps “success” to 1 and “failure” to O.
Other names: indicator random variable, boolean random variable

PMF PX=1)=p)=p
X~Ber(p) PX=0)=p(0)=1-p
Expectation E|X] = p
Range: {0,1} Variance Var(X) = p(1 — p)
Examples:
Coin flip “=» Bernoulli/indicator RVs are

Random binary digit “<¥  often used for this nice
Whether a disk drive crashed property of expectation.
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Defining Bernoulli RVs

X~Ber(p) px(1)=p
E[X]=p px(0)=1-p

Run a program

¢ Crashes w.p. p
* Worksw.p.1—p

Let X: 1 if crash

X~Ber(p)
PX=1)=p
PX=0)=1-p

Serve an ad.

* Clicked w.p. p
* Ignoredw.p.1—p

Let X: 1 if clicked

X~Ber(p)
PX=1)=p
PX=0)=1-p

Lisa Yan, CS109, 2019

t'l

Roll two dice.

* Success: roll two 6’s
* Failure: anything else

Let X : 1 if success

X~Ber(p)

E[X] =2 (:9

Stanford University 24



: : X~Ber(p) px(1)=p
Defining Bernoulli RVs EXl=p px(@=1-p

Run a program Serve an ad. Roll two dice.
¢ Crashes w.p. p * Clicked w.p. p * Success: roll two 6’s
* Worksw.p.1—1p * Ignoredw.p.1—p * Failure: anything else
Let X: 1 if crash Let X: 1 if clicked Let X : 1 if success
X~Ber(p) X~Ber(p) X~Ber(p)
PX=1)=p PX=1)=p

P(X=0)=1-p P(X=0)=1-p Elx]=1/36 (D)
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Today's plan

=> Binomial RVs

Stanford University 26




Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables.
def A Binomial random variable X is the number of successes in n trials.

PMF k=0,1,..,n:
X~B|n(n, p) P(X = k) = p(k) = (Z)pk(l_p)n—k
Expectation E[X] = np
Range: {0,1, ..., n} Variance ~ Var(X) = np(1 —p)

Examples:
# heads in n coin flips
# of 1’s in randomly generated length n bit string By Binomial Theorem,
# of disk drives crashed in 2000 computer cluster we can prove

(assuming disks crash independently) n PX=k)=1

Lisa Yan, C$109, 2019 Stanford University 27
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Reiterating notation

1. The random
variable

X ~ Bin(n, p)
3. Binomial @h param@

2. is distributed

dasS da

The parameters of a Binomial random variable:
* n: number of independent trials

* p: probability of success on each trial

Lisa Yan, C$109, 2019 Stanford University 29




Reiterating notation

X ~Bin(n,p)

If X is a binomial with parameters n and p, the PMF of X is

n
PX=k)=(,)p“(Q—-p)""~
k
\ } \ }
\ |
Probability that X Probability Mass Function for a Binomial

takes on the value k

Lisa Yan, C$109, 2019 Stanford University 30




Three coin flips X~Bin(n,p) p(k) = () p*(1 - p)»¥

Three fair (“heads” with p = 0.5) coins are flipped.
X is number of heads

X~Bin(3,0.5)
Compute the following event probabilities:
Px=0) =p©  =(3)p°(1—p)°=
PX=1) =p(1) — (1) pl(l _ p)z =§
P(X=2) =p(2) = (g) p*(1—p)? =§
Px=3) =p@) =(§)p3(1—p)°=§
PX=7) =p(7) = 0 =)

P(eve nt) PMF Lisa Yan, C$109, 2019 Stanford University 31




Break for jokes/

announcements




Announcements

Concept checks

You can edit your response, so don'’t

\J

Due date: every Tuesday 1:00pm

be afraid of submitting multiple timesy

/Problem Set 2 A
Out: last Friday
Due: Monday 10/14

Q?overs: through last Friday/

~

Lisa Yan, CS109, 2019

CS198 Section Leading
Applications

Due: Thursday, October
17th at 11:59PM
Online application:
cs198.stanford.edu

Stanford University 33



Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials

Lisa Yan, C$109, 2019 Stanford University 34




Binomial RV is sum of Bernoulli RVs

Bernoulli
X~Ber(p)

Binomial
Y~Bin(n,p)

The sum of n independent
Bernoulli RVs

n
Y =2Xi, Xi ~Ber(p)
=1

= Ber(p) = Bin(1,p)

Lisa Yan, CS109, 2019 -— Stanford University 35




Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials.

Expectation E[X] = np

Lisa Yan, C$109, 2019 Stanford University 36




Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials

Variance Var(X) = np(1 —p) %
We'll prove

this later in
the course

Lisa Yan, C$109, 2019 Stanford University 37




No, give me the variance proof right now

To simplify the algebra a bit,letg =1—p,sop+g= 1.

So:
u n\ & ok
E(X?) = Z 'S (k>Pl‘ q"* Definition of Binomial Distribution: p + g = 1
k>0
g n—=1\ ¢ . ] ) - n n—1
= 2 kn pq Factors of Binomial Coefficient: k =n
k=0 k-1 k k-1
a n—1
= np Z k(k l)pk'lq("_”—[k_“ Change of limit: term is zero when k — 1 = 0
k=1
=”PZ(J+1)< )P’qm’ putingj =k —1,m=n—1
j=0
m
= (Z J( )p’q”’"’ + Z ( ) ) splitting sum up into two
Jj=0 Jj=0
u m— m m-—1
= np Z m( . )p’q’" I+ Z ( )p’q’" J Factors of Binomial Coefficienl:j( ) = m( ) )
j=o N7 j=0 J Jj-1
= np((n - Dp Z < )P’ tgimhmUmh 4 2 (j) "'”) Change of limit: term is zero when j — 1 = 0
j=1 j=0
=np((n—Dpp+ ™" +(p+9") Binomial Theorem
=np((n—1p+1) asp+qg=1
= n’p* +np(1 - p) by algebra
Then:

var (X) = E (X?) = (E(X))?
= np(l —p)+ nzp2 - (np)2 Expectation of Binomial Distribution: E (X) = np

= np(1 —p)

proofwiki.org

Lisa Yan, C$109, 2019 Stanford University 38
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Galton Board X~Bin(n,p) p(k) = (7)p*(1 - pyt

A O Let B = the bucket index a ball drops into.
B is distributed as a Binomial RV,
B~Bin(n = 5,p = 0.5)

If B is a sum of Bernoulli RVs,
what defines the ith trial, R;?

http://web.stanford.edu/class/cs109/ K\‘?‘)
0 1 2 3 4 5 demos/galton.html “

Lisa Yan, C$109, 2019 Stanford University 39



http://web.stanford.edu/class/cs109/demos/galton.html

Galton Board X~Bin(n,p) p(k) = (7)p*Q —p)n*

Let B = the bucket index a ball drops into.
B is distributed as a Binomial RV,
B~Bin(n = 5,p = 0.5)

If B is a sum of Bernoulli RVs,
what defines the ith trial, R;?

When a marble hits a pin, it has an equal
chance of going left or right

Each pin is an independent trial

One decision made forleveli = 1,2,..,5
R; = 1 if ball went right on level i

Bucket index B = # times ball went right

0] 1 2 3 4 5
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Galton Board X~Bin(n,p) p(k) = (7)p*Q —p)n*

O Let B = the bucket index a ball drops into.
B is distributed as a Binomial RV,
B~Bin(n = 5,p = 0.5)

Calculate the probability of a ball landing in

bucket k.
P(B = 0) = ((5)) 0.5° ~ 0.03
P(B=1) = (i) 0.55 ~ 0.16
P(B = 2) = (g) 0.55 ~ 0.31

0] 1 2 3 4 5

Lisa Yan, C$109, 2019 Stanford University 41




Galton Board X~Bin(p) p(k) = (i) p @ —p)"
A O Let B = the bucket index a ball drops into.
B is distributed as a Binomial RV,
B~Bin(n = 5,p = 0.5)
=5 Calculate the probability of a ball landing in
bucket k.
\ 4
} PMF of Binomial RV!
0 1 5

Lisa Yan, C$109, 2019 Stanford University 42



E[X] =np
Visualizing Binomial PMFs X~Bin(n,p)  p() = () k(1 - p)

P(X = k)

012 3 456 7 8 910

k
C.

Match the distribution =~

to the graph: :L

1. Bin(10,0.5) <

2. Bin(10,0.3) 012345678910
3. Bin(10,0.7) k (;)
4. Bin(5,0.5) c

Lisa Yan, C$109, 2019 Stanford University 43



E[X] =np
Visualizing Binomial PMFs X~Bin(n,p)  p() = () k(1 - p)

P(X = k)

012 3 456 7 8 910

k
C.
Match the distribution =
to the graph: :L
1. Bin(10,05) (A) &

2. Bin(10,0.3) (C)
3. Bin(10,0.7) (D)

k £
4. Bin(5,0.5) (B) <CJ

Lisa Yan, CS109, 2019 Stanford University 44
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NBA Finals (RIP)

Lisa Yan, C$109, 2019 Stanford University 45




NBA Finals X~Bin(n,p) p(k) = (7)p*Q —p)n*

The Golden State Warriors are going to play the Toronto
Raptors in a 7-game series during the 2019 NBA finals.
* The Warriors have a probability of 58% of
winning each game, independently.

* Ateam wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?

1. Define events/ — Desired probability? (select all that apply)
RVs & state goal A, P(X > 4)
B. P(X =4)

X: # games Warriors win

X~Bin(7,0.58) g }1)(3(P>()?)< 3)

Want: £ 1-P(X <3) =)

Lisa Yan, C$109, 2019 Stanford University 46




NBA Finals X~Bin(n,p) p(k) = (7)p*Q —p)n*

The Golden State Warriors are going to play the Toronto
Raptors in a 7-game series during the 2019 NBA finals.
* The Warriors have a probability of 58% of
winning each game, independently.

* Ateam wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?

1. Define events/ — Desired probability? (select all that apply)
RVs & state goal A. P(X > 4)
X: # games Warriors win g P(X = 4)
X~Bin(7,0.58) o) P(X >3)
D) 1-P(X <3) P
Want: o0

. 1—-P(X <3) -

Lisa Yan, CS109, 2019 Stanford University 47



NBA Finals X~Bin(n,p) p(k) = (7)p*Q —p)n*

The Golden State Warriors are going to play the Toronto
Raptors in a 7-game series during the 2019 NBA finals.

* The Warriors have a probability of 58% of
winning each game, independently.

* Ateam wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?
2. Solve

7

7
PX=z4)= ) PX=k)= 7Y 0.58%(0.42)7
==Y ro=0 =Y ()

k=4

Want: P(X = 4) Cool Algebra/Probability Fact: this is identical to the probability & J

of winning if we define winning = first to win 4 games
Lisa Yan, C$109, 2019 Stanford University 48



o« e . 5 _(n n-
Genetic inheritance X~Bin(np) p(k) = (;)p*@ —p)"

Each person has 2 genes per trait (e.g., eye color).
Child receives 1 gene (equally likely) from each parent
Brown is “dominant”, blue is "recessive”:

Child has brown eyes if either (or both) genes are brown
Blue eyes only if both genes are blue.
Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(3 children with brown eyes)?

Target strategy:

Bayes’ Rule

Probability tree

Bernoulli, success p = 3 children with brown eyes

Binomial, n = 3 trials, success p = brown-eyed child

Binomial, n = 4 trials, success p = brown-eyed child \l&
None/other

Lisa Yan, C$109, 2019 Stanford University 49



o« e . 5 _(n n-
Genetic inheritance X~Bin(np) p(k) = (;)p*@ —p)"

Each person has 2 genes per trait (e.g., eye color).
Child receives 1 gene (equally likely) from each parent
Brown is “dominant”, blue is "recessive”:

Child has brown eyes if either (or both) genes are brown
Blue eyes only if both genes are blue.
Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(3 children with brown eyes)?

Target strategy:

Bayes’ Rule

Probability tree

Bernoulli, success p = 3 children with brown eyes

Binomial, n = 3 trials, success p = brown-eyed child

Binomial, n = 4 trials, success p = brown-eyed child \l&
None/other
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o« e . 5 _(n n-
Genetic inheritance X~Bin(,p) p(k) = (;)p @ —p)"

Each person has 2 genes per trait (e.g., eye color).
Child receives 1 gene (equally likely) from each parent

Brown is “dominant”, blue is "recessive”:
Child has brown eyes if either (or both) genes are brown

Blue eyes only if both genes are blue.
Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(3 children with brown eyes)?

Define events/
RVs & state goal

X: # brown-eyed children,

X~Bin(4,p)
p: P(brown—eyed child)

Want: P(X = 3)

Lisa Yan, C$109, 2019 Stanford University 51




o« e . 5 _(n n-
Genetic inheritance X~Bin(np) p(k) = (;)p*@ —p)"

Each person has 2 genes per trait (e.g., eye color).
Child receives 1 gene (equally likely) from each parent

Brown is “dominant”, blue is "recessive”:
Child has brown eyes if either (or both) genes are brown

Blue eyes only if both genes are blue.
Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(3 children with brown eyes)?

|dentify known
probabilities

p = 1 — P(blue—eyed child)

=1-(1/2)(1/2)
= 0.75

Lisa Yan, C$109, 2019 Stanford University 52




o« e . 5 _(n n-
Genetic inheritance X~Bin(np) p(k) = (;)p*@ —p)"

Each person has 2 genes per trait (e.g., eye color).
Child receives 1 gene (equally likely) from each parent

Brown is “dominant”, blue is "recessive”:
Child has brown eyes if either (or both) genes are brown

Blue eyes only if both genes are blue.
Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(3 children with brown eyes)?
Solve

X~Bin(4,0.75)
(4 3 1
P(X =3) = (3) 0.753(0.25)
~ 0.4219
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See you next time

Freedom
NEXT EXIT
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