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Discrete random variables
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Discrete 
Random 

Variable, 𝑋

Experiment 
outcomes 𝑃 𝑋 = 𝑥 = 𝑝(𝑥)

𝐸 𝑋

Definition

Properties

Review

Note: Random Variables
also called distributions
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Sum of 2 dice rolls

3

Discrete 
Random 

Variable, 𝑋

Sum of 2 dice rolls
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Important properties of expectation
1. Linearity:

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

2. Expectation of a sum = sum of expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋 =)
*

𝑔 𝑥 𝑝(𝑥)

4

• Let 𝑋 = 6-sided dice roll,
𝑌 = 2𝑋 − 1.

• 𝐸 𝑋 = 3.5
• 𝐸 𝑌 = 6

Sum of two dice rolls:
• Let 𝑋 = roll of die 1

𝑌 = roll of die 2
• 𝐸 𝑋 + 𝑌 = 3.5 + 3.5 = 7

These properties let you avoid 
defining difficult PMFs.👉

Review
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⋅ 1

Linearity of Expectation proof

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

Proof:

𝐸 𝑎𝑋 + 𝑏 =)
*

𝑎𝑥 + 𝑏 𝑝 𝑥 =)
*

𝑎𝑥𝑝 𝑥 + 𝑏𝑝 𝑥

= 𝑎)
*

𝑥𝑝(𝑥) + 𝑏)
*

𝑝 𝑥

= 𝑎𝐸 𝑋 + 𝑏
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𝐸 𝑋 = )
*:A * BC

𝑝 𝑥 ⋅ 𝑥
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Expectation of Sum intuition

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

6

(we’ll prove this 
next week)

𝑋 𝑌 𝑋 + 𝑌
3 6 9

2 4 6

6 12 18

10 20 30

-1 -2 -3

0 0 0

8 16 24

-
D

(28)

Average:
1
𝑛
)
F+-

G

𝑥F
1
𝑛
)
F+-

G

𝑦F
1
𝑛
)
F+-

G

𝑥F + 𝑦F

Intuition 
for now:

+ =

+ =-
D

(56) -
D

(84)

𝐸 𝑋 = )
*:A * BC

𝑝 𝑥 ⋅ 𝑥
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Today’s plan

Variance

Bernoulli (Indicator) RVs

Binomial RVs
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Stanford, CA
𝐸 high = 68°F
𝐸 low = 52°F

Washington, DC
𝐸 high = 67°F
𝐸 low = 51°F

8

Average annual weather

Is 𝐸 𝑋 enough?
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Stanford, CA
𝐸 high = 68°F
𝐸 low = 52°F

Washington, DC
𝐸 high = 67°F
𝐸 low = 51°F

9

Average annual weather

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

𝑃
𝑋
=
𝑥

𝑃
𝑋
=
𝑥

Stanford high temps Washington high temps

35             50            65           80     90 35             50            65           80     90
Normalized histograms are 
approximations of PMFs.👉

68°F 67°F
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Variance = “spread”
Consider the following three distributions (PMFs):

• Expectation: 𝐸 𝑋 = 3 for all distributions
• But the “spread” in the distributions is different!
• Variance, Var 𝑋 : a formal quantification of “spread”

10
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we’ll come 
back to this

Variance

The variance of a random variable 𝑋 with mean 𝐸 𝑋 = 𝜇 is

Var 𝑋 = 𝐸 𝑋 − 𝜇 ,

• Also written as: 𝐸 𝑋 − 𝐸 𝑋 ,

• Note: Var(X) ≥ 0
• Other names: 2nd central moment, or square of the standard deviation

• An easier way to compute variance: Var 𝑋 = 𝐸 𝑋, − 𝐸 𝑋 ,

11
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Variance of Stanford weather
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Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 ,

Stanford, CA
𝐸 high = 68°F
𝐸 low = 52°F

0

0.1

0.2

0.3

0.4

𝑃
𝑋
=
𝑥

Stanford high temps

35             50            65           80     90

𝑋 𝑋 − 𝜇 ,

57°F 124 (°F)2

𝐸 𝑋 = 𝜇 = 68

71°F 9 (°F)2

75°F 49 (°F)2

69°F 1 (°F)2

… …

Variance 𝐸 𝑋 − 𝜇 , = 39 (°F)2

Standard deviation = 6.2°F
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Stanford, CA
𝐸 high = 68°F

Washington, DC
𝐸 high = 67°F
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Comparing variance

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

𝑃
𝑋
=
𝑥

𝑃
𝑋
=
𝑥

Stanford high temps Washington high temps

35             50            65           80     90 35             50            65           80     90

Var 𝑋 = 39 °F , Var 𝑋 = 248 °F ,

Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 ,

68°F 67°F
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Variance, definition (cont.)

The variance of a random variable 𝑋 with mean 𝐸 𝑋 = 𝜇 is

Var 𝑋 = 𝐸 𝑋 − 𝜇 ,

• Also written as: 𝐸 𝑋 − 𝐸 𝑋 ,

• Note: Var(X) ≥ 0
• Other names: 2nd central moment, or square of the standard deviation

• An easier way to compute variance: Var 𝑋 = 𝐸 𝑋, − 𝐸 𝑋 ,

14
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Computing variance, a proof

15

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 ,

= 𝐸 𝑋, − 𝐸 𝑋 ,

= 𝐸 𝑋, − 𝜇,
= 𝐸 𝑋, − 2𝜇, + 𝜇,
= 𝐸 𝑋, − 2𝜇𝐸 𝑋 + 𝜇,

= 𝐸 𝑋 − 𝜇 , Let 𝐸 𝑋 = 𝜇

Everyone, 
please 

welcome the 
second 

moment!

Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 ,

= 𝐸 𝑋, − 𝐸 𝑋 ,

=)
*

𝑥 − 𝜇 ,𝑝 𝑥

=)
*

𝑥, − 2𝜇𝑥 + 𝜇, 𝑝 𝑥

=)
*

𝑥,𝑝 𝑥 − 2𝜇)
*

𝑥𝑝 𝑥 + 𝜇,)
*

𝑝 𝑥

⋅ 1
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Let Y = outcome of a single die roll. Recall 𝐸 𝑌 = 7/2 .
Calculate the variance of Y. 

16

Variance of a 6-sided die
Variance
of 𝑋

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 ,

= 𝐸 𝑋, − 𝐸 𝑋 ,

1. Approach #1: Definition

Var 𝑌 =
1
6
1 −

7
2

,
+
1
6
2 −

7
2

,

+
1
6
3 −

7
2

,
+
1
6
4 −

7
2

,

+
1
6
5 −

7
2

,
+
1
6
6 −

7
2

,

2. Approach #2: A property

𝐸 𝑌, =
1
6
1, + 2, + 3, + 4, + 5, + 6,

= 91/6

Var 𝑌 = 91/6 − 7/2 ,

= 35/12 = 35/12

2nd moment
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Properties of variance
Definition Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 ,

def standard deviation SD 𝑋 = Var 𝑋

Property 1 Var 𝑋 = 𝐸 𝑋, − 𝐸 𝑋 ,

Property 2 Var 𝑎𝑋 + 𝑏 = 𝑎,Var 𝑋

17

Units of 𝑋,

Unlike expectation,
variance is NOT linear!!👉

Units of 𝑋

Often easier to compute 
than definition.👉
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Var 𝑎𝑋 + 𝑏
= 𝐸 𝑎𝑋 + 𝑏 , − 𝐸 𝑎𝑋 + 𝑏 , Property 1
= 𝐸 𝑎,𝑋, + 2𝑎𝑏𝑋 + 𝑏, − 𝑎𝐸 𝑋 + 𝑏 ,

= 𝑎,𝐸 𝑋, + 2𝑎𝑏𝐸 𝑋 + 𝑏, − 𝑎, 𝐸[𝑋] , + 2𝑎𝑏𝐸[𝑋] + 𝑏,
= 𝑎,𝐸 𝑋, − 𝑎, 𝐸[𝑋] ,
= 𝑎, 𝐸 𝑋, − 𝐸[𝑋] ,
= 𝑎,Var 𝑋 Property 1

Properties of variance
Definition Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 ,

def standard deviation SD 𝑋 = Var 𝑋

Property 1 Var 𝑋 = 𝐸 𝑋, − 𝐸 𝑋 ,

Property 2 Var 𝑎𝑋 + 𝑏 = 𝑎,Var 𝑋

18

Units of 𝑋,

Units of 𝑋

Proof:

Factoring/
Linearity of 
Expectation

Unlike expectation,
variance is NOT linear!!👉
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Discrete random variables
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Discrete 
Random 

Variable, 𝑋

Experiment 
outcomes 𝑃 𝑋 = 𝑥 = 𝑝(𝑥)

𝐸 𝑋

Definition

Properties

Var(𝑋)

SD(𝑋)

𝐸 𝑋,

Note: PMF also called
“probability distribution”
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Lots of fun with classic RVs

20
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Today’s plan

Variance

Bernoulli (Indicator) RVs

Binomial RVs

21
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Jacob Bernoulli

22

Jacob Bernoulli (1654-1705), also known as “James”, was a Swiss 
mathematician

One of many mathematicians in Bernoulli family
The Bernoulli Random Variable is named for him

My academic great14 grandfather
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Consider an experiment with two outcomes: “success” and “failure.”
def A Bernoulli random variable 𝑋 maps “success” to 1 and “failure” to 0.

Other names: indicator random variable, boolean random variable

Examples:
• Coin flip
• Random binary digit
• Whether a disk drive crashed

Bernoulli Random Variable

23

𝑃 𝑋 = 1 = 𝑝 1 = 𝑝
𝑃 𝑋 = 0 = 𝑝 0 = 1 − 𝑝𝑋~Ber(𝑝)

Range: {0,1} Variance
Expectation

PMF

𝐸 𝑋 = 𝑝
Var 𝑋 = 𝑝(1 − 𝑝)

Bernoulli/indicator RVs are 
often used for this nice 
property of expectation.

👉
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🤔
24

Defining Bernoulli RVs

Serve an ad.
• Clicked w.p. 𝑝
• Ignored w.p. 1 − 𝑝

Let 𝑋: 1 if clicked

𝑋~Ber(𝑝)
𝑃 𝑋 = 1 = 𝑝
𝑃 𝑋 = 0 = 1 − 𝑝

Roll two dice.
• Success: roll two 6’s
• Failure: anything else

Let 𝑋 : 1 if success

𝑋~Ber(𝑝)

𝐸 𝑋 =?

𝑋~Ber(𝑝) 𝑝S 1 = 𝑝
𝑝S 0 = 1 − 𝑝𝐸 𝑋 = 𝑝

Run a program
• Crashes w.p. 𝑝
• Works w.p. 1 − 𝑝

Let 𝑋: 1 if crash

𝑋~Ber(𝑝)
𝑃 𝑋 = 1 = 𝑝
𝑃 𝑋 = 0 = 1 − 𝑝
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🤔
25

Defining Bernoulli RVs

Serve an ad.
• Clicked w.p. 𝑝
• Ignored w.p. 1 − 𝑝

Let 𝑋: 1 if clicked

𝑋~Ber(𝑝)
𝑃 𝑋 = 1 = 𝑝
𝑃 𝑋 = 0 = 1 − 𝑝

Roll two dice.
• Success: roll two 6’s
• Failure: anything else

Let 𝑋 : 1 if success

𝑋~Ber(𝑝)

𝐸 𝑋 = 1/36

𝑋~Ber(𝑝) 𝑝S 1 = 𝑝
𝑝S 0 = 1 − 𝑝𝐸 𝑋 = 𝑝

Run a program
• Crashes w.p. 𝑝
• Works w.p. 1 − 𝑝

Let 𝑋: 1 if crash

𝑋~Ber(𝑝)
𝑃 𝑋 = 1 = 𝑝
𝑃 𝑋 = 0 = 1 − 𝑝
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Today’s plan

Variance

Bernoulli (Indicator) RVs

Binomial RVs

26

GOING
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial Random Variable

27

𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV𝑋~Bin(𝑛, 𝑝)

Range: {0,1, … , 𝑛}

PMF

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)

By Binomial Theorem,
we can prove
∑V+CG 𝑃 𝑋 = 𝑘 = 1

Variance
Expectation
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Reiterating notation

The parameters of a Binomial random variable:
• 𝑛: number of independent trials
• 𝑝: probability of success on each trial

29

1. The random 
variable

2. is distributed 
as a

3. Binomial 4. with parameters

𝑋 ~ Bin(𝑛, 𝑝)
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Reiterating notation

If 𝑋 is a binomial with parameters 𝑛 and 𝑝, the PMF of 𝑋 is

30

𝑋 ~ Bin(𝑛, 𝑝)

𝑃 𝑋 = 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV

Probability Mass Function for a BinomialProbability that 𝑋
takes on the value 𝑘
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🤔
31

Three coin flips
Three fair (“heads” with 𝑝 = 0.5) coins are flipped.
• 𝑋 is number of heads
• 𝑋~Bin 3, 0.5
Compute the following event probabilities:

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV

𝑃 𝑋 = 0 = 𝑝 0 = 3
0 𝑝C 1 − 𝑝 Y = -

Z

𝑃 𝑋 = 1

𝑃 𝑋 = 2

𝑃 𝑋 = 3

𝑃 𝑋 = 7

= 𝑝 1 = 3
1 𝑝- 1 − 𝑝 , = Y

Z

= 𝑝 2 = 3
2 𝑝, 1 − 𝑝 - = Y

Z

= 𝑝 3 = 3
3 𝑝Y 1 − 𝑝 C = -

Z

= 𝑝 7 = 0
P(event) PMF



Break for jokes/ 
announcements

32



Lisa Yan, CS109, 2019

Announcements

33

Problem Set 2

Out: last Friday
Due: Monday 10/14
Covers: through last Friday

Concept checks

Due date: every Tuesday 1:00pm
You can edit your response, so don’t 
be afraid of submitting multiple times.

CS198 Section Leading 
Applications

Due: Thursday, October 
17th at 11:59PM

Online application: 
cs198.stanford.edu
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial Random Variable

34

𝑋~Bin(𝑛, 𝑝)
Range: {0,1, … , 𝑛} Variance

Expectation

PMF

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV

By Binomial Theorem,
we can prove
∑V+CG 𝑃 𝑋 = 𝑘 = 1
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Binomial RV is sum of Bernoulli RVs

Bernoulli
• 𝑋~Ber(𝑝)

Binomial
• 𝑌~Bin 𝑛, 𝑝
• The sum of 𝑛 independent 

Bernoulli RVs

35

𝑌 =)
F+-

G

𝑋F , 𝑋F ~Ber(𝑝)

+

+

+

Ber 𝑝 = Bin(1, 𝑝)👉
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial Random Variable

36

𝑋~Bin(𝑛, 𝑝)
Range: {0,1, … , 𝑛}

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)Variance

Expectation

PMF 𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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Consider an experiment: 𝑛 independent trials of Ber(𝑝) random variables.
def A Binomial random variable 𝑋 is the number of successes in 𝑛 trials.

Examples:
• # heads in n coin flips
• # of 1’s in randomly generated length n bit string
• # of disk drives crashed in 1000 computer cluster

(assuming disks crash independently)

Binomial Random Variable

37

𝑋~Bin(𝑛, 𝑝)
Range: {0,1, … , 𝑛}

PMF

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)

We’ll prove 
this later in 
the course

Variance
Expectation

𝑘 = 0, 1, … , 𝑛:

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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No, give me the variance proof right now

38

proofwiki.org
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🤔
39

Galton Board

0 1 2 3 4 5

𝑛 = 5

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV

Let 𝐵 = the bucket index a ball drops into.
𝐵 is distributed as a Binomial RV,

𝐵~Bin(𝑛 = 5, 𝑝 = 0.5)

If 𝐵 is a sum of Bernoulli RVs,
what defines the 𝑖th trial, 𝑅F?

http://web.stanford.edu/class/cs109/
demos/galton.html

http://web.stanford.edu/class/cs109/demos/galton.html
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Galton Board

40

Let 𝐵 = the bucket index a ball drops into.
𝐵 is distributed as a Binomial RV,

𝐵~Bin(𝑛 = 5, 𝑝 = 0.5)

0 1 2 3 4 5

𝑛 = 5 If 𝐵 is a sum of Bernoulli RVs,
what defines the 𝑖th trial, 𝑅F?

• When a marble hits a pin, it has an equal 
chance of going left or right

• Each pin is an independent trial
• One decision made for level 𝑖 = 1, 2, . . , 5
• 𝑅F = 1 if ball went right on level 𝑖

• Bucket index 𝐵 = # times ball went right

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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Galton Board

41

Let 𝐵 = the bucket index a ball drops into.
𝐵 is distributed as a Binomial RV,

𝐵~Bin(𝑛 = 5, 𝑝 = 0.5)

0 1 2 3 4 5

𝑛 = 5 Calculate the probability of a ball landing in 
bucket 𝑘.

𝑃 𝐵 = 0 = 5
0 0.5^ ≈ 0.03

𝑃 𝐵 = 1 = 5
1 0.5^ ≈ 0.16

𝑃 𝐵 = 2 = 5
2 0.5^ ≈ 0.31

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV



Lisa Yan, CS109, 2019

Galton Board

42

Let 𝐵 = the bucket index a ball drops into.
𝐵 is distributed as a Binomial RV,

𝐵~Bin(𝑛 = 5, 𝑝 = 0.5)

0 1 2 3 4 5

𝑛 = 5 Calculate the probability of a ball landing in 
bucket 𝑘.

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV

PMF of Binomial RV!



Lisa Yan, CS109, 2019

🤔
43

Visualizing Binomial PMFs
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𝑋~Bin(𝑛, 𝑝) 𝑝 𝑖 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV

𝐸 𝑋 = 𝑛𝑝

C. D.
Match the distribution 
to the graph:
1. Bin 10,0.5
2. Bin 10,0.3
3. Bin 10,0.7
4. Bin 5,0.5
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Visualizing Binomial PMFs

Match the distribution 
to the graph:
1. Bin 10,0.5
2. Bin 10,0.3
3. Bin 10,0.7
4. Bin 5,0.5
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𝑋~Bin(𝑛, 𝑝) 𝑝 𝑖 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV

𝐸 𝑋 = 𝑛𝑝
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NBA Finals
The Golden State Warriors are going to play the Toronto 
Raptors in a 7-game series during the 2019 NBA finals.
• The Warriors have a probability of 58% of

winning each game, independently.
• A team wins the series if they win at least 4 games

(we play all 7 games).

What is P(Warriors winning)?
1. Define events/ 

RVs & state goal
𝑋: # games Warriors win
𝑋~Bin(7, 0.58)

Want: 

Desired probability? (select all that apply)
A. 𝑃 𝑋 > 4
B. 𝑃 𝑋 ≥ 4
C. 𝑃 𝑋 > 3
D. 1 − 𝑃 𝑋 ≤ 3
E. 1 − 𝑃 𝑋 < 3

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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NBA Finals
The Golden State Warriors are going to play the Toronto 
Raptors in a 7-game series during the 2019 NBA finals.
• The Warriors have a probability of 58% of

winning each game, independently.
• A team wins the series if they win at least 4 games

(we play all 7 games).

What is P(Warriors winning)?
1. Define events/ 

RVs & state goal
𝑋: # games Warriors win
𝑋~Bin(7, 0.58)

Want: 

Desired probability? (select all that apply)
A. 𝑃 𝑋 > 4
B. 𝑃 𝑋 ≥ 4
C. 𝑃 𝑋 > 3
D. 1 − 𝑃 𝑋 ≤ 3
E. 1 − 𝑃 𝑋 < 3

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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NBA Finals
The Golden State Warriors are going to play the Toronto 
Raptors in a 7-game series during the 2019 NBA finals.
• The Warriors have a probability of 58% of

winning each game, independently.
• A team wins the series if they win at least 4 games

(we play all 7 games).

What is P(Warriors winning)?

Cool Algebra/Probability Fact: this is identical to the probability 
of winning if we define winning = first to win 4 games

1. Define events/ 
RVs & state goal

2. Solve

𝑋: # games Warriors win
𝑋~Bin(7, 0.58)

Want: 𝑃 𝑋 ≥ 4

𝑃 𝑋 ≥ 4 = )
V+d

D

𝑃 𝑋 = 𝑘 = )
V+d

D
7
𝑘 0.58V 0.42 DWV

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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Genetic inheritance
Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent
• Brown is “dominant”, blue is ”recessive”:
• Child has brown eyes if either (or both) genes are brown
• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.
A family has 4 children. What is P(3 children with brown eyes)?

Target strategy:
A. Bayes’ Rule
B. Probability tree
C. Bernoulli, success 𝑝 = 3 children with brown eyes
D. Binomial, 𝑛 = 3 trials, success 𝑝 = brown-eyed child
E. Binomial, 𝑛 = 4 trials, success 𝑝 = brown-eyed child
F. None/other

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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Genetic inheritance
Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent
• Brown is “dominant”, blue is ”recessive”:
• Child has brown eyes if either (or both) genes are brown
• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.
A family has 4 children. What is P(3 children with brown eyes)?

Target strategy:
A. Bayes’ Rule
B. Probability tree
C. Bernoulli, success 𝑝 = 3 children with brown eyes
D. Binomial, 𝑛 = 3 trials, success 𝑝 = brown-eyed child
E. Binomial, 𝑛 = 4 trials, success 𝑝 = brown-eyed child
F. None/other

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent
• Brown is “dominant”, blue is ”recessive”:
• Child has brown eyes if either (or both) genes are brown
• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.
A family has 4 children. What is P(3 children with brown eyes)?
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Genetic inheritance

1. Define events/ 
RVs & state goal

3. Solve

𝑋: # brown-eyed children,
𝑋~Bin(4, 𝑝)

𝑝: 𝑃 brown−eyed child

Want: 𝑃 𝑋 = 3

2. Identify known
probabilities

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent
• Brown is “dominant”, blue is ”recessive”:
• Child has brown eyes if either (or both) genes are brown
• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.
A family has 4 children. What is P(3 children with brown eyes)?
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Genetic inheritance

1. Define events/ 
RVs & state goal

3. Solve

𝑋: # brown-eyed children,
𝑋~Bin(4, 𝑝)

𝑝: 𝑃 brown−eyed child

Want: 𝑃 𝑋 = 3

𝑝 = 1 − 𝑃 blue−eyed child
= 1 − 1/2 1/2
= 0.75

2. Identify known
probabilities

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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Each person has 2 genes per trait (e.g., eye color).
• Child receives 1 gene (equally likely) from each parent
• Brown is “dominant”, blue is ”recessive”:
• Child has brown eyes if either (or both) genes are brown
• Blue eyes only if both genes are blue.

• Parents each have 1 brown and 1 blue gene.
A family has 4 children. What is P(3 children with brown eyes)?
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Genetic inheritance

1. Define events/ 
RVs & state goal

3. Solve

𝑋: # brown-eyed children,
𝑋~Bin(4, 𝑝)

𝑝: 𝑃 brown−eyed child

Want: 𝑃 𝑋 = 3

𝑝 = 1 − 𝑃 blue−eyed child
= 1 − 1/2 1/2
= 0.75

𝑋~Bin 4, 0.75
𝑃 𝑋 = 3 = 4

3 0.75Y 0.25 -

≈ 0.4219

2. Identify known
probabilities

𝑋~Bin(𝑛, 𝑝) 𝑝 𝑘 = 𝑛
𝑘 𝑝V 1 − 𝑝 GWV
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See you next time
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