o8: Poisson and More

Lisa Yan
October 9, 2019

Discrete random variables

The variance of a random variable X with mean $E[X]=\mu$ is

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]
$$

Why isn't variance defined as $E[X-E[X]]$?

$$
E[X-E[X]]=E[X]-E[X]=0 \quad \text { Linearity of expectation! }
$$

Binomial random variable

PMF

$$
P(X=k)=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

$X \sim \operatorname{Bin}(n, p)$

Range: $\{0,1, \ldots, n\}$ (aka support)

Expectation $E[X]=n p$
Variance $\quad \operatorname{Var}(X)=n p(1-p)$

Today's plan: Hurricanes

What is the probability of an extreme weather event?

Today's plan

Poisson

Poisson Paradigm

Some more Discrete RVs (if time)

Before we start

The natural exponent e :

$$
\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}
$$

https://en.wikipedia.org/wiki/E_(mathematical_constant)

Algorithmic ride sharing

Probability of k requests from this area in the next 1 minute?
Suppose we know: On average, $\lambda=5$ requests per minute

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?
On average, $\lambda=5$ requests per minute
Break a minute down into 60 seconds:

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\ldots	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
1	2	3	4	5						

At each second:

- Independent trial
- You get a request (1) or you don't (0).

Let $X=\#$ of requests in minute.
$E[X]=\lambda=5$

$$
X \sim \operatorname{Bin}(n=60, p=5 / 60)
$$

$$
P(X=k)=\binom{60}{k}\left(\frac{5}{60}\right)^{k}\left(1-\frac{5}{60}\right)^{n-k}
$$

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?
On average, $\lambda=5$ requests per minute
Break a minute down into 60,000 milliseconds:

At each millisecond:

- Independent trial
- You get a request (1) or you don't (0).

Let $X=\#$ of requests in minute.
$E[X]=\lambda=5$

$$
\begin{aligned}
& X \sim \operatorname{Bin}(n=60000, p=\lambda / n) \\
& P(X=k)=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}
\end{aligned}
$$

Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?
On average, $\lambda=5$ requests per minute
Break a minute down into infinitely small buckets:

| | omg so small |
| :---: | :---: | :---: |
| 1 | |

For each time bucket:

- Independent trial
- You get a request (1) or you don't (0).

Let $X=\#$ of requests in minute.

$$
X \sim \operatorname{Bin}(n, p=\lambda / n)
$$

$$
P(X=k)=\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}
$$

$E[X]=\lambda=5$

Binomial in the limit

$$
\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}
$$

$$
\begin{aligned}
& P(X=k)=\lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \operatorname{Expand}^{n}=\lim _{n \rightarrow \infty} \frac{n!}{k!(n-k)!} \frac{\lambda^{k}}{n^{k}} \frac{\left(1-\frac{\lambda}{n}\right)^{n}}{\left(1-\frac{\lambda}{n}\right)^{k}} \\
& \stackrel{\text { Expand }}{=\lim _{n \rightarrow \infty} \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{(n-k)!}{(n-k)!} \frac{\lambda^{k}}{k!} \frac{e^{-\lambda}}{\left(1-\frac{\lambda}{n}\right)^{k}}}
\end{aligned}
$$

Algorithmic ride sharing

Probability of k requests from this area in the next 1 minute?
On average, $\lambda=5$ requests per minute

$$
P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

Simeon-Denis Poisson

French mathematician (1781-1840)

- Published his first paper at age 18
- Professor at age 21
- Published over 300 papers
"Life is only good for two things: doing mathematics and teaching it."

Poisson Random Variable

Consider an experiment that lasts a fixed interval of time. def A Poisson random variable X is the number of successes over the experiment duration.

$$
X \sim \operatorname{Poi}(\lambda)
$$

Range: $\{0,1,2, \ldots\}$

PMF

Expectation $E[X]=\lambda$

$$
\operatorname{Var}(X)=\lambda
$$

Variance $\operatorname{Var}(X)=\lambda$

Examples:

- \# earthquakes per year
- \# server hits per second
- \# of emails per day

$$
P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Poisson process

$X \sim \operatorname{Poi}(\lambda)$
$E[X]=\lambda$

1. Consider events that occur over time.
2. Split time interval into $n \rightarrow \infty$ subintervals.

- Event: earthquakes, radioactive decay, web server hits, etc.
- Time interval: 1 year, 1 sec , whatever
- Events arrive at average rate λ events/time interval
- Assume at most one event per sub-interval.
- Event occurrences in sub-intervals are independent.
- With many sub-intervals, probability of event occurring in any given sub-interval is small

3. Let $X=\#$ events in original time interval. $X \sim \operatorname{Poi}(\lambda)$

Earthquakes

$$
\begin{aligned}
& X \sim \operatorname{Poi}(\lambda) \\
& E[X]=\lambda
\end{aligned} \quad p(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

There are an average of 2.79 major earthquakes in the world each year. What is the probability of 3 major earthquakes happening next year?

1. Define RVs

$$
X \sim \operatorname{Poi}(2.79)
$$

2. Solve

$$
\begin{aligned}
& P(X=3)= e^{-\lambda} \frac{\lambda^{k}}{k!}, \text { where } k=3 \\
& \quad \lambda=2.79
\end{aligned} \quad \begin{aligned}
& =2.23
\end{aligned}
$$

Are earthquakes really Poissonian?

Bulletin of the
 Seismological Society of America

Vol. 64
October 1974
No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA, WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. Gardner and L. Knopoff

Abstract
Yes.

Web server load

$$
\begin{aligned}
& X \sim \operatorname{Poi}(\lambda) \\
& E[X]=\lambda
\end{aligned} \quad p(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Consider requests to a web server in 1 second.

- In the past, server load averages 2 hits/second.
- Let $X=\#$ hits the server receives in a second.

What is $P(X<5)$?

1. Define RVs
 2. Solve

$$
X \sim \operatorname{Poi}(\lambda=2)
$$

$$
\begin{aligned}
P(X<5) & =\sum_{k=0}^{4} P(X=k)=\sum_{k=0}^{4} e^{-\lambda} \frac{\lambda^{k}}{k!}, \text { where } \lambda=2 \\
& =\sum_{k=0}^{4} e^{-2} \frac{2^{k}}{k!} \approx 0.95
\end{aligned}
$$

Today's plan

Poisson

Poisson Paradigm

Some more Discrete RVs

DNA

All the movies, images, emails and other digital data from more than 600 smartphones (10,000 GB) can be stored in the faint pink smear of DNA at the end of this test tube.

What is the probability that DNA storage stays uncorrupted?

DNA

What is the probability that DNA storage stays uncorrupted?

- In DNA (and real networks), we store large strings.
- Let string length be long, e.g., $n \approx 10^{4}$
- Probability of corruption of each base pair is very small, e.g., $p=10^{-6}$
- Let $X=\#$ of corruptions.

What is $\mathrm{P}(\mathrm{DNA}$ storage is uncorrupted $)=P(X=0)$?

1. Approach 1:

$$
\begin{gathered}
X \sim \operatorname{Bin}\left(n=10^{4}, p=10^{-6}\right) \\
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{gathered}
$$

$$
\text { unwieldy! }!=\binom{10^{4}}{0} 10^{-6 \cdot 0}\left(1-10^{-6}\right)^{10^{6}-0}
$$

$$
\approx 0.99049829
$$

2. Approach 2:

$$
\begin{aligned}
X \sim \operatorname{Poi}(\lambda & \left.=10^{4} \cdot 10^{-6}=0.01\right) \\
P(X=k) & =e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-0.01} \frac{0.01^{0}}{0!} \\
& =e^{-0.01}
\end{aligned}
$$

The Poisson Paradigm, part 1

Poisson approximates Binomial when n is large, p is small, and $\lambda=n p$ is "moderate."

Different interpretations of
"moderate":

- $n>20$ and $p<0.05$
- $n>100$ and $p<0.1$

Poisson is Binomial in the limit:

- $\lambda=n p$, where $n \rightarrow \infty, p \rightarrow 0$

Poisson approximates Binomial when n is large, p is small, and $\lambda=n p$ is "moderate."

Different interpretations of "moderate":

- $n>20$ and $p<0.05$
- $n>100$ and $p<0.1$

Poisson is Binomial in the limit:

- $\lambda=n p$, where $n \rightarrow \infty, p \rightarrow 0$

Can these Binomial RVs be approximated?

Poisson approximates Binomial when n is large, p is small, and $\lambda=n p$ is "moderate."

Different interpretations of "moderate":

- $n>20$ and $p<0.05$
- $n>100$ and $p<0.1$

Poisson is Binomial in the limit:

- $\lambda=n p$, where $n \rightarrow \infty, p \rightarrow 0$

Can these Binomial RVs be approximated?

Poisson approximates Binomial when n is large, p is small, and $\lambda=n p$ is "moderate."

Different interpretations of "moderate":

- $n>20$ and $p<0.05$
- $n>100$ and $p<0.1$

Poisson is Binomial in the limit:

- $\lambda=n p$, where $n \rightarrow \infty, p \rightarrow 0$

Can these Binomial RVs be approximated?

Poisson approximates Binomial when n is large, p is small, and $\lambda=n p$ is "moderate."

Different interpretations of "moderate":

- $n>20$ and $p<0.05$
- $n>100$ and $p<0.1$

Poisson is Binomial in the limit:

- $\lambda=n p$, where $n \rightarrow \infty, p \rightarrow 0$

Break for jokes/ announcements

Poisson Random Variable

Consider an experiment that lasts a fixed interval of time.
def A Poisson random variable X is the number of occurrences over the experiment duration.

Range: $\{0,1,2, \ldots$...

PMF

Expectation $E[X]=\lambda$
Variance $\operatorname{Var}(X)=\lambda$

Examples:

- \# earthquakes per year
- \# server hits per second
- \# of emails per day

Yes, expectation and variance of Poisson are the same (intuition now)

Properties of $\operatorname{Poi}(\lambda)$ with the Poisson paradigm

Recall the Binomial:

$$
\begin{array}{lll}
Y \sim \operatorname{Bin}(n, p) & \text { Expectation } & E[Y]=n p \\
\text { Variance } & \operatorname{Var}(Y)=n p(1-p)
\end{array}
$$

Consider $X \sim \operatorname{Poi}(\lambda)$, where $\lambda=n p(n \rightarrow \infty, p \rightarrow 0)$:

$$
\begin{array}{lll}
X \sim \operatorname{Poi}(\lambda) & \text { Expectation } & E[X]=\lambda \\
& \text { Variance } & \operatorname{Var}(X)=\lambda
\end{array}
$$

Proof:

$$
\begin{gathered}
E[X]=n p=\lambda \\
\operatorname{Var}(X)=n p(1-p) \rightarrow \lambda(1-0)=\lambda
\end{gathered}
$$

A Real License Plate Seen at Stanford

No, it's not mine...
but I kind of wish it was.

Poisson Paradigm, part 2

Poisson can still provide a good approximation of the Binomial, even when assumptions are "mildly" violated.

You can apply the Poisson approximation when:

- "Successes" in trials are not entirely independent e.g.: \# entries in each bucket in large hash table.

- Probability of "Success" in each trial varies (slightly), like a small relative change in a very small p e.g.: Average \# requests to web server/sec may fluctuate slightly due to load on network

Today's plan

Poisson

Poisson Paradigm
\Rightarrow Some more Discrete RVs

More discrete RVs

Part of CS109 learning goals:

- Translate a problem statement into a random variable
- Understand new random variables

We focus primarily on Binomial, Bernoulli, and Poisson.

Here are a few more to get a sense of how random variables work.

Focus on understanding how and when to use RVs, not on memorizing PMFs.

Geometric RV

Consider an experiment: independent trials of $\operatorname{Ber}(p)$ random variables. def A Geometric random variable X is the \# of trials until the first success.

$$
\begin{array}{lll}
X \sim \operatorname{GeO}(p) & \text { PMF } & P(X=k)= \\
& \text { Expectation } & E[X]=\frac{1}{p} \\
\text { Range: }\{1,2, \ldots\} & \text { Variance } & \operatorname{Var}(X)=\frac{1-p}{p^{2}}
\end{array}
$$

Examples:

- Flipping a coin $(P($ heads $)=p)$ until first heads appears
- Generate bits with $P($ bit $=1)=p$ until first 1 generated

Negative Binomial RV

Consider an experiment: independent trials of $\operatorname{Ber}(p)$ random variables. def A Negative Binomial random variable X is the \# of trials until r successes.

| $X \sim \operatorname{NegBin}(r, p)$ | PMF $P(X=k)=\binom{k-1}{r-1}(1-p)^{k-r} p^{r}$
 Expectation
 Range: $\{r, r+1, \ldots\}$ $E[X]=\frac{r}{p}$ | Variance |
| :---: | :--- | :--- |$\quad \operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$.

Examples:

- Flipping a coin until $r^{\text {th }}$ heads appears
- \# of strings to hash into table until bucket 1 has r entries

Grid of random variables

	Number of successes	Time until success	
One trial	$\operatorname{Ber}(p)$	$\operatorname{Geo}(p)$	One success
Several trials	$\operatorname{Bin}(n, p)$	NegBin (r, p)	Several successes
Interval of time	$\operatorname{Poi}(\lambda)$	(tomorrow)	Interval of time to first success

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability $p=0.1$ of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the $5^{\text {th }}$ try?

1. Define events/ RVs \& state goal
$X \sim$ some distribution
Want: $P(X=5)$

2. Solve

A. $X \sim \operatorname{Bin}(5,0.1)$
B. $X \sim \operatorname{Poi}(0.5)$
C. $X \sim \operatorname{NegBin}(5,0.1)$
D. $X \sim \operatorname{NegBin}(1,0.1)$
E. $X \sim \mathrm{Geo}(0.1)$
F. None/other

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability $p=0.1$ of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the $5^{\text {th }}$ try?

1. Define events/ RVs \& state goal
$X \sim$ some distribution
Want: $P(X=5)$

2. Solve

A. $\quad X \sim \operatorname{Bin}(5,0.1)$
B. $X \sim \operatorname{Poi}(0.5)$
C. $X \sim \operatorname{NegBin}(5,0.1)$
$X \sim \operatorname{NegBin}(1,0.1)$
$X \sim \mathrm{Geo}(0.1)$
None/other

Be clear about what is variable (unknown) in the problem setup.

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

- Each ball has probability $p=0.1$ of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the $5^{\text {th }}$ try?

1. Define events/ RVs \& state goal
$X \sim$ Geo(0.1)
Want: $P(X=5)$
2. Solve

$$
P(X=5)=(1-p)^{k-1} p, \text { where } k=5, p=0.1
$$

$$
=(0.9)^{4}(0.1)
$$

$$
\approx 0.066
$$

Hurricanes

What is the probability of an extreme weather event?

How do we model the number of hurricanes in a season (year)?

Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (\# of hurricanes per year)?
A.

B.

Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (\# of hurricanes per year)?
A.

Hurricanes

How do we model the number of hurricanes in a season (year)?

Step 2. Find a reasonable distribution (Poisson) and compute parameters.

To the code!!

Until 1966, things look pretty Poisson.

What is the probability of over 15 hurricanes in a season (year) given that the distribution doesn't change?

$$
\begin{aligned}
P(X>15) & =1-P(X \leq 15) \\
& =1-\sum_{k=0}^{15} P(X=k) \\
& =1-0.986=0.014
\end{aligned}
$$

This is the PMF of a Poisson.
Your favorite programming language has a function for it.
In Python 3: from scipy import stats $X=$ stats.poisson(8.5) X.pmf(k)

■ Poi(8.5)
■ Count (1851-1966)

Hurricanes

How do we model the number of hurricanes in a season (year)?

Improbability

$X \sim \operatorname{Poi}(\lambda) \quad p(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$
Since 1966, there have been two years with over 30 hurricanes.

$$
\begin{aligned}
P(X>30) & =1-P(X \leq 30) \\
& =1-\sum_{k=0}^{30} P(X=k) \\
& =2.2 \mathrm{E}-09
\end{aligned}
$$

This is the PMF of a Poisson.
Your favorite programming language
has a function for it.
In Python 3: from scipy import stats $X=$ stats.poisson(8.5) X.pmf(k)

The distribution has changed.

What changed?

What changed?

It's not just climate change. We also have better data collection now.
from scipy import stats X = stats.poisson(8.5) X.pmf(2)
\# great package
\# X ~ Poi $(\lambda=8.5)$
\# $P(X=2)$

Function	Description
X.pmf(k)	$P(X=k)$
X.cdf(k)	$P(X \leq k)$
X.mean()	$E[X]$
X.var()	$\operatorname{Var}(X)$
X. $\operatorname{std}()$	$\mathrm{SD}(X)$

SciPy reference:
https://docs.scipy.org/doc/ scipy/reference/generated/ scipy.stats.poisson.html

