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Discrete random variables Review

Experiment
outcomes

Note: Random Variables

Discrete also called distributions

Random

Variable, X%% .

S SD(X)
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Variance Review

The variance of a random variable X with mean E[X]| = u is

Var(X) = E[(X — p)?]

Why isn’t variance defined as E|X — E[X][?

E|X —E[X]| = E[X] —E[X] = 0 Linearity of expectation!
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Binomial random variable

PMF P(X =k) =p(k) = () p*(1 — p)n~*

X~Bin(n,p)
Expectation E[X] = np
R 10,1, ..., :
(akaasrcjgpepo{rt) " Variance Var(X) = np(1 — p)

# independent trials

. P(success) on each trial
X ~ Bin(n, p)
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2. 1s distributed
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Today’s plan: Hurricanes

T

.f. -, 3

\_,-,

What is the probability of an extreme weather event?
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Today’s plan

=) Poisson
Poisson Paradigm

Some more Discrete RVs (if time)
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Before we start

A n
The natural exponent e: lim (1 — —) = ¢4

n—00 n

https://en.wikipedia.org/wiki/E_(mathematical_constant)

Jacob Bernoulli
while studying
compound interest
in 1683
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Algorithmic ride sharing

I n “
-

CAR 9

SHARING

b 3 #Hi“"e{j = . | PROFESSOF/?;;ILL.E":;
£2=0 ®- 0 ‘ N (-

Probability of k requests from this area in the next 1 minute?

Suppose we know: On average, 1 = 5 requests per minute
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into 60 seconds:

oO/,0|1 0|1 Oj0|]0]0] 1
1 2 3 4 5 60
At each second: X ~Bin(n = 60, p = 5/60)

Independent trial
You get a request (1) or you don’t (O).

P(X—k)—(60)(5)k(1 5)n—k
Let X = # of requests in minute. 7 \k/\60 60

E|IX]=1=5 5 #) Butwhat if there are two requests

‘\J in the same second?
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into 60,000 milliseconds:

1 60,000
At each millisecond: X ~ Bin(n = 60000, p = 1/n)
Independent trial
You get a request (1) or you don’t (O). ke

n\ (A A
e, P00 = () (1)
Let X = # of requests in minute. n n

E|IX]=1=5 (5 ¥ But what if there are two requests

O
%%/ in the same millisecond?
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into infinitely small buckets:

OMG so small
1
For each time bucket: X ~Bin(n, p = A/n)
Independent trial ' iy .
You get a request (1) or you don’t (O). A AN
getarequest B oryou dont®: b x = k) = lim (Z)(—) (1——)
Let X = # of requests in minute. n—>oo n n

E [X ] =A=5 Who wants to see some cool math?
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Binomial in the limit

A n
lim (1——) =4

n—oo n

k n—k N
P(X = k) = lim (”) (i) (1 _ f) A L (1-3)
n-wo \k/\n n noo k(1 — k)1 nk (i - &)k
sRure "
Rea((a(\%e nl PL: (1 — %)n Dip((\)ﬂei‘ | n! e
=7}§gonk(n_k)! = -~ ~ oo nk(n—k)! k! (1_&)k
(1-%) n

a&@aﬂd | nn—1)m—k+1) (n—k) Ak 4

n—00 nk (n—k)! k! (1 x)k
\\Jé\s n
R\ oY
»L“za L LI P .
B rlzl—{ro}o nk k! 1 "k’
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Algorithmic ride sharing

[T
1iie
i
i
S il
T
9 uitl
CAR

SHARING

il QOLING S <° wiett Packard Garage §
sig fheed | -

\ I} Yy ) PROFESSORVILLE
D—0 [oF=(0!

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute
/1k

e

P(X =k) =
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Simeon-Denis Poisson

French mathematician (1781 - 1840)
Published his first paper at age 18

Professor at age 21

Published over 300 papers

“Life is only good for two things: doing mathematics and teaching it.”

Lisa Yan, CS109, 2019
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Poisson Random Variable

Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable X is the number of successes over the
experiment duration.

PMF yL:
X~Poi(1) PX =k)=e"

Expectation E[X] = A |
Range: {0,1,2, ...} Variance Var(X) = 1

Examples:

# earthquakes per year ) . :
, =» Yes, expectation and variance
# server hits per second — :
of Poisson are the same

# of emails per day (shown later)
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X~Poi(1) 4 AK

Poisson process Ex =4 PR =eo
Consider events that Event: earthquakes, radioactive decay,
occur over time. web server hits, etc.

Time interval: 1 year, 1 sec, whatever
Events arrive at average rate 1 events/time interval

Split time interval into Assume at most one event per sub-interval.
n — oo subintervals. Event occurrences in sub-intervals are
Independent.

With many sub-intervals, probability of event
occurring in any given sub-interval is small

v . . .
Let X = # events in original time interval. Usehpmsson if you:
¢ ave a rate

X~ Pol (A) * care about # occurrences
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Earthquakes

X~Poi(1) L
Ex]=a2 PR =e™

There are an average of 2.79 major earthquakes in the world each year.

What is the probability of 3 major earthquakes happening next year?

0.3 1

1. Define RVs
0.25 -
X~Poi(2.79) _ o2
I 0.15 ~
2. Solve <!
)lk 0.1 -
P(X = 3) = e~*— ,Where k =3, 0.05 -
( ) k! A =279
2.79)3
= e—2-79( 3 ) ~ (.23

Lisa Yan, CS109, 2019

O 1 2 3 4 5 o6 7 8 9 10
Number of earthquakes, k
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Are earthquakes really Poissonian?

Bulletin of the
Seismological Society of America

Vol. 64 October 1974 No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA,
WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GARDNER and L. KNOPOFF

ABSTRACT

Yes.
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X~Poi(1) L
Web server load E[x] = PR =e?t

Consider requests to a web server in 1 second.

In the past, server load averages 2 hits/second.
Let X = # hits the server receives in a second.

What is P(X < 5)?

Define RVs Solve

4 K

4
A
X~Poi(A = 2) P(X<5)=ZP(X=k) =Ze‘ﬂ— , Where 1 = 2
k=0

k!
k=0

4 k

— —22 ~ 5
—26 E~O.9

k=0
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Today’s plan

=) Poisson Paradigm

Some more Discrete RVs
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DNA

Lisa Yan, CS109, 2019

All the movies, images,
emails and other digital
data from more than
600 smartphones
(10,000 GB) can be
stored in the faint pink
smear of DNA at the end
of this test tube.

What is the probability

that DNA storage stays
uncorrupted?
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DNA

What is the probability that DNA storage stays uncorrupted?
In DNA (and real networks), we store large strings.
Let string length be long, e.g., n =~ 10*
Probability of corruption of each base pair is very small, e.g., p = 107°
Let X = # of corruptions.

What is P(DNA storage is uncorrupted) = P(X = 0)?

Approach 1: Approach 2:
X~Bin(n = 10%,p = 107°) X~Poi(1 = 10% - 1076 = 0.01)
A% 0.01°
PX=k) =, )p*—p)"* P(X =k)=ehm = e001
10%\ 4 n—6. L An106— _ ,—0.01
unwieldy! /] =( g )10 ©0(1—1076)10"0 € - so0c

~ (0.99049829 ~ (0.99049834 approximation!

Lisa Yan, CS109, 2019 Stanford University 22



The Poisson Paradigm, part 1

Poisson approximates Binomial
when n is large, p is small, and
A = np is “moderate.”

Different interpretations of
“moderate”:

* n>20andp < 0.05
*n>100andp < 0.1

Poisson is Binomial in the limit;
* A =np,wheren - oco,p = 0

4

R

Poisson can approximate Binomial!

Lisa Yan, C$109, 2019 Stanford University 23




The Poisson Paradigm, part 1

X~Poi(1) Y~Bin(n, p)
E[X] =2 E[Y] =np

m Bin(10,0.3)

m Bin(100,0.03)

Bin(1000,0.003)
i(3)

Poisson approximates Binomial 0.3 -
when n is large, p is small, and 0.25 1
A = np is “moderate.  o2-
Different interpretations of > 0157
“moderate”: T 01

* n>20andp < 0.05 0.05 1
*n>100and p < 0.1 OIIH

0

Poisson is Binomial in the limit:

* A =np,wheren - co,p - 0

Lisa Yan, CS109, 2019

e 7 8 9 10

la..
2

k

Poisson can approximate Binomial!
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Can these Binomial RVs be approximated? ()

0.1 -
m Bin(100,0.5)
< 0.05 -
" Ll
E/ 0 T T T "'|||||| T ||||||"' T T T T
O 10 20 30 40 50 60 70 80 90
0.3 -
09 - = Bin(100,0.04)
N 0.1
*n>20andp < 0.05 Ve '|' hh
E o -+ 4 T T T T T T T T T
*n>100andp < 0.1 0 10 20 30 40 50 60 70 80 90
Poisson is Binomial in the limit: 03 1 = Bin(100.0.96)
0.2 -
[ — I
A =np,wheren —» o,p -0 L |H|
m O | | | | | | | | Il‘ |

O 10 20 30 40 50 60 70 &0 90
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°)

)

Can these Binomial RVs be approximated? =

01 -
XK | =Bin(100,0.5)
< 0.05 - H H
Il
E/ 0 |I||||H | H“Lll... | | |
0O 10 20 30 40 50 60 70 80 90
03 -
09 - = Bin(100,0.04)
2
* n>20andp < 0.05 Lo MHM
E 0o -+ T T T T T T T T T
*n>100andp < 0.1 0 10 20 30 40 50 60 70 80 90
Poisson is Binomial in the limit; O3] I [ =Bin(100,0.96)

< 02 |
* A=np,wheren - oco,p - 0 % 0.1 - ‘”h
A
o 11

0

O 10 20 30 40 50 60 70 &0 90
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Can these Binomial RVs be approximated? &

0.1 -
x m Bin(100,0.5)
= 005 | ® Poi(50)
~ L. ]
I
E/ 0 | | | J|||||”H“ HI“”J
0 10 20 30 40 50 60 70 80 90
g Bin(100,0.04)
B Bin U,
02 - = Poi(4)
~
* n>20andp < 0.05 Lo ﬂ‘“"h
E 0 -+ "l T T T T T T
*n>100andp < 0.1 0 10 20 30 40 50 60 70 80 90
: : : : : - 0.3 -
Poisson is Binomial in the limit: ) Can approximate I [mBin(100,0.96) = Poi(4)
® _ I ] Bln(100,1-096)
A =np,wheren — o,p - 0 50_1‘ H
= 0 || ‘|||I I.||‘ |||

O 10 20 30 40 50 60 70 80 90
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Break for jokes/
announcements




Poisson Random Variable

Expectation E[X] = A
Variance Var(X) = 1

-4 . .
=» Yes, expectation and variance
=¥ of Poisson are the same
(intuition now)
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Properties of Poi(4) with the Poisson paradigm

Recall the Binomial:

Y"’Bin(n, p) Expectation E[Y] = np

Variance Var(Y) = np(1 —p)

Consider X~Poi(4), where A = np (n = oo,p — 0):

X ~Poi(A Expectation E[X]| = A
( ) Variance Var(X) = A

Proof:
ElX]=np=1
Var(X) =np(1—p) > A(1-0) =1

Lisa Yan, C$109, 2019 Stanford University 30




A Real License Plate Seen at Stanford

No, it's not mine...
but | kind of wish it was.
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Poisson Paradigm, part 2

Poisson can still provide a good approximation of the Binomial,
even when assumptions are “mildly” violated.

You can apply the Poisson approximation when:
"Successes” in trials are not entirely independent y

| —

e.g.. # entries in each bucket in large hash table. o

Probability of “Success” in each trial varies (slightly),
like a small relative change in a very small p

e.g.: Average # requests to web server/sec may fluctuate
slightly due to load on network
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Today’s plan

Poisson
Poisson Paradigm

=> Some more Discrete RVs
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More discrete RVs

Part of CS109 learning goals:
* Translate a problem statement into a random variable
* Understand new random variables

We focus primarily on Binomial, Bernoulli, and Poisson.

Here are a few more to get a sense of how random variables work.

“=» Focus on understanding how and when
—  touse RVs, not on memorizing PMFs.
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Geometric RV

Consider an experiment: independent trials of Ber(p) random variables.
def A Geometric random variable X is the # of trials until the first success.

PMF PX=k)=0Q-p)'p
XNGeO(p) Expectation E|X] = %
Range: {1,2, ...} WEITENGE Var(X) = 1p—_2p

Examples:
Flipping a coin (P(heads) = p) until first heads appears
Generate bits with P(bit = 1) = p until first 1 generated

Lisa Yan, C$109, 2019 Stanford University 35




Negative Binomial RV

Consider an experiment: independent trials of Ber(p) random variables.

def A Negative Binomial random variable X is the # of trials until
T SUCCESSES.
(fixed lecture error)

MF _ _(k TonT
X~NegBin(r, p) P(X_kr)‘(r—1)(1 2
Expectation E [X ] —

Variance Var(X) = 7”(1 p)
p

Range: {r,r+ 1, ...}

Examples:
Flipping a coin until " heads appears
# of strings to hash into table until bucket 1 has r entries

== Geo(p) = NegBin(1,p)
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Grid of random variables

Number of Time until
Successes SUCCEeSS
One trial Ber(p) Geo(p)
0 i
S | ln=1 U r=1
evera . .
trials Bin(n,p) NegBin(r, p)
Int I :
:f fi:\éz Poi(A) (tomorrow)

Lisa Yan, CS109, 2019

One success

Several
sSuUcCcesses

Interval of time to
first success
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Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/

RVs & state goal
X~Bin(5,0.1)
X~Poi(0.5)

A
X ~some distribution B.
C. X~NegBin(5,0.1)
D
E.
F.

Want: P(X =5) X~NegBin(1,0.1)

X~Geo(0.1)

None/other &\'?9

N
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Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/

RVs & state goal
A. X~Bin(5,0.1)

X ~some distribution B. X~Poi(0.5)
C. X~NegBin(5,0.1)

Want: P(X = 5) X~NegBin(1,0.1)
'3 X~Geo(0.1) “=> Be clear about whatis

4

F. None/other ““ Jvariable (unknown) (\‘9

in the problem setup. *
Lisa Yan, C$109, 2019 Stanford University 39




Catching Pol X~Geo(p) p(k) = (1-p)p
atching Fokemon

Wild Pokemon are captured by throwing Pokeballs at them.

» Each ball has probability p = 0.1 of capturing the Pokemon. m«j
* Each ball is an independent trial. A\

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/ 2. Solve
RVs & state goal

P(X=5) =(1-p)*1p wherek=5p=0.1
X~Geo(0.1)

Want: P(X = 5) = (0.9)*(0.1)

~ (0.066 ==

(23

N
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Hurricanes

:}g What is the probability of an
i -; extreme weather event?

N How do we model the
number of hurricanes in a
. season (year)?

7
Ny % ‘/*- ""
S AT

7 ?w\.‘mlk

J/
== Step 1. graph your
— distribution.
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25

351

20

15
hurricanes per year

icanes per year since 1

10

T T T
© O O O
M AN

40 -
0.2 -
0.15 -
0.1 -
0.05 -

Aouanbal) Aouanba

&)
—

}

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?
A.
B

Hurr




Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?

A. 40 1

N W
o O

frequency
o

o

1851
1856
1861
1866
1871
1876
1881
1886
1891
1896
1901
1906
1911
1916
1921
1926
1931
1936
1941
1946
1951
1956
1961
1966
1971
1976
1981
1986
1991
1996
2001
2006
2011

®

frequency
o
N
(@]

Looks kinda Poissonian!

~
L)

—_

@)

o O

(G2 I
!

@)
|

0] 5 10 15 20 25 30 35 40
hurricanes per year Stanford University 45




Hurricanes

" How do we model the
‘number of hurricanes in a
season (year)?

&
y

<LAET o == Step 2. Find a reasonable

= A ] —— . . .
) distribution (Poisson) and

compute parameters.

To the code!!
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k

ey A
Improbability X~Poi(1) p(k) =e™* -

i : 0.16 -
IlDJQits”s%r?66’ things look pretty oa = Poi(5.5)
' S 0-12 4 m Count (1851-1966)
5 0.1 -
What is the probability of over & 8;82 ]
15 hurricanes in a season (year) o4 -
given that the distribution doesn’t 0.02 -

change? 0 -
0 5 10 15 20 25 30 35 40

hurricanes per year

P(X > 15) =1 — P(X < 15)

15 This is the PMF of a Poisson.
. _ Your favorite programming language
=1~ E P(X — k) has a function for it.
k=0 In Python 3: from scipy import stats

=1-0.986 = 0.014 Y ecs.potsson(8.5)
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Hurricanes

" How do we model the
‘number of hurricanes in a
season (year)?

o  Step 3. See if there are
outliers

Lisa Yan, C$109, 2019 Stanford University 48




k

- |

Improbability X~Poi(1) p(k) =e™* -

Since 1966, there have been 0.16 1 |

. . 0.14 m P0i(8.5)

two years with over 30 hurricanes.
., 0.12 = Count (1851-1966)
S 0.1

. . S 0.08
What is the probability of over S 0.06

30 hurricanes in a season (year) * ¢4
given that the distribution doesn’t  0.02
change? 0

P(X >30)=1—P(X < 30)

30
=1-— ) P(X =k)

= 2.2E—-09

Lisa Yan, CS109, 2019

5 10 15 20 25 30 35 40
hurricanes per year

This is the PMF of a Poisson.

Your favorite programming language

has a function for it.

In Python 3: from scipy import stats
X = stats.poisson(8.5)
X.pmf (k)

Stanford University 49



The distribution has changed.

0.16 -

1851-

1966 0.08
0.04 -

m Poi(8.5)
Count (1851-1966)

O _ -

O 5 10 15 20

0.16 -
0.14 -
0.12 -

Since 0.10 A

1966 0.08 -
0.06 -

0.04 -
0.02 -
0.00 -

o) 5 10 15 20

Lisa Yan, CS109, 2019

25 30 35 40

m Poi(8.5)

m Count (1966-2015)

(= Poi(16.77)
L 11
5 30

2

35 40
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What changed?

Atmospheric CO2 (ppm)

400

(b

A

<
4

300 4

CO2 levels over the last 10,000 years

— Taylor Dome Ice Core
~Law Dome Ice Core
— Mauna Loa, Hawaii

~8000

7000 ~6000 *5000 ~4000 *3000 =2000 -1000

Years (AD)

1000 2000

Annual anomaly relative to 1961-1990 (C)

Lisa Yan, CS109, 2019

Global annual average surface temperature

— e —— — — — —— — T —" — — — T ——— —

2015
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What changed?

NOAA/NASA GOES Prdicet

It’s not just climate change. We also have better data collection now.

Lisa Yan, C$109, 2019 Stanford University
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k

Python SciPy RV methods X~Poi(d) p(k) = 7

from scipy import stats # great package
X = stats.poisson(8.5) # X ~ P01(A 8.5)
X.pmf(2) # P(X = 2)
Function Description
X.pmf (k) P(X=k)
X.cdf(k) P(X <k)
X.mean() E[X] SciPy reference:
https://docs.scipy.org/doc/
X. VCII"() Var(X) scipy/reference/generated/

X.std() SD(X) scipy.stats.poisson.html
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html

