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Discrete random variables

2

Discrete 
Random 

Variable, 𝑋

Experiment 
outcomes 𝑃 𝑋 = 𝑥 = 𝑝(𝑥)

𝐸 𝑋

Definition

Properties

Var(𝑋)

SD(𝑋)

𝐸 𝑋)

Note: Random Variables
also called distributions

Review
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Variance

The variance of a random variable 𝑋 with mean 𝐸 𝑋 = 𝜇 is

Var 𝑋 = 𝐸 𝑋 − 𝜇 )

Why isn’t variance defined as 𝐸 𝑋 − 𝐸 𝑋 ?

3

Review

𝐸 𝑋 − 𝐸 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 = 0 Linearity of expectation!
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Binomial random variable

4

Review

𝑋~Bin(𝑛, 𝑝)
Range: {0,1, … , 𝑛} Variance

Expectation

PMF

𝐸 𝑋 = 𝑛𝑝
Var 𝑋 = 𝑛𝑝(1 − 𝑝)

1. The random 
variable

2. is distributed 
as a

3. Binomial 4. with parameters

𝑋 ~ Bin(𝑛, 𝑝)
# independent trials

P(success) on each trial

𝑃 𝑋 = 𝑘 = 𝑝 𝑘 = 𝑛
𝑘 𝑝5 1 − 𝑝 675

(aka support)
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Today’s plan: Hurricanes

What is the probability of an extreme weather event?
5
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Today’s plan

Poisson

Poisson Paradigm

Some more Discrete RVs (if time)

6
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Before we start

The natural exponent 𝑒:

https://en.wikipedia.org/wiki/E_(mathematical_constant)

7

lim
6→=

1 −
𝜆
𝑛

6

= 𝑒7?

Jacob Bernoulli
while studying 

compound interest 
in 1683

https://en.wikipedia.org/wiki/E_(mathematical_constant)
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Algorithmic ride sharing

8

🙋

🙋

"

"
"

Probability of 𝑘 requests from this area in the next 1 minute?
On average, 𝜆 = 5 requests per minuteSuppose we know:
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Algorithmic ride sharing, approximately

At each second:
• Independent trial
• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.
𝐸 𝑋 = 𝜆 = 5

9

Probability of 𝑘 requests from this area in the next 1 minute?
On average, 𝜆 = 5 requests per minute

0 0 1 0 1 … 0 0 0 0 1

1 2 3 4 5 60

𝑋 ~ Bin 𝑛 = 60, 𝑝 = 5/60

Break a minute down into 60 seconds:

𝑃 𝑋 = 𝑘 = 60
𝑘

5
60

5

1 −
5
60

675

But what if there are two requests 
in the same second?🤔
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Algorithmic ride sharing, approximately

At each millisecond:
• Independent trial
• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.
𝐸 𝑋 = 𝜆 = 5

10

Probability of 𝑘 requests from this area in the next 1 minute?
On average, 𝜆 = 5 requests per minute

Break a minute down into 60,000 milliseconds:

𝑃 𝑋 = 𝑘 = 𝑛
𝑘

𝜆
𝑛

5

1 −
𝜆
𝑛

675

…

1 60,000

𝑋 ~ Bin 𝑛 = 60000, 𝑝 = 𝜆/𝑛

But what if there are two requests 
in the same millisecond?🤔
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Algorithmic ride sharing, approximately

For each time bucket:
• Independent trial
• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.
𝐸 𝑋 = 𝜆 = 5

11

Probability of 𝑘 requests from this area in the next 1 minute?
On average, 𝜆 = 5 requests per minute

Break a minute down into infinitely small buckets:

𝑃 𝑋 = 𝑘 = lim
6→=

𝑛
𝑘

𝜆
𝑛

5

1 −
𝜆
𝑛

675

Who wants to see some cool math?

OMG so small

1 ∞

𝑋 ~ Bin 𝑛, 𝑝 = 𝜆/𝑛
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Binomial in the limit

12

𝑃 𝑋 = 𝑘 = lim
6→=

𝑛
𝑘

𝜆
𝑛

5

1 −
𝜆
𝑛

675

= lim
6→=

𝑛!
𝑘!(𝑛 − 𝑘)!

𝜆5

𝑛5
1 − l

𝑛
6

1 − l
𝑛

5

lim
6→=

1 −
𝜆
𝑛

6

= 𝑒7?

= lim
6→=

𝑛!
𝑛5(𝑛 − 𝑘)!

𝜆5

𝑘!
1 − l

𝑛
6

1 − l
𝑛

5

Expand

Rearrange

= lim
6→=

𝑛!
𝑛5(𝑛 − 𝑘)!

𝜆5

𝑘!
𝑒7?

1 − l
𝑛

5

Def natural 

exponent

= lim
6→=

𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑘 + 1
𝑛5

𝑛 − 𝑘 !
𝑛 − 𝑘 !

𝜆5

𝑘!
𝑒7?

1 − l
𝑛

5
Expand

= lim
6→=

𝑛5

𝑛5
𝜆5

𝑘!
𝑒7?

1

Limit analysis

+ cancel
=
𝜆5

𝑘!
𝑒7?

Simplify
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Algorithmic ride sharing

13

🙋

🙋

"

"
"

Probability of 𝑘 requests from this area in the next 1 minute?
On average, 𝜆 = 5 requests per minute

𝑃 𝑋 = 𝑘 =
𝜆5

𝑘!
𝑒7?
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Simeon-Denis Poisson

French mathematician (1781 – 1840)
• Published his first paper at age 18
• Professor at age 21
• Published over 300 papers
“Life is only good for two things: doing mathematics and teaching it.”

14
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Consider an experiment that lasts a fixed interval of time.
def A Poisson random variable 𝑋 is the number of successes over the 

experiment duration.

Examples:
• # earthquakes per year
• # server hits per second
• # of emails per day

Poisson Random Variable

15

𝑃 𝑋 = 𝑘 = 𝑒7?
𝜆5

𝑘!𝑋~Poi(𝜆)
Range: {0,1, 2, … }

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆

Yes, expectation and variance 
of Poisson are the same 
(shown later)

👉

Variance
Expectation
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Poisson process
1. Consider events that

occur over time.

2. Split time interval into
𝑛 → ∞ subintervals.

3. Let 𝑋 = # events in original time interval.
𝑋~ Poi(𝜆)

16

Use Poisson if you:
• have a rate
• care about # occurrences

👉

𝑝 𝑘 = 𝑒7?
𝜆5

𝑘!

• Event: earthquakes, radioactive decay,
web server hits, etc.

• Time interval: 1 year, 1 sec, whatever
• Events arrive at average rate 𝜆 events/time interval

• Assume at most one event per sub-interval.
• Event occurrences in sub-intervals are 

independent.
• With many sub-intervals, probability of event 

occurring in any given sub-interval is small

𝑋~Poi(𝜆)
𝐸 𝑋 = 𝜆
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Earthquakes
There are an average of 2.79 major earthquakes in the world each year.
What is the probability of 3 major earthquakes happening next year?

17

𝑝 𝑘 = 𝑒7?
𝜆5

𝑘!

1. Define RVs

2. Solve

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

𝑃(
𝑋

= 
𝑘)

Number of earthquakes, 𝑘

𝑋~Poi 2.79

= 𝑒7).KL
2.79 M

3!
≈ 0.23

𝑃 𝑋 = 3 = 𝑒7?
𝜆5

𝑘!
, where 𝑘 = 3,

𝜆 = 2.79

𝑋~Poi(𝜆)
𝐸 𝑋 = 𝜆
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Are earthquakes really Poissonian?

18



Lisa Yan, CS109, 2019

Web server load
Consider requests to a web server in 1 second.
• In the past, server load averages 2 hits/second.
• Let 𝑋 = # hits the server receives in a second.

What is 𝑃 𝑋 < 5 ?

19

𝑋~Poi(𝜆)
𝑝 𝑘 = 𝑒7?

𝜆5

𝑘!

1. Define RVs 2. Solve

𝐸 𝑋 = 𝜆

𝑋~Poi 𝜆 = 2 𝑃 𝑋 < 5 = Q
5RS

T

𝑃 𝑋 = 𝑘 = Q
5RS

T

𝑒7?
𝜆5

𝑘!

= Q
5RS

T

𝑒7)
25

𝑘!
≈ 0.95

, where 𝜆 = 2
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Today’s plan

Poisson

Poisson Paradigm

Some more Discrete RVs

20



Lisa Yan, CS109, 2019

DNA

21

All the movies, images, 
emails and other digital 
data from more than 
600 smartphones 
(10,000 GB) can be 
stored in the faint pink 
smear of DNA at the end 
of this test tube.

What is the probability 
that DNA storage stays 
uncorrupted? 
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DNA
What is the probability that DNA storage stays uncorrupted?
• In DNA (and real networks), we store large strings.
• Let string length be long, e.g., 𝑛 ≈ 10T
• Probability of corruption of each base pair is very small, e.g., 𝑝 = 107U
• Let 𝑋 = # of corruptions.

What is P(DNA storage is uncorrupted) = 𝑃 𝑋 = 0 ?

22

1. Approach 1:
𝑋~Bin 𝑛 = 10T, 𝑝 = 107U

𝑃 𝑋 = 𝑘 = 𝑛
𝑘 𝑝5 1 − 𝑝 675

= 10T
0

107U⋅S 1 − 107U WSX7S

≈ 0.99049829

2. Approach 2:
𝑋~Poi 𝜆 = 10T ⋅ 107U = 0.01

𝑃 𝑋 = 𝑘 = 𝑒7?
𝜆5

𝑘!
= 𝑒7S.SW

0.01S

0!

= 𝑒7S.SW

≈ 0.99049834
⚠unwieldy!

a good 
approximation!

✅
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The Poisson Paradigm, part 1

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:
• 𝑛 > 20 and 𝑝 < 0.05
• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:
• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0

23

Poisson can approximate Binomial!👉
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The Poisson Paradigm, part 1

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:
• 𝑛 > 20 and 𝑝 < 0.05
• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:
• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0

24

Poisson can approximate Binomial!👉

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

𝑃(
𝑋

= 
𝑘)

𝑋 = 𝑘

Bin(10,0.3)

Bin(100,0.03)

Bin(1000,0.003)

Poi(3)

𝑋~Poi(𝜆)
𝐸 𝑋 = 𝜆

𝑌~Bin(𝑛, 𝑝)
𝐸 𝑌 = 𝑛𝑝
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Can these Binomial RVs be approximated?

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:
• 𝑛 > 20 and 𝑝 < 0.05
• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:
• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0

25

0

0.05

0.1

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘)

Bin(100,0.5)

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘)

Bin(100,0.04)

🤔

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘) Bin(100,0.96)



Lisa Yan, CS109, 2019

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘) Bin(100,0.96)

Can these Binomial RVs be approximated?

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:
• 𝑛 > 20 and 𝑝 < 0.05
• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:
• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0

26

0

0.05

0.1

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘)

Bin(100,0.5)

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘)

Bin(100,0.04)

🤔

✅

❌

⚠
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Can these Binomial RVs be approximated?

27

0

0.05

0.1

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘)

Bin(100,0.5)
Poi(50)

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘)

Bin(100,0.04)
Poi(4)

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90

𝑃(
𝑋

= 
𝑘)

Bin(100,0.96) Poi(4)

✅

❌

⚠Can approximate
Bin(100,1-0.96)

🤔

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:
• 𝑛 > 20 and 𝑝 < 0.05
• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:
• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0



Break for jokes/ 
announcements

28
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Consider an experiment that lasts a fixed interval of time.
def A Poisson random variable 𝑋 is the number of occurrences over the 

experiment duration.

Examples:
• # earthquakes per year
• # server hits per second
• # of emails per day

Poisson Random Variable

29

𝑃 𝑋 = 𝑘 = 𝑒7?
𝜆5

𝑘!𝑋~Poi(𝜆)
Range: {0,1, 2, … } Variance

Expectation

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆

Yes, expectation and variance 
of Poisson are the same 
(intuition now)

👉
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Properties of Poi(𝜆)with the Poisson paradigm
Recall the Binomial:

Consider 𝑋~Poi(𝜆), where 𝜆 = 𝑛𝑝 (𝑛 → ∞, 𝑝 → 0):

Proof:
𝐸 𝑋 = 𝑛𝑝 = 𝜆

Var 𝑋 = 𝑛𝑝 1 − 𝑝 → 𝜆 1 − 0 = 𝜆

30

𝑌~Bin(𝑛, 𝑝) Variance
Expectation 𝐸 𝑌 = 𝑛𝑝

Var 𝑌 = 𝑛𝑝(1 − 𝑝)

Expectation 𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆

𝑋~Poi(𝜆)
Variance
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A Real License Plate Seen at Stanford

No, it’s not mine… 
but I kind of wish it was.
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Poisson Paradigm, part 2
Poisson can still provide a good approximation of the Binomial,
even when assumptions are “mildly” violated.

You can apply the Poisson approximation when:
• ”Successes” in trials are not entirely independent

e.g.: # entries in each bucket in large hash table.
• Probability of “Success” in each trial varies (slightly),

like a small relative change in a very small p
e.g.: Average # requests to web server/sec may fluctuate

slightly due to load on network

32

👈
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Today’s plan

Poisson

Poisson Paradigm

Some more Discrete RVs

33
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More discrete RVs

Part of CS109 learning goals:
• Translate a problem statement into a random variable
• Understand new random variables

We focus primarily on Binomial, Bernoulli, and Poisson.

Here are a few more to get a sense of how random variables work.

34

Focus on understanding how and when
to use RVs, not on memorizing PMFs.👉
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Consider an experiment: independent trials of Ber(𝑝) random variables.
def A Geometric random variable 𝑋 is the # of trials until the first success.

Examples:
• Flipping a coin (𝑃 heads = 𝑝) until first heads appears
• Generate bits with 𝑃 bit = 1 = 𝑝 until first 1 generated

Geometric RV

35

𝑃 𝑋 = 𝑘 = 1 − 𝑝 57W𝑝
𝑋~Geo(𝑝)
Range: {1, 2, … }

PMF

𝐸 𝑋 = W
]

Var 𝑋 = W7]
]^

Variance

Expectation
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Consider an experiment: independent trials of Ber(𝑝) random variables.
def A Negative Binomial random variable 𝑋 is the # of trials until 

𝑟 successes.

Examples:
• Flipping a coin until 𝑟`a heads appears
• # of strings to hash into table until bucket 1 has 𝑟 entries

Negative Binomial RV

36

𝑃 𝑋 = 𝑘 = 𝑘 − 1
𝑟 − 1 1 − 𝑝 57b𝑝b𝑋~NegBin(𝑟, 𝑝)

Range: {𝑟, 𝑟 + 1,… }

PMF

𝐸 𝑋 = b
]

Var 𝑋 = b W7]
]^

Variance
Expectation

Geo 𝑝 = NegBin(1, 𝑝)👉

(fixed lecture error)
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Grid of random variables

37

Number of 
successes

Ber(𝑝)One trial

Several
trials

Interval
of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

(tomorrow)

One success

Several
successes

Interval of time to
first success

Time until 
success

𝑛 = 1 𝑟 = 1
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🤔
38

Catching Pokemon
Wild Pokemon are captured by throwing Pokeballs at them.
• Each ball has probability p = 0.1 of capturing the Pokemon.
• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ 
RVs & state goal

A. 𝑋~Bin 5, 0.1
B. 𝑋~Poi 0.5
C. 𝑋~NegBin 5, 0.1
D. 𝑋~NegBin 1, 0.1
E. 𝑋~Geo 0.1
F. None/other

2. Solve

𝑋~some distribution

Want: 𝑃 𝑋 = 5
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🤔

A. 𝑋~Bin 5, 0.1
B. 𝑋~Poi 0.5
C. 𝑋~NegBin 5, 0.1
D. 𝑋~NegBin 1, 0.1
E. 𝑋~Geo 0.1
F. None/other

39

Catching Pokemon
Wild Pokemon are captured by throwing Pokeballs at them.
• Each ball has probability p = 0.1 of capturing the Pokemon.
• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ 
RVs & state goal

2. Solve

Be clear about what is 
variable (unknown)
in the problem setup.

👉

𝑋~some distribution

Want: 𝑃 𝑋 = 5
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🤔

2. Solve

40

Catching Pokemon
Wild Pokemon are captured by throwing Pokeballs at them.
• Each ball has probability p = 0.1 of capturing the Pokemon.
• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ 
RVs & state goal

2. Solve

𝑋~Geo 0.1
Want: 𝑃 𝑋 = 5

𝑃 𝑋 = 5 = 1 − 𝑝 57W𝑝, where 𝑘 = 5, 𝑝 = 0.1

𝑋~Geo(𝑝) 𝑝 𝑘 = 1 − 𝑝 57W𝑝

= 0.9 T 0.1

≈ 0.066
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Hurricanes

What is the probability of an 
extreme weather event?

How do we model the 
number of hurricanes in a 
season (year)?

43

Step 1. graph your 
distribution.👉
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🤔
44

Hurricanes per year since 1851
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Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?
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🤔
45

Hurricanes per year since 1851
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Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?
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Looks kinda Poissonian!
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Hurricanes

How do we model the 
number of hurricanes in a 
season (year)?

46

Step 2. Find a reasonable 
distribution (Poisson) and 
compute parameters.

To the code!!

👉
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Improbability
Until 1966, things look pretty 
Poisson.

What is the probability of over
15 hurricanes in a season (year) 
given that the distribution doesn’t 
change?

47

𝑃 𝑋 > 15 = 1 − 𝑃(𝑋 ≤ 15)

𝑋~Poi(𝜆) 𝑝 𝑘 = 𝑒7?
𝜆5

𝑘!

= 1 −Q
5RS

Wd

𝑃 𝑋 = 𝑘

= 1 − 0.986 = 0.014
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This is the PMF of a Poisson.
Your favorite programming language
has a function for it.
In Python 3: from scipy import stats

X = stats.poisson(8.5) 
X.pmf(k)
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Hurricanes

How do we model the 
number of hurricanes in a 
season (year)?

48

Step 3. See if there are 
outliers👉
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Improbability
Since 1966, there have been
two years with over 30 hurricanes.

What is the probability of over
30 hurricanes in a season (year) 
given that the distribution doesn’t 
change?

49

𝑃 𝑋 > 30 = 1 − 𝑃(𝑋 ≤ 30)

𝑋~Poi(𝜆) 𝑝 𝑘 = 𝑒7?
𝜆5

𝑘!

= 1 −Q
5RS

MS

𝑃 𝑋 = 𝑘

= 2.2E − 09

This is the PMF of a Poisson.
Your favorite programming language
has a function for it.
In Python 3: from scipy import stats

X = stats.poisson(8.5) 
X.pmf(k)

🤔
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The distribution has changed.

50
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What changed?
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What changed?

52

It’s not just climate change. We also have better data collection now.
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Python SciPy RV methods

from scipy import stats # great package
X = stats.poisson(8.5) # X ~ Poi(λ = 8.5)
X.pmf(2) # P(X = 2)

53

Function Description
X.pmf(k) 𝑃 𝑋 = 𝑘
X.cdf(k) 𝑃 𝑋 ≤ 𝑘
X.mean() 𝐸 𝑋
X.var() Var 𝑋
X.std() SD 𝑋

𝑋~Poi(𝜆) 𝑝 𝑘 = 𝑒7?
𝜆5

𝑘!

SciPy reference:
https://docs.scipy.org/doc/
scipy/reference/generated/
scipy.stats.poisson.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html

