
10: The Normal 
Distribution
Lisa Yan
October 14, 2019

1



Lisa Yan, CS109, 2019

In today’s class
Each question (from a unique person) today as a 𝑝 = 0.3 probability of 

winning a pomegranate.

Let 𝑋 be the number of questions until we run out of fruit. 
𝑋~NegBin 𝑟 = 5, 𝑝 = 0.3
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Continuous random variables

3

Continuous 
Random 

Variable, 𝑋

Experiment 
outcomes 𝑓 𝑥

𝐸 𝑋

Definition

Properties

Var(𝑋)

SD(𝑋)

𝐸 𝑋0

Note 1: PDF is Probability Density
𝐹 𝑥
CDF

Support

Note 2: Random Variables
also called distributions

Review
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Probability from a PDF

4

𝑥2𝑥0

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 7
8

9
𝑓(𝑥) 𝑑𝑥

For a continuous RV 𝑋 with PDF 𝑓,

𝑥

𝑓 𝑥

𝑥;

Loving, not scary

Review

Support

7
<=

=
𝑓(𝑥) 𝑑𝑥 = 1
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CDF
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Review
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𝑓
𝑥

𝑥

𝑃 𝑋 ≤ 2
0

0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5

𝐹
𝑥

𝑥

𝑃 𝑋 ≤ 2

PDF 𝑓 𝑥 = 𝜆𝑒<BC
(not a probability)

CDF 𝐹 𝑥 = 1 − 𝑒<BC
(a probability)

Exponential RV, 𝑋

For a continuous random variable 𝑋 with PDF 𝑓(𝑥), the CDF of 𝑋 is

𝑃 𝑋 ≤ 𝑎 = 𝐹 𝑎 = 7
<=

8
𝑓 𝑥 𝑑𝑥
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CDF of a continuous RV
For a continuous random variable 𝑋 with PDF 𝑓(𝑥), the CDF of 𝑋 is

𝐹 𝑎 = 7
<=

8
𝑓 𝑥 𝑑𝑥

Important property: 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝐹 𝑏 − 𝐹(𝑎)

6

𝐹 𝑏 − 𝐹 𝑎 = 7
<¥

9
𝑓 𝑥 𝑑𝑥 − 7

<¥

8
𝑓 𝑥 𝑑𝑥

= 7
<¥

8
𝑓 𝑥 𝑑𝑥 + 7

8

9
𝑓 𝑥 𝑑𝑥 − 7

<¥

8
𝑓 𝑥 𝑑𝑥

= 7
8

9
𝑓 𝑥 𝑑𝑥

𝑓 𝑥

𝑥
𝑎 𝑏

𝐹 𝑏

Proof:

𝐹 𝑎

− =

(where we left off)
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🤔
7

Earthquakes

Strategy:
A. Bayes’ Theorem
B. Total Probability
C. Uniform RV
D. Poisson RV
E. Exponential RV

*In California, according to historical data form USGS, 2015

Major earthquakes (magnitude 8.0+) occur once every 500 years.*
1. What is the probability of a major earthquake in the next 30 years?
2. What is the standard deviation of years until the next earthquake?
3. What is the probability of zero major earthquakes next year?

We know:

0.002
earthquakes

year

500
years

earthquake

1
earthquakes
500 years
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🤔
8

Earthquakes

Strategy:
A. Bayes’ Theorem
B. Total Probability
C. Uniform RV
D. Poisson RV
E. Exponential RV

*In California, according to historical data form USGS, 2015

Major earthquakes (magnitude 8.0+) occur once every 500 years.*
1. What is the probability of a major earthquake in the next 30 years?
2. What is the standard deviation of years until the next earthquake?
3. What is the probability of zero major earthquakes next year?

We know:

0.002
earthquakes

year

500
years

earthquake

1
earthquakes
500 years
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Earthquakes
Major earthquakes (magnitude 8.0+) occur once every 500 years.*
1. What is the probability of a major earthquake in the next 30 years?
2. What is the standard deviation of years until the next earthquake?
3. What is the probability of zero major earthquakes next year?

9

𝑋: # earthquakes next year
𝑋 ~Poi(𝜆 = 0.002)
Want: 𝑃 𝑋 = 0

Define events/RVs & state goal

Solve

Strategy: D. Poisson RV

𝑃 𝑋 = 0 =
𝜆F𝑒<B

0!
= 𝑒<B ≈ 0.998

Strategy: E. Exponential RV

earthquakes
year𝜆:

𝑋~Poi(𝜆) 𝑝 𝑘 = 𝑒<B
𝜆L

𝑘!

*In California, according to historical data form USGS, 2015
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Earthquakes

10

𝑋: # earthquakes next year
𝑋 ~Poi(𝜆 = 0.002)
Want: 𝑃 𝑋 = 0

Define events/RVs & state goal

Solve

Strategy: D. Poisson RV

𝑃 𝑋 = 0 =
𝜆F𝑒<B

0!
= 𝑒<B ≈ 0.998

Define events/RVs & state goal

Solve

Strategy: E. Exponential RV

𝑋: when first earthquake happens
𝑋 ~Exp(𝜆 = 0.002)
Want: 𝑃 𝑋 > 1 = 1 − 𝐹(1)

earthquakes
year𝜆:

𝑃 𝑋 > 1 = 1 − 1 − 𝑒<B⋅; = 𝑒<B

𝑋~Exp(𝜆) 𝐹 𝑥 = 1 − 𝑒<BC

Major earthquakes (magnitude 8.0+) occur once every 500 years.*
1. What is the probability of a major earthquake in the next 30 years?
2. What is the standard deviation of years until the next earthquake?
3. What is the probability of zero major earthquakes next year?

*In California, according to historical data form USGS, 2015
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Today’s plan

Normal (Gaussian) RV

The Standard Normal, 𝑍

Sampling with the Normal

Normal approximation for Binomial (if time)

11
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Today’s the Big Day

12

Today
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def An Normal random variable 𝑋 is defined as follows:

Other names: Gaussian random variable

Normal Random Variable

13

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒< C<R S/0US

𝑋~𝒩(𝜇, 𝜎0)
Support: −∞,∞

Variance

Expectation

PDF

𝐸 𝑋 = 𝜇

Var 𝑋 = 𝜎0

𝑋~𝒩(𝜇, 𝜎0)
mean

variance

0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3

!
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🤔
14

Normal Random Variable

Match PDF to distribution:

𝒩 0, 1

𝒩(−2, 0.5)

𝒩 0, 5

𝒩(0, 0.2) 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

-5 -4 -3 -2 -1 0 1 2 3 4 5

!(0,1)
!(0,0.2)
!(0,5)
!(-2,0.5)

A. 
B.
C.
D.

𝑋~𝒩(𝜇, 𝜎0)
mean variance
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🤔
15

Normal Random Variable

Match PDF to distribution:

𝒩 0, 1

𝒩(−2, 0.5)

𝒩 0, 5

𝒩(0, 0.2) 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

-5 -4 -3 -2 -1 0 1 2 3 4 5

!(0,1)
!(0,0.2)
!(0,5)
!(-2,0.5)

A. 
B.
C.
D.

𝑋~𝒩(𝜇, 𝜎0)
mean variance

(B)

(C)

(D)

(A)
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Carl Friedrich Gauss

Carl Friedrich Gauss (1777-1855) was a remarkably influential
German mathematician.

Did not invent Normal distribution but rather popularized it
16
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Why the Normal?

• Common for natural phenomena: 
height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally

17

That’s what they 
want you to believe…
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Why the Normal?

• Common for natural phenomena: 
height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally

18

Actually log-normal

Just an assumption

Only if equally weighted

(okay this one is true)

I encourage you to stay critical of how 
to model real-world phenomena.👉
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0
0.05

0.1
0.15

0.2
0.25

0 … 44 48 52 56 60 64 … 900     …     44   48   52   56    60   64    …    90  

Okay, so why the Normal?
Part of CS109 learning goals:
• Translate a problem statement into a random variable

In other words: model real life situations with probability distributions

19

value

How do you model student heights?
• Suppose you have data from one classroom.

Fits perfectly!
But what about in 
another classroom?
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Part of CS109 learning goals:
• Translate a problem statement into a random variable

In other words: model real life situations with probability distributions

0
0.05

0.1
0.15

0.2
0.25

0 … 44 48 52 56 60 64 … 900     …     44   48   52   56    60   64    …    90  

Okay, so why the Normal?

20

Occam’s Razor:
“Non sunt multiplicanda 
entia sine necessitate.”
Entities should not be multiplied 
without necessity.

A Gaussian maximizes entropy 
for a given mean and variance.👉value

How do you model student heights?
• Suppose you have data from one classroom.

• Same mean/var
• Generalizes well



Lisa Yan, CS109, 2019

Anatomy of a beautiful equation

Let 𝑋~𝒩(𝜇, 𝜎0).
The PDF of 𝑋 is defined as:

21

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒<

C < R S

0US

0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3

!

normalizing constant
exponential

tail

symmetric
around 𝜇

variance 𝜎0
manages spread
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Campus bikes
You spend some minutes, 𝑋, traveling
between classes.
• Average time spent: 𝜇 = 4 minutes
• Variance of time spent: 𝜎0 = 2 minutes2

Suppose 𝑋 is normally distributed. What is the 
probability you spend ≥ 6 minutes traveling?

22

𝑋~𝒩(𝜇 = 4, 𝜎0 = 2)

𝑃 𝑋 ≥ 6 = 7
\

=
𝑓(𝑥)𝑑𝑥 = 7

\

= 1
𝜎 2𝜋

𝑒<
C < R S

0US 𝑑𝑥

(call me if you analytically solve this)
Loving, not scary
…except this time
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Computing probabilities with Normal RVs
For a Normal RV 𝑋~𝒩 𝜇, 𝜎0 , its CDF has no closed form.

𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 = 7
<=

C 1
𝜎 2𝜋

𝑒<
] < R S

0US 𝑑𝑦

However, we can solve for probabilities numerically using a function Φ:

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎

23

Cannot be 
solved 

analytically

⚠

CDF of
𝑋~𝒩 𝜇, 𝜎0

A function that has been 
solved for numerically

(we’ll spend the 
next few slides 

getting here)
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Linear transformations of Normal RVs

Let 𝑋~𝒩(𝜇, 𝜎0). If 𝑌 = 𝑎𝑋 + 𝑏, then
𝑌 is also Normal, where 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎0𝜎0).

Proof:
• 𝑌 is also Normal

• 𝐸 𝑌 = 𝐸 𝑎𝑋 + 𝑏
= 𝑎𝐸 𝑋 + 𝑏
= 𝑎𝜇 + 𝑏

• Var 𝑌 = Var 𝑎𝑋 + 𝑏
= 𝑎0Var 𝑋 = 𝑎0𝜎0

24

Proof in Ross,
10th ed (Section 5.4)

Linearity of Expectation

Var 𝑎𝑋 + 𝑏 = 𝑎0Var 𝑋
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Today’s plan

Normal (Gaussian) RV

The Standard Normal, 𝑍

Sampling with the Normal

Normal approximation for Binomial (if time)

25
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The Standard Normal random variable 𝑍 is defined as follows:

Other names: Unit Normal

CDF of 𝑍 defined as:

Standard Normal RV, 𝑍

26

𝑍~𝒩(0, 1) Variance

Expectation 𝐸 𝑍 = 𝜇 = 0

Var 𝑍 = 𝜎0 = 1

0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3

! = 0

𝑃 𝑍 ≤ 𝑧 = Φ(𝑧)

Φ
(𝑧
)

𝑧

Note: not a new distribution; just
a special case of the Normal
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Φ has been numerically computed

27

Standard Normal Table
An entry in the table is the area under the curve to the left of z, P(Z ≤ z) = Φ(z).

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7793 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8906 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

0
0.1
0.2
0.3
0.4
0.5

-3 -2 -1 0 1 2 3

! = 1.31

𝑃 𝑍 ≤ 1.31 = Φ(1.31)
= 0.9049

Standard Normal Table has 
probabilities Φ(𝑧) for 𝑧 ≥ 0.👉

𝑓
𝑧

𝑧

Φ(𝑧)
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🤔

Recall that a Normal RV
has a symmetric PDF.

𝑍~𝒩(0, 1) has a numeric lookup
table for Φ 𝑥 , where 𝒙 ≥ 𝟎.

How do we compute the following probabilities in terms of Φ 𝑥 ? 

0
0.1
0.2
0.3
0.4
0.5

-3 -2 -1 0 1 2 3

!−!

29

Using symmetry of the Normal RV

1. 𝑃 𝑍 ≤ 𝑥
2. 𝑃 𝑍 < 𝑥
3. 𝑃 𝑍 ≥ 𝑥
4. 𝑃 𝑍 ≤ −𝑥
5. 𝑃 𝑍 ≥ −𝑥
6. 𝑃(𝑎 < 𝑍 < 𝑏)

A. Φ 𝑥
B. 1 − Φ(𝑥)
C. Φ 𝑏 −Φ(𝑎)

𝑓(
𝑥)

𝑥
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🤔
30

Using symmetry of the Normal RV
Recall that a Normal RV
has a symmetric PDF.

𝑍~𝒩(0, 1) has a numeric lookup
table for Φ 𝑥 , where 𝒙 ≥ 𝟎.

How do we compute the following probabilities in terms of Φ 𝑥 ? 

1. 𝑃 𝑍 ≤ 𝑥
2. 𝑃 𝑍 < 𝑥
3. 𝑃 𝑍 ≥ 𝑥
4. 𝑃 𝑍 ≤ −𝑥
5. 𝑃 𝑍 ≥ −𝑥
6. 𝑃(𝑎 < 𝑍 < 𝑏)

Use symmetry to compute 
probabilities Φ(𝑧) for 𝑧 < 0.👉

A. Φ 𝑥
B. 1 − Φ(𝑥)
C. Φ 𝑏 −Φ(𝑎)

= Φ 𝑥
= Φ 𝑥
= 1 − Φ(𝑥)
= 1 − Φ(𝑥)
= Φ 𝑥
= Φ 𝑏 −Φ(𝑎)

0
0.1
0.2
0.3
0.4
0.5

-3 -2 -1 0 1 2 3

!−!

𝑥

𝑓(
𝑥)
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Probabilities for a general Normal RV

Let 𝑋~𝒩(𝜇, 𝜎0) with CDF 𝐹. Then 𝐹 𝑥 = Φ C<R
U

,
where Φ is the Standard Normal 𝑍~𝒩(0, 1). 

Proof:

31👉

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥
= 𝑃 𝑋 − 𝜇 ≤ 𝑥 − 𝜇 = 𝑃

𝑋 − 𝜇
𝜎

≤
𝑥 − 𝜇
𝜎

= 𝑃 𝑍 ≤
𝑥 − 𝜇
𝜎

Algebra + 𝜎 > 0
Definition of CDF

• Let 𝑍 = e<R
U = e

U −
R
U, a linear transform of 𝑋.

• Then 𝑍 is normal, where 𝑍~𝒩(R
U
− R
U
, ;
US
𝜎0).

• Then 𝑍~𝒩 0,1 with CDF Φ.

= Φ
𝑥 − 𝜇
𝜎

1. Compute z = 𝑥 − 𝜇 /𝜎.
2. Look up Φ 𝑧 in Standard Normal table.

Let 𝑋~𝒩(𝜇, 𝜎0). If 𝑌 = 𝑎𝑋 + 𝑏, 
then 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎0𝜎0).
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Campus bikes
You spend some minutes, 𝑋, traveling between classes.
• Average time spent: 𝜇 = 4 minutes
• Variance of time spent: 𝜎0 = 2 minutes2

Suppose 𝑋 is normally distributed. What is the probability 
you spend ≥ 6 minutes traveling?

32

𝑋~𝒩(𝜇 = 4, 𝜎0 = 2) 𝑃 𝑋 ≥ 6 = 7
\

=
𝑓(𝑥)𝑑𝑥 (no analytic solution)

1. Compute z = C<R
U

2. Look up Φ(z) in table
𝑃 𝑋 ≥ 6 = 1 − 𝐹C(6)

= 1 − Φ
6 − 4
2

×

= 1 −Φ 1.41

1 − Φ 1.41
≈ 1 − 0.9207
= 0.0793



Break for jokes/ 
announcements

33



Lisa Yan, CS109, 2019

Announcements

34

Problem Set 3

Out: today
Due: Wednesday 10/23
Covers: through this Wednesday

Concept checks

Due date: Tuesdays 1:00pm
Selected anonymous answers

(with consent)

Late days

Free: 2 free class days
No late days after last day of 

quarter (Fri 12/7)
(note PS#6 due Wed 12/5)

Model the tail of
climate change
on problem set 3!
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Which is random?

35

Sequence 2
HTHHHTHTTHHTTTTTTTTHHHTTTHHTTTTHHTTHHHTTHTHTTTTTTHT
HTTTTHHHHTHTHTTHTTTHTTHTTTTHTHHTHHHHTTTTTHHHHTHHHTT
TTHTHTTHHHHTHHHHHHHHTTHHTHHTHHHHHHHTTHTHTTTHHTTTTHT
HHTTHTTHTHTHTTHHHHHTTHTTTHTHTHHTTTTHTTTTTHHTHTHHHHT
TTTHTHHHHHHTHTHTHTHHHTHTTHHHTHHHHHHTHHHTHTTTHHHTTTH
HTHTTHHTHHHTHTTHTTHTTTHHTHTHTTTTHTHTHTTHTHTHT

Sequence 1
TTHHTHTTHTTTHTTTHTTTHTTHTHHTHHTHTHHTTTHHTHTHTTHTHHT
THTHHTHTTTHHTTHHTTHHHTHHTHTTHTHTTHHTHHHTTHTHTTTHHTT
HTHTHTHTHTTHTHTHHHTTHTHTHHTHHHTHTHTTHTTHHTHTHTHTTHH
TTHTHTTHHHTHTHTHTTHTTHHTTHTHHTHHHTTHHTHTTHTHTHTHTHT
HTHHHTHTHTHTTHTHHTHTHTTHTTTHHTHTTTHTHHTHHHHTTTHHTHT
HTHTHHHTTHHTHTTTHTHHTHTHTHHTHTTHTTHTHHTHTHTTT

Find out on
problem set 3!
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New-school lookup tables

36

(You should know how to use a 
lookup table for the exam)

Python 3:
scipy.stats.norm(mean, std).cdf(x)

CS109 website:
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Get your Gaussian On

37

• If 𝑋~𝒩 𝜇 , 𝜎0 , then 𝐹 𝑥 = Φ C<R
U

• Symmetry of the PDF of Normal RV implies  Φ −𝑥 = 1 −Φ 𝑥

“Get ur freak on”
Missy Elliott, 2001
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Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎0 = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0

38

𝑃 𝑋 > 0 = 1 − 𝐹 0

= 1 − Φ
−3
4

Compute z = C<R
U

= 1 − Φ
0 − 𝜇
𝜎

• If 𝑋~𝒩 𝜇, 𝜎0 , then 
𝐹 𝑥 = Φ C<R

U
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 −Φ 𝑥

Look up Φ(z) in table
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Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎0 = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0

39

𝑃 𝑋 > 0 = 1 − 𝐹 0

= 1 − Φ
−3
4

Compute z = C<R
U

= 1 − Φ
0 − 𝜇
𝜎

1 − Φ
−3
4

= 1 − 1 − Φ
3
4

= Φ
3
4

≈ 0.7734

Look up Φ(z) in table

• If 𝑋~𝒩 𝜇, 𝜎0 , then 
𝐹 𝑥 = Φ C<R

U
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 −Φ 𝑥
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Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎0 = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0
2. 𝑃 2 < 𝑋 < 5

40

𝑃 2 < 𝑋 < 5 = 𝐹(5) − 𝐹 2

= Φ
2
4
− Φ

−1
4

Compute z = C<R
U

= Φ
5 − 3
4

− Φ
2 − 3
4

• If 𝑋~𝒩 𝜇, 𝜎0 , then 
𝐹 𝑥 = Φ C<R

U
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 −Φ 𝑥
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Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎0 = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0
2. 𝑃 2 < 𝑋 < 5

41

𝑃 2 < 𝑋 < 5 = 𝐹(5) − 𝐹 2

= Φ
2
4
− Φ

−1
4

Compute z = C<R
U

= Φ
5 − 3
4

− Φ
2 − 3
4

= Φ
2
4
− 1 − Φ

1
4

≈ 0.6915 − 1 − 0.5987

= 0.2902

Look up Φ(z) in table

• If 𝑋~𝒩 𝜇, 𝜎0 , then 
𝐹 𝑥 = Φ C<R

U
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 −Φ 𝑥
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🤔
42

Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎0 = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0
2. 𝑃 2 < 𝑋 < 5
3. 𝑃 𝑋 − 3 > 6

A. 𝑃 𝑋 < −3 + 𝑃 𝑋 > 9
B. 𝑃 𝑋 < 9 − 𝑃 𝑋 > −3
C. Φ e<2

i
> Φ \<2

i

D. 1 − Φ \<2
i

Compute z = C<R
U

Look up Φ(z) in table

• If 𝑋~𝒩 𝜇, 𝜎0 , then 
𝐹 𝑥 = Φ C<R

U
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 −Φ 𝑥
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🤔
43

Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎0 = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0
2. 𝑃 2 < 𝑋 < 5
3. 𝑃 𝑋 − 3 > 6

A. 𝑃 𝑋 < −3 + 𝑃 𝑋 > 9
B. 𝑃 𝑋 < 9 − 𝑃 𝑋 > −3
C. Φ e<2

i
> Φ \<2

i

D. 1 − Φ \<2
i

Compute z = C<R
U

Look up Φ(z) in table

• If 𝑋~𝒩 𝜇, 𝜎0 , then 
𝐹 𝑥 = Φ C<R

U
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 −Φ 𝑥
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🤔
44

Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎0 = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0
2. 𝑃 2 < 𝑋 < 5
3. 𝑃 𝑋 − 3 > 6

Compute z = C<R
U

Look up Φ(z) in table

𝑃 𝑋 < −3 + 𝑃 𝑋 > 9

= 𝐹 −3 + 1 − 𝐹 9

= Φ
−3 − 3
4

+ 1 − Φ
9 − 3
4

• If 𝑋~𝒩 𝜇, 𝜎0 , then 
𝐹 𝑥 = Φ C<R

U
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 −Φ 𝑥
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🤔
45

Get your Gaussian On
Let 𝑋~𝒩 𝜇 = 3, 𝜎0 = 16 . Std deviation 𝜎 = 4.
1. 𝑃 𝑋 > 0
2. 𝑃 2 < 𝑋 < 5
3. 𝑃 𝑋 − 3 > 6

Compute z = C<R
U

Look up Φ(z) in table

𝑃 𝑋 < −3 + 𝑃 𝑋 > 9

= 𝐹 −3 + 1 − 𝐹 9

= Φ
−3 − 3
4

+ 1 − Φ
9 − 3
4

= Φ −
3
2
+ 1 − Φ

3
2

= 2 1 − Φ
3
2

≈ 0.1337

• If 𝑋~𝒩 𝜇, 𝜎0 , then 
𝐹 𝑥 = Φ C<R

U
• Symmetry of the PDF of 

Normal RV implies  
Φ −𝑥 = 1 −Φ 𝑥
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Send a voltage of 2 V or -2 V on
wire (to denote 1 and 0, respectively).
• 𝑋 = voltage sent
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode: 1   if 𝑅 ≥ 0.5
0   otherwise.

0
0.1
0.2
0.3
0.4
0.5

-5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0.5

Send 0
& = −2

Send 1
& = 2

Noisy Wires

46
𝐹 k
(𝑟
)

𝑅 = 𝑟
1. What is P(decoding error | original bit is 1)?

2. What is P(decoding error | original bit is 0)?

𝑃 𝑅 < 0.5| 𝑋 = 2 = 𝑃 2 + 𝑌 < 0.5 = 𝑃 𝑌 < −1.5
Y is Standard Normal= Φ −1.5 = 1 − Φ 1.5 ≈ 0.0668
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Send a voltage of 2 V or -2 V on
wire (to denote 1 and 0, respectively).
• 𝑋 = voltage sent
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode: 1   if 𝑅 ≥ 0.5
0   otherwise.

0
0.1
0.2
0.3
0.4
0.5

-5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0.5

Send 0
& = −2

Send 1
& = 2

Noisy Wires

47
𝐹 k
(𝑟
)

𝑅 = 𝑟
1. What is P(decoding error | original bit is 1)?

2. What is P(decoding error | original bit is 0)?

𝑃 𝑅 < 0.5| 𝑋 = 2 = 𝑃 2 + 𝑌 < 0.5 = 𝑃 𝑌 < −1.5
Y is Standard Normal= Φ −1.5 = 1 − Φ 1.5 ≈ 0.0668

𝑃 𝑅 ≥ 0.5| 𝑋 = −2 = 𝑃 −2 + 𝑌 ≥ 0.5 = 1 − Φ 2.5 ≈ 0.0062
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Today’s plan

Normal (Gaussian) RV

The Standard Normal, 𝑍

Sampling with the Normal

Normal approximation for Binomial (if time)

48
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ELO ratings

49

What is the probability that the Warriors win?
How do you model zero-sum games?
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ELO ratings
Each team has an ELO score 𝑆, 
calculated based on their
past performance.
• Each game, a team has

ability 𝐴~𝒩 𝑆, 2000 .
• The team with the higher

sampled ability wins.
What is the probability
that Warriors win
this game?

Want: 𝑃 Warriors win = 𝑃 𝐴o > 𝐴p

50

0
0.0005

0.001
0.0015

0.002
0.0025

1000 1500 2000 2500

𝜇=1470

0
0.0005

0.001
0.0015

0.002
0.0025

1000 1500 2000 2500

𝜇=1657

Arpad Elo

Warriors 𝐴o~𝒩 𝑆 = 1657, 2000

Opponents 𝐴p~𝒩 𝑆 = 1470, 2000
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ELO ratings

51

Want: 𝑃 Warriors win = 𝑃 𝐴o > 𝐴p

≈ 0.7488, calculated by sampling
0

0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1470

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1657
Warriors )*~, - = 1657, 2000

Opponents )1~, - = 1470, 2000

from scipy import stats
WARRIORS_ELO = 1657
OPPONENT_ELO = 1470
STDEV = 200
NTRIALS = 10000

nSuccess = 0
for i in range(NTRIALS):

w = stats.norm.rvs(WARRIORS_ELO, STDEV)
b = stats.norm.rvs(OPPONENT_ELO, STDEV)
if w > b:

nSuccess += 1
print("Warriors sampled win fraction", 

float(nSuccess) / NTRIALS)
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Today’s plan

Normal (Gaussian) RV

The Standard Normal, 𝑍

Sampling with the Normal

Normal approximation for Binomial (if time)

52
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🤔
53

Website testing

A. Poisson
B. Bayes’ Theorem
C. Binomial
D. Normal (Gaussian)
E. Uniform

Strategy:

• 100 people are given a new website design.
• 𝑋 = # people whose time on site increases
• CEO will endorse the new design if 𝑋 ≥ 65.
• The design actually has no effect, so P(time on site increases) = 0.5 

independently.
What is 𝑃 CEO endorses change ? Give a numerical approximation.
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🤔
54

Website testing

A. Poisson
B. Bayes’ Theorem
C. Binomial
D. Normal (Gaussian)
E. Uniform

Yes, actually!

Strategy:

• 100 people are given a new website design.
• 𝑋 = # people whose time on site increases
• CEO will endorse the new design if 𝑋 ≥ 65.
• The design actually has no effect, so P(time on site increases) = 0.5 

independently.
What is 𝑃 CEO endorses change ? Give a numerical approximation.


