11: Joint (Multivariate) Distributions

Lisa Yan
October 16, 2019

Concept check feedback

"It is difficult to know which random variable distribution to use when."
"Parts of last lecture were a bit confusing because of typos."

This is a totally understandable and relatable concern!
Problem Set 3 + Section 3 goals:

- Read problems
- Identify random variables.

Thank you for keeping me honest!

- The corrected slides are on website
- Lecture notes have also been updated with explanations for all examples.

$$
\sim \sim 2 \cdot P(X \leq x)=F(x)=\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} d y
$$

CDF of Standard Normal Z, solved for numerically
CDF of
If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then

Standard Normal Table

Standard Normal Table

An entry in the table is the area under the curve to the left of $z, P(Z \leq z)=\Phi(z)$.

				$\mathbf{0 . 0 1}$						
Z	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 9}$
$\mathbf{0 . 0}$	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
$\mathbf{0 . 1}$	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
$\mathbf{0 . 2}$	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
$\mathbf{0 . 3}$	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
$\mathbf{0 . 4}$	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
$\mathbf{0 . 5}$	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
$\mathbf{0 . 6}$	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
$\mathbf{0 . 7}$	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7793	0.7823	0.7852
$\mathbf{0 . 8}$	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
$\mathbf{0 . 9}$	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
$\mathbf{1 . 0}$	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
$\mathbf{1 . 1}$	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
$\mathbf{1 . 2}$	0.8849	0.8869	0.8888	0.8906	0.8925	0.8943	0.8962	0.8980	0.8997	0.9015
$\mathbf{1 . 3}$	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
$\mathbf{1 . 4}$	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
$\mathbf{1 . 5}$	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441

- $Z \sim \mathcal{N}(0,1)$ has a numeric lookup table for $\Phi(x)$, where $x \geq 0$.
- Computing implications: saving one lookup table for $\mathcal{N}(0,1)$ enables you to quickly compute probabilities for general $\mathcal{N}\left(\mu, \sigma^{2}\right)$!

Standard Normal Table

TABLES
SERVANT
au calcul des refractions APPROGHANTES DE L'HORIZON.

TABLE PREMIERE.
Intégrales de $e^{-t t} d t$, depuis une valeur quelconque de t jusqu'à tinfinie.

\boldsymbol{t}	Inttgrale.	Diff. prem.	Diff. II.	Diff. IIIT.
0,00	0,88622692	99966	$20 \mathbf{I}$	$\mathbf{1} 99$
0,01	0,87622724	999767	400	$\mathbf{1 9 9}$
0,02	0,86622057	99367	599	200
0,03	0,85623590	998768	799	199
0,04	0,84624822	997969	998	197
0,05	0,83626853	99697 I	1195	1999
0,06	0,82629882	995776	1394	196

The Standard Normal Table was first computed by Christian Kramp.

French astronomer (1760-1826).
Analyse des Réfractions Astronomiques et Terrestres, 1799
Used a Taylor series expansion to the third power

[^0]
Today's plan

Normal approximation for Binomial

Joint distributions (discrete)

Multinomial Random Variable

Text analysis

Website testing

- 100 people are given a new website design.
- $X=\#$ people whose time on site increases
- CEO will endorse the new design if $X \geq 65$.
- The design actually has no effect, so P(time on site increases) $=0.5$ independently. What is P (CEO endorses change)? Give a numerical approximation.

Strategy: A. Poisson
B. Bayes' Theorem
C. Binomial
Yes, actually! (D. Normal (Gaussian)
E. Uniform

Website testing

- 100 people are given a new website design.
- $X=\#$ people whose time on site increases
- CEO will endorse the new design if $X \geq 65$.
- The design actually has no effect, so P(time on site increases) $=0.5$ independently. What is P (CEO endorses change)? Give a numerical approximation.

Approach 1: Binomial

Define

$$
\begin{aligned}
& X \sim \operatorname{Bin}(n=100, p=0.5) \\
& \text { Want: } P(X \geq 65)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve } \\
& \qquad P(X \geq 65)=\sum_{i=65}^{100}\binom{100}{i} 0.5^{i}(1-0.5)^{100-i}
\end{aligned}
$$

Don't worry, Normal approximates Binomial

Galton Board
(We'll explain where this approximation comes from in 2 weeks' time)

Website testing

- 100 people are given a new website design.
- $X=\#$ people whose time on site increases
- CEO will endorse the new design if $X \geq 65$.
- The design actually has no effect, so P(time on site increases) $=0.5$ independently. What is P (CEO endorses change)? Give a numerical approximation.

Approach 1: Binomial

Define

$X \sim \operatorname{Bin}(n=100, p=0.5)$
Want: $P(X \geq 65)$
Solve

$$
P(X \geq 65) \approx 0.0018
$$

Approach 2: approximate with Normal

Define

$$
Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Solve

$$
\begin{aligned}
& P(X \geq 65) \approx P(Y \geq 65)=1-F_{Y}(65) \\
& \quad=1-\Phi\left(\frac{65-50}{5}\right)=1-\Phi(3) \approx 0.0013 ?
\end{aligned}
$$

Website testing with continuity correction

You must perform a continuity correction when approximating a discrete RV with a continuous RV.
$Y \sim \mathcal{N}(50,25)$ approximates $X \sim \operatorname{Bin}(100,0.5)$

Continuity correction

If $Y \sim \mathcal{N}(n p, n p(1-p))$ approximates
$X \sim \operatorname{Bin}(n, p)$, how do we approximate the following probabilities?

Continuity correction

If $Y \sim \mathcal{N}(n p, n p(1-p))$ approximates
$X \sim \operatorname{Bin}(n, p)$, how do we approximate the following probabilities?

Discrete (e.g., Binomial) probability question	Continuous (Normal) probability question
$P(X=6)$	$P(5.5 \leq Y \leq 6.5)$
$P(X \geq 6)$	$P(Y \geq 5.5)$
$P(X>6)$	$P(Y \geq 6.5)$
$P(X<6)$	$P(Y \leq 5.5)$
$P(X \leq 6)$	$P(Y \leq 6.5)$

Who gets to approximate?

Poisson approximation n large (>20), p small (<0.05) slight dependence okay

Normal approximation n large (>20), p mid-ranged $(n p(1-p)>10)$ independence

1. If there is a choice, use Normal to approx. 2. When using Normal to approximate a discrete RV, use a continuity correction.

Stanford Admissions (a while back)

Stanford accepts 2480 students.

- Each accepted student has 68\% chance of attending (independent trials)
- Let $X=\#$ of students who will attend

What is $P(X>1745)$? Give a numerical approximation.

Strategy: A. Just Binomial
B. Poisson
C. Normal
D. None/other

Stanford Admissions (a while back)

Stanford accepts 2480 students.

- Each accepted student has 68% chance of attending (independent trials)
- Let $X=\#$ of students who will attend

What is $P(X>1745)$? Give a numerical approximation.
Strategy: A. Just Binomial $n=2480$, computationally expensive
B. Poisson $\quad p=0.68$, not small enough
C. Normal Variance $n p(1-p)=540>10$

Define an approximation

Let $Y \sim \mathcal{N}(E[X], \operatorname{Var}(X))$

$$
P(Y \geq 1745.5)=1-F(1745.5)
$$ $E[X]=n p=1686$

$\operatorname{Var}(X)=n p(1-p) \approx 540 \rightarrow \sigma=23.3$

$$
=1-\Phi\left(\frac{1745.5-1686}{23.3}\right)
$$

$P(X>1745) \approx P(Y \geq 1745.5)$! $\begin{gathered}\text { Continuity } \\ \text { correction }\end{gathered}$

$$
=1-\Phi(2.54) \approx 0.0055
$$

Changes in Stanford Admissions

Stanford accepts 2480 students.

- Each accepted student has 68% chance of attending (independent trials) years ago
- Let $X=\#$ of students who will attend

What is $P(X>1745)$? Give a numerical approximation.

The Ganford gaily

Class of 2018 admit rates lowest in University history
March 28, 201416 Comments \boldsymbol{Y} Tweet Lke 901
Alex Zivkovic
Desk Editor

Overview for the Class of 2022

- Total Applicants: 47,451

Admit rate: 4.3\%

- Total Admits: 2,071

Yield rate: 81.9\%

- Total Enrolled: 1,706

Today's plan

Normal approximation for Binomial
 Cool normal facts
 Joint distributions (discrete)

Multinomial Random Variable

Text analysis

68\% rule

You may have heard the statement:
" 68% of the class will fall within 1 standard deviation of the exam average."
This is only true of normal distributions:
Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ with CDF F.

$$
\begin{aligned}
P(\mid X & -\mu \mid<\sigma)=P(\mu-\sigma<X<\mu+\sigma) \\
& =F(\mu+\sigma)-F(\mu-\sigma) \\
& =\Phi\left(\frac{(\mu+\sigma)-\mu}{\sigma}\right)-\Phi\left(\frac{(\mu-\sigma)-\mu}{\sigma}\right) \\
& =\Phi(1)-\Phi(-1)=\Phi(1)-(1-\Phi(1)) \\
& =2 \Phi(1)-1 \approx 2(0.8413)-1=0.6826
\end{aligned}
$$

68\% rule

You may have heard the statement:
" 68% of the class will fall within 1 standard deviation of the exam average."
This is only true of normal distributions:
Counterexample: Let $X \sim \operatorname{Unif}(\alpha, \beta)$.

$$
\begin{aligned}
& \mu=E[X]=\frac{\alpha+\beta}{2} \\
& \operatorname{Var}(X)=\frac{(\beta-\alpha)^{2}}{12} \quad \sigma=\operatorname{SD}(X)=\frac{\beta-\alpha}{\sqrt{12}}
\end{aligned}
$$

How does a computer sample the Normal?

How does Python generate random values according to a Normal distribution?

```
from scipy import stats
mean = 0
std = 1
for i in range(10):
    sample = stats.norm.rvs(mean, std)
    print(sample)
```

-1.5213511002970745
1.3986457271717916
2.1661966495582745
-0.09612045842653026
-0.6504681012424954
-0.6614649985106745
-1.1273650614139048
-1.8898482565694437
-2.4804202575017054
0.8141949960752278

CDF of Standard Normal, $\Phi(x)$

Inverse transform sampling

1. Generate a random probability u from $U \sim \operatorname{Unif}(0,1)$.
2. Find x such that $\Phi(x)=u$. In other words, compute $x=\Phi^{-1}(u)$.
(Since Φ^{-1} has no analytical solution, look up Box-Muller transform for further reading)

Today's plan

Normal approximation for Binomial

Joint distributions (discrete)

Multinomial Random Variable

Text analysis

Joint distributions

So far, we have only worked with 1-dimensional random variables:

However, in the real world, events often occur with other events.

ELO ratings

Basketball == Stats

What is the probability that the Warriors win? How do you model zero-sum games?

ELO ratings

Want: $P($ Warriors win $)=P\left(A_{W}>A_{B}\right)$

```
from scipy import stats
WARRIORS_ELO = 1657
OPPONENT_ELO = 1470
STDEV = 200
NTRIALS = 10000
nSuccess = 0
for i in range(NTRIALS):
    w = stats.norm.rvs(WARRIORS_ELO, STDEV)
    b = stats.norm.rvs(OPPONENT_ELO, STDEV)
    if w > b:
        nSuccess += 1
print("Warriors sampled win fraction",
    float(nSuccess) / NTRIALS)
```

CSio9 Goal: Reason about probabilities
≈ 0.7488, calculated by sampling involving multiple random variables.

Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

X	$P(X=1)$ probability of an event	$P(X=k)$ random variable

Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

$$
P(X=1)
$$

probability of
an event

X, Y

random variables

$$
\begin{gathered}
P(X=1 \cap Y=6) \\
P(X=1, Y=6) \\
\text { new notation: the comma }
\end{gathered}
$$

probability of the intersection of two events

$$
P(X=a, Y=b)
$$

joint probability mass function Stanford University 27

Discrete joint distributions

For two discrete joint random variables X and Y, the joint probability mass function is defined as:

$$
p_{X, Y}(a, b)=P(X=a, Y=b)
$$

The marginal distributions of the joint PMF are defined as:

$$
p_{X}(a)=P(X=a)=\sum_{y} p_{X, Y}(a, y) \quad p_{Y}(b)=P(Y=b)=\sum_{x} p_{X, Y}(x, b)
$$

Two dice

Roll two 6-sided dice, yielding values X and Y.

1. What is the joint PMF of X and Y ?

$$
p_{X, Y}(a, b)=1 / 36 \quad(a, b) \in\{(1,1), \ldots,(6,6)\}
$$

2. What is the marginal PMF of X ?

$$
p_{X}(a)=P(X=a)=\sum_{y} p_{X, Y}(a, y)=\sum_{y=1}^{6} \frac{1}{36}=\frac{1}{6} \quad a \in\{1, \ldots, 6\}
$$

Two dice

Roll two 6-sided dice, yielding values X and Y.

1. What is the joint PMF of X and Y ? $\quad p_{X, Y}(a, b)=1 / 36$

		X						
		1	2	3	4	5	6	
	1	$1 / 36$	\ldots	\ldots	\ldots	\ldots	$1 / 36$	
	2	\ldots	\ldots	\ldots	\ldots			

Probability table

- All possible outcomes for several discrete RVs
- Not parametric (e.g., parameter p in $\operatorname{Ber}(p))$

2. What is the marginal PMF of X ?

Break for jokes/
 announcements

Announcements

Concept checks

Due date: Tuesdays 1:00pm Selected anonymous answers (with consent)

Late days
Free: $\quad 2$ free class days
No late days after last day of quarter (Fri 12/7) (note PS\#6 due Wed 12/5)

Problem Set 1
Problem 16 solutions posted

A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has C computers, where $C=X$ Macs $+Y$ PCs.

$$
P(C=c)= \begin{cases}0.16, & c=0 \\ 0.24, & c=1 \\ 0.28, & c=2 \\ 0.32, & c=3\end{cases}
$$

What is $P(X=1, Y=0)$, the missing

entry in the probability table?

A. $\quad 1-(.16+.12+.07+\cdots+.04)=0.12$
B. $.24-(.12)=0.12$
C. $0.5(.24)=0.12$
D. All of the above
E. None/other

A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has C computers, where $C=X$ Macs $+Y$ PCs.
- Each computer in a household is equally likely to be a Mac or PC.

$$
P(C=c)= \begin{cases}0.16, & c=0 \\ 0.24, & c=1 \\ 0.28, & c=2 \\ 0.32, & c=3\end{cases}
$$

What is $P(X=1, Y=0)$, the missing

entry in the probability table?

A. $\quad 1-(.16+.12+.07+\cdots+.04)=0.12$
B. $.24-(.12)=0.12$
C. $0.5(.24)=0.12$
D. All of the above
E. None/other

	X (\# Macs)			
	0	1	2	3
00	. 16	?	. 07	. 04
O 1	. 12			0
> 2	. 07	. 12	0	0
3	. 04	0	0	0

A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has C computers, where $C=X$ Macs $+Y$ PCs.
- Each computer in a household is equally likely to be a Mac or PC.

$$
P(C=c)= \begin{cases}0.16, & c=0 \\ 0.24, & c=1 \\ 0.28, & c=2 \\ 0.32, & c=3\end{cases}
$$

Which entries in the probability table

 correspond to $P(C=3)$?| A. | X (\# Macs) | | | |
| :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 2 | 3 |
| (0 | . 16 | . 12 | . 07 | . 04 |
| O 1 | . 12 | . 14 | . 12 | 0 |
| 违 2 | . 07 | . 12 | 0 | 0 |
| 3 | . 04 | 0 | 0 | 0 |
| | | | | |

A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has C computers, where $C=X$ Macs $+Y$ PCs.
- Each computer in a household is equally likely to be a Mac or PC.

$$
P(C=c)= \begin{cases}0.16, & c=0 \\ 0.24, & c=1 \\ 0.28, & c=2 \\ 0.32, & c=3\end{cases}
$$

Which entries in the probability table

 correspond to $P(C=3)$?

A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has C computers, where $C=X$ Macs $+Y$ PCs.
- Each computer in a household is equally likely to be a Mac or PC.

$$
P(C=c)= \begin{cases}0.16, & c=0 \\ 0.24, & c=1 \\ 0.28, & c=2 \\ 0.32, & c=3\end{cases}
$$

How do you compute $P(X=0, Y=3)$?

$$
\begin{aligned}
P(X=0, Y=3) \\
\begin{aligned}
\text { Law of Total }= & \\
\text { Probability } & \\
& +P(X=0, Y=3 \mid C=3) P(C=3) \\
\text { Bin(n }=3, \mathrm{p}=0.5)= & \binom{3}{0} 0.5^{0} 0.5^{3} \cdot(0.32)+0 \\
= & 0.04
\end{aligned}
\end{aligned}
$$

A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has C computers, where $C=X$ Macs $+Y$ PCs.
- Each computer in a household is equally likely to be a Mac or PC.

$$
P(C=c)= \begin{cases}0.16, & c=0 \\ 0.24, & c=1 \\ 0.28, & c=2 \\ 0.32, & c=3\end{cases}
$$

Which entries in the probability table

correspond to the marginal PMF of X ?

A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has C computers, where $C=X$ Macs $+Y$ PCs.
- Each computer in a household is equally likely to be a Mac or PC.

$$
P(C=c)= \begin{cases}0.16, & c=0 \\ 0.24, & c=1 \\ 0.28, & c=2 \\ 0.32, & c=3\end{cases}
$$

Which entries in the probability table

correspond to the marginal PMF of X ?

A.	X (\# Macs)			
	0	1	2	3
0	. 16	. 12	. 07	. 04
$\bigcirc 1$. 12	. 14	. 12	0
\#	. 07	. 12	0	0
3	. 04	0	0	0

B.)	X (\# Macs)				
	0	1		3	
30	. 16	. 12	. 07	. 04	
O 1	. 12	. 14	. 12	0	0
迷 2	. 07	. 12	0	0	
3	. 04	0	0	0	
		m ro	ws he		

A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has C computers, where $C=X$ Macs $+Y$ PCs.
- Each computer in a household is equally likely to be a Mac or PC.

$$
P(C=c)= \begin{cases}0.16, & c=0 \\ 0.24, & c=1 \\ 0.28, & c=2 \\ 0.32, & c=3\end{cases}
$$

Today's plan

Normal approximation for Binomial
 Joint distributions (discrete)

Multinomial Random Variable

Text analysis

Recall the good times

Permutations
$n!$
How many ways are there to order n objects?

Counting unordered objects

Binomial coefficient

How many ways are there to group n objects into
two groups of size k and $n-k$, respectively?

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Called the binomial coefficient because of something from Algebra

Multinomial coefficient

How many ways are there to group n objects into r groups of sizes $n_{1}, n_{2}, \ldots, n_{r}$ respectively?

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

Probability

Binomial RV

What is the probability of getting k successes and $n-k$ failures in n trials?

$$
\begin{aligned}
P(X=k)=\binom{n}{k} & p^{k}(1-p)^{n-k} \\
\begin{array}{c}
\text { Binomial \# of ways of } \\
\text { ordering the successes }
\end{array} & \begin{array}{l}
\text { Probability of each ordering } \\
\text { on successes is equal }+ \\
\text { mutually exclusive }
\end{array}
\end{aligned}
$$

Multinomial RV

What is the probability of getting c_{1} of outcome 1 , c_{2} of outcome $2, \ldots$, and
c_{m} of outcome m in n trials?

Multinomial Random Variable

Consider an experiment:

- n independent trials
- Each trial results in one of m outcomes with respective probabilities $p_{1}, p_{2}, \ldots, p_{m}$ where $\sum_{i=1}^{m} p_{i}=1$
- Let $X_{i}=\#$ of trials with outcome i.

def A Multinomial random variable X is defined as follows:

Joint PMF

$$
P\left(X_{1}=c_{1}, X_{2}=c_{2}, \ldots, X_{m}=c_{m}\right)=\binom{n}{c_{1}, c_{2}, \ldots, c_{m}} p_{1}^{c_{1}} p_{2}^{c_{2}} \cdots p_{m}^{c_{m}}
$$

Multinomial \# of ways of Probability of each ordering is ordering the outcomes equal + mutually exclusive
where $\sum_{i=1}^{m} c_{i}=n$ and $\binom{n}{c_{1}, c_{2}, \ldots, c_{m}}=\frac{n!}{c_{1}!c_{2}!\cdots c_{m}!}$ is a multinomial coefficient

Hello dice rolls, my old friends

A 6-sided die is rolled 7 times.	$\cdot 1$ one 0 threes	0 fives
What is the probability of getting:	-1 two 2 fours	3 sixes

Strategy (choose all that apply):
A. Law of total probability
B. Counting
C. Multinomial RV
D. Binomial RV
E. None/other

Hello dice rolls, my old friends

A 6-sided die is rolled 7 times.	$\cdot 1$ one 0 threes	0 fives
What is the probability of getting:	-1 two 2 fours	3 sixes

Strategy (choose all that apply):
A. Law of total probability
B. Counting
C. Multinomial RV
D. Binomial RV
E. None/other

Hello dice rolls, my old friends

A 6-sided die is rolled 7 times.
What is the probability of getting:

- 1 one - 0 threes - 0 fives
- 1 two - 2 fours - 3 sixes

$$
P\left(X_{1}=1, X_{2}=1, X_{3}=0, X_{4}=2, X_{5}=0, X_{6}=3\right)
$$

$$
=\binom{7}{1,1,0,2,0,3}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{0}\left(\frac{1}{6}\right)^{2}\left(\frac{1}{6}\right)^{0}\left(\frac{1}{6}\right)^{3}=420\left(\frac{1}{6}\right)^{7}
$$

Today's plan

Normal approximation for Binomial
Joint distributions (discrete)
Multinomial Random Variable

Text analysis

Probabilistic text analysis

Ignoring the order of words...
What is the probability of any given word that you write in English?

- $P($ word $=$ "the" $)>P($ word $=$ "pokemon" $)$
- $P($ word $=$ "Stanford" $)>P($ word = "Cal" $)$

Probabilities of counts of words = Multinomial distribution

A document is a large multinomial.
(according to the Global Language Monitor, there are 988,968 words in the English language used on the internet.)

Probabilistic text analysis

Probabilities of counts of words $=$ Multinomial distribution

Example document:
\#words: $n=48$
"When my late husband was alive he deposited some amount of Money with china Bank in which the amount will be declared to you once you respond to this message indicating your interest in helping to receive the fund and use it for Gods work as my wish."

$$
\begin{aligned}
& \text { bank }=1 \\
& \text { fund }=1 \\
& P(\\
& \begin{array}{l}
\text { money }=1 \\
\text { wish }=1
\end{array} \\
& \text { to }=3 \\
& \mid \text { spam })=\frac{n!}{1!1!1!1!\cdots 3!} p_{\text {bank }}^{1} p_{\text {fund }}^{1} \cdots p_{\text {to }}^{3} \\
& \text { Note: } P\left(\text { bank } \left\lvert\, \begin{array}{c}
\text { spam } \\
\text { writer }
\end{array}\right.\right) \gg P\left(\text { bank } \left\lvert\, \begin{array}{c}
\text { writer }= \\
\text { you }
\end{array}\right.\right)
\end{aligned}
$$

Probabilistic text analysis

Probabilities of counts of words $=$ Multinomial distribution

What about probability of those same words in someone else's writing?

- $P\left(\right.$ word = "probability" $\left.\left\lvert\, \begin{array}{c}\text { writer }= \\ \text { you }\end{array}\right.\right)>P\left(\right.$ word = "probability" $\left.\left\lvert\, \begin{array}{c}\text { writer = } \\ \text { non-CS109 student }\end{array}\right.\right)$

To determine authorship:

1. Estimate P (word|writer) from known writings
2. Use Bayes' Theorem to determine P (writer|document) for a new writing!

Who wrote The Federalist Papers?

Old and New Analysis

Authorship of The Federalist Papers

- 85 essays advocating ratification of the US constitution
- Written under the pseudonym "Publius" (really, Alexander Hamilton, James Madison, John Jay)

Who wrote which essays?

- Analyze probability of words in each essay and compare against word distributions from known writings of three authors

Let's write a program!

[^0]: integral from $x=0.03$ to infinity of $\mathrm{e}^{\wedge}\left\{-x^{\wedge} 2\right\}$
 $\int_{E^{\pi}}^{\pi}$ Extended Keyboard

 Definite integral:
 $\int_{0.03}^{\infty} e^{-x^{2}} d x=0.856236$

