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Concept check feedback
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random variable distribution relatable concern!
to use when.” Problem Set 3 + Section 3 goals:

* Read problems
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Normal RVs Review

mean variance

X~V (1, 0%)  somro[ s

I, CDF has no closed form

CDF of Standard Normal Z,
solved for numerically
CDFof \If X~N(u,o0?), then —
X’V 2 X — —~ i —X X
N(,LL,O' ) F(x) — CI)( H) 0.4 | |

o o
* Symmetry of the PDF of Normal 8 I R
RV implies &(—x) =1 — ®(x) o2 10123
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Standard Normal Table

Standard Normal Table

An entry in the table is the area under the curve to the left of z, P(Z < z) = O(z).

-3 - -1 0 1 2 E

zZ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 :

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 ZNN(O' 1) haS a numeric IOOkup
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 ( ) >

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 table for CI) X ’ Where X = 0

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 07257 07291 07324 07357 07389 07422 07454 07486 07517 0.7549 Computing implications: saving

0.7 07580 0.7611 07642 0.7673 07703 0.7734 07764 0.7793 0.7823 0.7852

0.8 07881 07910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 one lookup table for ' (0, 1)

0.9 08159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 :

1.0 08413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 enables you to quickly compute
L1 08643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 probabllltles for genera| N (,LL,O'Z)!

1.2 0.8849 0.8869 0.8888 0.8906 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 09115 009131 09147 09162 09177
1.4 09192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
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Standard Normal Table optional

TABLES The Standard Normal Table was first

computed by Christian Kramp.

French astronomer (1760-1826).
AU CALCUL DES REFRACTIONS Analyse des Réfractions Astronomiques et Terrestres, 1799
APPROCHANTES DE L’HORIZON.

Used a Taylor series expansion to the
TABLE PREMIERE,

third power
Intégrales de e='" dt, depuis une valeur
quelcongque de t jusqu’a t infinie,
— BEEEE
' Intégrale. Di[f. prem.|Diff. IL. | Diff. 1. integral from x = 0.03 to infinity of e*{-x"2}

0,00 | 0,88622692 | 999968 20f | 199
0,01 | o, 8 62 2724 999767 400 | 199 ffo Extended Keyboard * Upload
0.02 ) 999367 599 | 200
0,03 9y8768 | 799 | 199 o
0,04 997 969 998 197 Definite integral:

0,05 08%626803 996971 | 1195 | 199
0,06 | 0,82629882 | 995776 | 1394 | 196

o0 2
[ e dx = 0.856236
0.03
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Today's plan

= Normal approximation for Binomial (on pset3)
Joint distributions (discrete)
Multinomial Random Variable

Text analysis
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Website testing

100 people are given a new website design.

X = # people whose time on site increases

CEO will endorse the new design if X > 65.

The design actually has no effect, so P(time on site increases) = 0.5 independently.

What is P(CEO endorses change)? Give a numerical approximation.

Strategy: Poisson
Bayes’ Theorem
Binomial
Yes, actually! Normal (Gaussian)

Uniform \ZJ
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Website testing

* 100 people are given a new website design.

* X = # people whose time on site increases

* CEO will endorse the new design if X = 65.

* The design actually has no effect, so P(time on site increases) = 0.5 independently.

What is P(CEO endorses change)? Give a nhumerical approximation.

Approach 1: Binomial
Define

X~Bin(n =100,p = 0.5)
Want: P(X = 65)

Solve 100

P(X = 65) = Z (1(_)0) 0.5{(1 — 0.5)100~

l
=65

Lisa Yan, C$109, 2019 Stanford University 8
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Website testing

* 100 people are given a hew website design.

* X = # people whose time on site increases

* CEO will endorse the new design if X = 65.

* The design actually has no effect, so P(time on site increases) = 0.5 independently.

What is P(CEO endorses change)? Give a numerical approximation.

Approach 2: approximate with Normal

Define u=np=50
Y~N(u,o?) o =np(1—p) =25
g=+25=5
Solve

—~

P(X > 65) ~ P(Y 2 65) = 1 — Fy(65) (&)
—1-® (65‘50) = 1—®(3) ~ 0.0013?

I. /1. (this approach is actually missing something)

Lisa Yan, C$109, 2019 Stanford University 10
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Website testing with continuity correction

You must perform a continuity correction when approximating a discrete RV
with a continuous RV.
Y~N(50,25) approximates X~Bin(100,0.5)

0.08
0.07 EBin(100, 0.5)
2006 —_—
~0.05 —ormazues 0.07
2.0.04 65
20.03 0.06 | N_
0.02 1 | B Bin(100. 0.5
0.01 =005 3 | in(100, 0.5)
e 30 40 50 60 ?OM 2 — Normal(50, 25)
x £0.03
P(X > 65) Binomial ~0.02
0.01
~ P(Y = 645) Normal 0.00
64 65 66
~ 0.0018 x
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Continuity correction

If Y~N(np,np(1 — p)) approximates
X~Bin(n,p), how do we approximate the
following probabilities?

Discrete (e.g., Binomial) Continuous (Normal)
probability question probability question

P(X =6)
P(X = 6)
P(X > 6)
P(X <6)
P(X <6)

Lisa Yan, CS109, 2019

@ Bin(100, 0.5)
— Normal(50, 25)

/"' ~ -

(23

N
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Continuity correction

If Y~N(np,np(1 — p)) approximates
X~Bin(n,p), how do we approximate the

following probabilities?

Discrete (e.g., Binomial)
probability question

Continuous (Normal)
probability question

P(X =6)
P(X = 6)
P(X > 6)
P(X <6)
P(X <6)

P(5.5<Y <£6.5)
P(Y = 5.5)
P(Y = 6.5)
P(Y <5.5)
P(Y <6.5)

Lisa Yan, CS109, 2019

@ Bin(100, 0.5)
— Normal(50, 25)
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Who gets to approximate?

0.25 - 0.09 -
= Bin(100,0.04) 0.08 - = Bin(100,0.5)

0.2 - = N(4,1.96) 0.07 A = N(50,5)

_ = Poi(4) 006 - = Poi(50)
h 015 " 0.05 -
> > 0.04 A
s 01 " 0.03 -
0.05 0.02 -
0.01 -

o4+ O -
0 10 30 40 50 60 70

X
Normal approximation
n large (> 20), p mid-ranged (np(1 — p) > 10)
independence

Poisson approximation
n large (> 20), p small (< 0.05)
slight dependence okay

j 1. If there is a choice, use Normal to approx.

2. When using Normal to approximate a
Lisavan, cs100, 2010 discrete RV, use a continuity correction.




Stanford Admissions (a while back)

Stanford accepts 2480 students.

Each accepted student has 68% chance of attending (independent trials)
Let X = # of students who will attend

What is P(X > 1745)? Give a numerical approximation.

Strategy: Just Binomial
Poisson
Normal
None/other

2

Stanford University 15
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Stanford Admissions (a while back)

Stanford accepts 2480 students.

Each accepted student has 68% chance of attending (independent trials)
Let X = # of students who will attend

What is P(X > 1745)? Give a numerical approximation.

Strategy: Just Binomial n = 2480, computationally expensive
Poisson p = 0.68, not small enough
Normal Variance np(1 — p) = 540 > 10
None/other
Define an approximation Solve
Let Y~V (E[X], Var(X)) P(Y > 1745.5) = 1 — F(1745.5)
E[X] = np = 1686 {—a (1745.5 — 1686)
Var(X) = np(1 —p) = 540 - 0 = 23.3 23.3 -
P(X > 1745) =~ P(Y = 1745.5) /! gg:rggt‘f(')tz =1—®(2.54) = 0.0055 K‘?)

Lisa Yan, C$109, 2019 Stanford University 16



Changes in Stanford Admissions

Yield rate 20
- Each accepted student has 68% chance of attending (independent trials) Y€ars ago

The Stanford Baily

NEWS - | SPORTS - | OPINIONS - | ARTS&LIFE - | THEGRIND | MULTIMEDIA - | FEATURES | ARCHIVES

Overview for the Class of 2022

= Total Applicants: 47,451 Admit rate: 4.3%

l(i!ass of 2018 admit rates lowest in University = Total Admits: 2,071
istory
March 28, 2014 16 Comments

Yield rate: 81.9%
= Total Enrolled: 1,706

Alex Zivkovic
Desk Editor

Stanford admitted 2,138 students to the
Class of 2018 in this year’s admissions R
cycle, producing - at 5.07 percent — the N »
lowest admit rate in University history.
The University received a total of 42,167 Peo p | e | Ove CO m I n g to Sta n fo rd !
applications this year, a record total and a [

8.6 percent increase over last year’s figure
of 38,828. Stanford accepted 748 students

Lisa Yan, C$109, 2019 Stanford University 17




Today's plan

E> Cool normal facts
Joint distributions (discrete)

Multinomial Random Variable

Text analysis

Lisa Yan, CS109, 2019 Stanford University 18




68% rule

You may have heard the statement:
“68% of the class will fall within 1 standard deviation of the exam average.’

This is only true of normal distributions:

?

Let X~N (u, 0%) with CDF F.

P(|X—-—ul<o)=P(u—oc<X<u+o)
=F(u+o)-F(u—-o)

0021 . =¢((u+0)—u>_¢((u—a)—u>

0.03 -

0] 0}
0.01 ~

=d(1) - d(-1) = d(1) — (1 - o(1))
O =20(1) —1 =~ 2(0.8413) — 1 = 0.6826

Lisa Yan, CS109, 2019 Stanford University 19




68% rule

You may have heard the statement:

“68% of the class will fall within 1 standard deviation of the exam average.”

This is only true of normal distributions:

Counterexample: Let X~Unif(a, B).

f(x)
1 —
f—«a

. 5|—_x
u=E[X]=“J2rB

- 2 .
varcn) = £ 5 _speny =F =

12 V12

Lisa Yan, CS109, 2019

P(|X—-—ul<o)=P(u—oc<X<u+o)

1
=ﬁ_a-[(u+a)—(u—a)]
3 1 B 1 | .,B—a
Wil =i
=2/412 ~ 0.58

Stanford University 20
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How does a computer sample the Normal?

optional

How does Python
generate random values
according to a Normal
distribution?

CDF of Standard Normal, ®(x)

1 -

0.8 +

0.6 +

0.4/+

0.2 +

from scipy import stats

mean = 0

std = 1

for 1 in range(10):
sample = stats.norm.rvs(mean, std)
print(sample)

Inverse transform sampling

-1.5213511002970745
1.3986457271717916
2.1661966495582745

-0.09612045842653026

-0.6504681012424954

-0.6614649985106745

-1.1273650614139048

-1.8898482565694437

-2.4804202575017054
0.8141949960752278

Generate a random probability u from

U~Unif(0,1).

Find x such that ®(x) = u. In other words,

compute x = @~ 1(w).

(Since ®~1 has no analytical solution, look up Box-Muller

A
\Y4

0
X

transform for further reading)

Lisa Yan, CS109, 2019
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Today's plan

=) Joint distributions (discrete)
Multinomial Random Variable

Text analysis

Lisa Yan, CS109, 2019 Stanford University 22




Joint distributions

So far, we have only worked with 1-dimensional random variables:

0.3 ~

. 0.25 -~
Single 02 # successes
dice roll : 0.5 in a minute
0.5 - >

2] z=131 01

é gg 4 I 005 _
Z 0.2 1 . '

Z 0.1 A 0 -

0 ; . . . . 01 2 3 4 5 6 7 8 9 10
- - - Number of earthquakes, k

o

w
N
=
o A
[N
N
w

However, in the real world, events often occur with other events.

2 successes in minute 1,
none in minutes 2-4,
3 successes in minute b

Outcomes on
two dice rolls

Lisa Yan, CS109, 2019 Stanford University 23




ELO ratings Review

Basketball == Stats
Skill
- & o o' ' YN
inat; IR & \ ==,
Determination

What is the probability that the Warriors win?
How do you model zero-sum games®?

Lisa Yan, CS109, 2019 Stanford University 24




ELO ratings Review

Warriors Ay ~N (S = 1657,2002)

Want: P(Warriors win) = P(Ay,, > Ag)

0.0025 - u=1657
from scipy import stats O%gii: |
WARRIORS_ELO = 1657 0001 - |
OPPONENT_ELO = 1470 0.0005 !
STDEV = 200 0 | | |
NTRIALS = 10000 1000 1500 2000 2500
Opponents Ag~N'(S = 1470, 2002)

nSuccess = 0 0.0025 -
for 1 in range(NTRIALS): 0.002 1

w = stats.norm.rvs(WARRIORS_ELO, STDEV) 0.0015

b = stats.norm.rvs(OPPONENT_ELO, STDEV) 0.001 A

1f w > b: 0.0005 -

nSuccess += 1 0 -

print("Warriors sampled win fraction", 1000 1500 2000 2500

float(nsuccess) / NTRIALS) CS109 Goal: Reason about probabilities

~ (.7488, calculated by sampling involving multiple random variables.

Lisa Yan, CS109, 2019 Stanford University 25




Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

X

random variable

P(X=1)

probability of
an event

Lisa Yan, CS109, 2019

P(X = k)

probability mass function

Stanford University 26



Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

X,Y

random variables

PX=1NnY = 6)
P(X =1,Y = 6)

new notation: the comma

probability of the intersection
of two events

Lisa Yan, CS109, 2019

P(X=a,Y = D)

joint probability mass function

Stanford University 27



Discrete joint distributions

For two discrete joint random variables X and Y,
the joint probability mass function is defined as:

pxy(a,b) =P(X =a,Y = D)
The marginal distributions of the joint PMF are defined as:

px(@ =P =) = ) pey(@y)  py(b)=P(Y =b) = ¥ pyy(x,b)
y X

“=» Use marginal distributions to get a 1-D RV
& from ajoint PMF.

Lisa Yan, C$109, 2019 Stanford University 28




Two dice

Roll two 6-sided dice, yielding values X and Y.
1. What is the joint PMF of X and Y?

pxy(a,b) =1/36 (a,b) € {(1,1),...,(6,6)}

2. What is the marginal PMF of X?

6
1 1
(@ =PX=a)= ) pry@nN=) ===  a€fl .6
y y=1

Lisa Yan, C$109, 2019 Stanford University 29




Two dice

Roll two 6-sided dice, yielding values X and Y.
1. What is the joint PMF of X and Y? pxy(a b) =1/36

X
1 2 3 4 5 6

1(1/36 .. .. | 1/36
2 P(X=4Y =2) N
3 I N Probability table

Y 4 * All possible outcomes

for several discrete RVs

° * Not parametric (e.g.,
6|1/36 | .. | .. | .. | .. |1/36 parameter p in Ber(p))

2. What is the marginal PMF of X?

Lisa Yan, C$109, 2019 Stanford University 30




Break for jokes/
announcements




Announcements

~

Concept checks

Due date: Tuesdays 1:00pm
Selected anonymous answers

_ (with consent) Yy

~

Free: 2 free class days
No late days after last day of
quarter (Fri 12/7)

/I_ate days

/
Problem Set 1

Problem 16 solutions posted

(note PS#6 due Wed 12/5)

o /

-

Lisa Yan, CS109, 2019
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A computer (or three) in every house.

Consider households in Silicon Valley. (016 c=0
A household has C computers, 0 24' c=1
where C = X Macs + Y PCs. P(C=c) = A« 0.28’ —
Each computer in a household is o €=
equally likely to be a Mac or PC. LO'BZ’ ¢c=3

Whatis P(X = 1,Y = 0), the missing

entry in the probability table?

X (# Macs)
1-(16+.12+4+.07 +---+.04) = 0.12 O 1 2 3
24— (12) = 0.12 0 |16 2 .07 .04
7))
0.5(.24) = 0.12 £ 1 |12 .1&12 0
*
All of the above o 2 o7 12 0 O
None/other 3 o4 0 O O

Lisa Yan, CS109, 2019 Stanford University 33




A computer (or three) in every house.

Consider households in Silicon Valley. (016 c=0
* A household has C computers, 0 24' c=1
where C = X Macs + Y PCs. P(C=c) =« 0.28’ S

* Each computer in a household is
equally likely to be a Mac or PC. LO'SZ’ c =3

Whatis P(X = 1,Y = 0), the missing
entry in the probability table?

X (# Macs)
A 1-(16+.12+ .07 +---+.04) =0.12 O 1 2 3
B. .24—-(12) =0.12 0 |16 ? .07 .04
C. 0.5(.24) =0.12 £ 1 12 .1&12 0
All of the above E 2 o7 12 0 O
=. None/other 3 |04 0 O O

PR

A joint probability table must sum to 1.

. L
Lisa Yan, CS109, 2019 OLalllULU ULLLVELdILY 94




A computer (or three) in every house.

Consider households in Silicon Valley. (016 c=0
A household has C computers, 0_24' c=1
where C = X Macs + Y PCs. P(C=c)=<028’ _
Each computer in a household is T €=
equally likely to be a Mac or PC. LO'BZ’ c=3

Which entries in the probability table
correspond to P(C = 3)?

X (# Macs) X (# Macs) X (# Macs)
o 1 2 3 o 1 2 3 o 1 2 3
_ 0 [16 12 07 .04 0 [16 12 07 04| _ o0 [16 12 07 .04
£ 1 |12 14 12 0 &1 |12 14 12 o| &1 |42 14 12 0O
5 lor 12 0 o 5 lor 42 0 o] S 2 |o7 42 0 o
3 |04 o 0 o 3 o4 o 0 o 3 |04 0 0 o




A computer (or three) in every house.

Consider households in Silicon Valley. (016 c=0
A household has C computers, 0_24' c=1
where C = X Macs + Y PCs. P(C=c)=<028’ _
Each computer in a household is T €=
equally likely to be a Mac or PC. LO'BZ’ c=3

Which entries in the probability table
correspond to P(C = 3)?

X (# Macs) X (# Macs) X (# Macs)
o 1 2 3 o 1 2 3 o 1 2 3
_ 0 [16 12 07 .04 0 [16 12 07 04| _ o0 [16 12 07 .04
£ 1 |12 14 12 0 &1 |12 14 12 o| &1 |42 14 12 0O
5 lor 12 0 o 5 lor 42 0 o] S 2 |o7 42 0 o
3 |04 o 0 o 3 o4 o 0 o 3 |04 0 0 o




A computer (or three) in every house.

Consider households in Silicon Valley. (016 =0
A household has C computers, 0_24' c=1
where C = X Macs + Y PCs. P(C=c)=<028’ _
Each computer in a household is T €=
equally likely to be a Mac or PC. \0-32» c=3

How do you compute P(X =0,Y = 3)?
X (# Macs)

P(X=0Y =3) o 1 2 3
Law of Total = P(X = 0,Y = 3|C = 3)P(C = 3) _ 0 |16 12 07 .04
Probability +P(X =0,Y =3[C#3DPC#3) S , |15 14 1o o

3
Bin(n=3,p=0.5) = ((3)) 0.5°0.53 - (0.32) + 0 =~ 2 |07 12 0 O
3

04 0 O O
=

= 0.04 N

Lisa Yan, CS109, 2019 Stanford University 37




A computer (or three) in every house.

Consider households in Silicon Valley. (016 c=0

A household has C computers, 0_24' c=1

where C = X Macs + Y PCs. P(C=c)=<028’ _

Each computer in a household is T €=

equally likely to be a Mac or PC. LO'BZ’ c=3
Which entries in the probability table
correspond to the marginal PMF of X?

X (# Macs) X (# Macs) X (# Macs)
0 1 2 3 0 1 2 3 0 1 2 3

—~ 0 |.16 .12 .07 .04 .0 |.16 .12 .07 .04 .0 |16 .12 .07 .04 %
S S S <
i 1 (12 14 12 O i 1 .12 14 12 O i 1 |12 14 12 0 |
~ 2 |.07 12 0 O — 2 |.07 12 0 O = 2 |07 12 0 o|3

3 .04 O 0 0 3 .04 O 0 0 3 .04 O 0 0 %

Sum rows here

Lisa Yan, CS109, 2019 Stantord university 38




A computer (or three) in every house.

Consider households in Silicon Valley. (016 c=0

A household has C computers, 0_24' c=1

where C = X Macs + Y PCs. P(C=c)=<028’ _

Each computer in a household is T €=

equally likely to be a Mac or PC. LO'BZ’ c=3
Which entries in the probability table
correspond to the marginal PMF of X?

X (# Macs) X (# Macs) X (# Macs)
0 1 2 3 0 1 2 3 0 1 2 3

—~ 0 |.16 .12 .07 .04 .0 |.16 .12 .07 .04 .0 |16 .12 .07 .04 %
S S S <
i 1 (12 14 12 O i 1 .12 14 12 O i 1 |12 14 12 0 |
~ 2 |.07 12 0 O — 2 |.07 12 0 O = 2 |07 12 0 o|3

3 .04 O 0 0 3 .04 O 0 0 3 .04 O 0 0 %

Sum rows here
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A computer (or three) in every house.

Consider households in Silicon Valley.

* A household has C computers,
where C = X Macs + Y PCs.

* Each computer in a household is
equally likely to be a Mac or PC.

X (# Macs)

o) 1

2 3

Y (# PCs)

w N -, O

04 O

A6 .12 .07 .04
12 14 12 O
Or 12 0 O

O O

39 .38 .19 .04

f

0.16, c=20
0.24, c=1
0.28, c=2
0.32, c=23
of Y,

py(y) = z pxy(x,y)

P(C=c) =<
\
.39
Marginal PMF
38
19
.04

v

PR

L —

Marginal PMF of X, py(x) = Z pxy(x,y)
y
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To find a marginal
distribution over one
variable, sum over all
other variables.
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Today's plan

=> Multinomial Random Variable

Text analysis
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Recall the good times

Time Machine

OFF | l \ ON

—

7
Share a COkB Wwith

Lisa

AN
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Permutations
n!
How many ways are

there to order n
objects?
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Counting unordered objects

Binomial coefficient

How many ways are there
to group n objects into
two groups of size k and
n — k, respectively?

(k)

Called the binomial coefficient
because of something from Algebra

n!
" kl(n—k)!

(

Lisa Yan, CS109, 2019

)
ny,No, ..., Ny)

Multinomial coefficient

How many ways are there
to group n objects into
r groups of sizes nq, n,, ..., N,
respectively?

n!

nydnyl--n,!

“=» Multinomial generalizes Binomial
& for counting.
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Probability

Binomial RV

What is the probability
of getting k successes
and n — k failures
in n trials?

P(X = k) = (j,) P~ p)"*

Binomial # of ways of  Probability of each ordering

ordering the successes  Of k successes is equal +
mutually exclusive

Lisa Yan, CS109, 2019

Multinomial RV

What is the probability of
getting ¢, of outcome 1,
¢, of outcome 2, ..., and

»

Ny

¢y, Of outcome m
in n trials?

=» Multinomial RVs also generalize
Binomial RVs for probability!
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Multinomial Random Variable

Consider an experiment:
n independent trials

Each trial results in onngL of m outcomes with respective probabilities
P1, P25 ---» Pm where Zi=1 Pi = 1
Let X; =# of trials with outcome i.

def A Multinomial random variable X is defined as follows:

Joint PMF

n c1..C C
— — _ — 1.,€2 .. Cm
Multinomial # of ways of Probability of each ordering is
ordering the outcomes equal + mutually exclusive
m

n n! . . . .
where Zci =n and ( ) = IS a multinomial coefficient
o Cll C2,...,Cm Cl!cz!...cm!
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Hello dice rolls, my old friends

A 6-sided die is rolled 7 times. 1 one 0 threes 0 fives
What is the probability of getting: 1 two 2 fours 3 sixes

Strategy (choose all that apply):
Law of total probability
Counting
Multinomial RV
Binomial RV
None/other
2/
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Hello dice rolls, my old friends

A 6-sided die is rolled 7 times. 1 one 0 threes 0 fives
What is the probability of getting: 1 two 2 fours 3 sixes

P(X;=1,X,=1X;=0,X, =2,Xc =0,X; = 3)

1 0 2 0

(02096 @ B @ 6 ) =)

7

2
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Today's plan

=) Text analysis

Lisa Yan, CS109, 2019 Stanford University 49




Probabilistic text analysis

lgnoring the order of words...

What is the probability of any given word that you write in English?
« P(word = “the”) > P(word = “pokemon”)
« P(word = “Stanford”) > P(word = “Cal”)

Probabilities of counts of words = Multinomial distribution <

L

A document is a large multinomial.

(according to the Global Language Monitor,
there are 988,968 words in the English language
used on the internet.)
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Probabilistic text analysis

Probabilities of counts of words = Multinomial distribution

Example document: #words: n = 48

“When my late husband was alive he deposited some amount of Money
with china Bank in which the amount will be declared to you once you
respond to this message indicating your interest in helping to receive the
fund and use it for Gods work as my wish.”

bank = 1
fund =1
n!

money = 1 - " ) ;
P( ‘Spam) ~ 1111111 31 PbankPfund " Pto

wish =1

to =3 Note: P (bank‘ \?ﬁ?{g}) > P (bank‘ wg/igeur=)
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Probabilistic text analysis

What about probability of those same words in someone else’s writing?

P (word = “probability” wr}i/’E)eJ =) > P (word = “probability” non—Cévii})eQr ;tudent)

To determine authorship: o

Estimate P(word|writer) from known writings —
Use Bayes’ Theorem to determine P (writer|document) for a new writing!

Who wrote The Federalist Papers?
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Old and New Analysis

Authorship of The Federalist Papers

85 essays advocating ratification

of the US constitution

Written under the pseudonym “Publius”

(really, Alexander Hamilton, James Madison, John Jay)

Who wrote which essays?

Analyze probability of words in each essay
and compare against word distributions from known writings of three authors

Let’s write a program!
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