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Concept check feedback

“It is difficult to know which 
random variable distribution
to use when.”

“Parts of last lecture were a
bit confusing because of typos.”
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This is a totally understandable and 
relatable concern!
Problem Set 3 + Section 3 goals:
• Read problems
• Identify random variables.

Thank you for keeping me honest!
• The corrected slides are on website
• Lecture notes have also been updated 

with explanations for all examples.
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• If 𝑋~𝒩 𝜇 , 𝜎' , then 

𝐹 𝑥 = Φ
𝑥 − 𝜇
𝜎

• Symmetry of the PDF of Normal 
RV implies  Φ −𝑥 = 1 −Φ 𝑥

Normal RVs

3

⚠ CDF has no closed form

CDF of
𝑋~𝒩 𝜇, 𝜎'

𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 = 0
12
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Review
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Standard Normal Table
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Standard Normal Table
An entry in the table is the area under the curve to the left of z, P(Z ≤ z) = Φ(z).

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7793 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8906 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

• 𝑍~𝒩(0, 1) has a numeric lookup 
table for Φ 𝑥 , where 𝒙 ≥ 𝟎.

• Computing implications: saving 
one lookup table for 𝒩 0, 1
enables you to quickly compute 
probabilities for general 𝒩(𝜇, 𝜎')! 
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Standard Normal Table
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The Standard Normal Table was first 
computed by Christian Kramp.
French astronomer (1760–1826).
Analyse des Réfractions Astronomiques et Terrestres, 1799

Used a Taylor series expansion to the 
third power

optional
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Today’s plan

Normal approximation for Binomial

Joint distributions (discrete)

Multinomial Random Variable

Text analysis

6

(on pset3)
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🤔
7

Website testing

A. Poisson
B. Bayes’ Theorem
C. Binomial
D. Normal (Gaussian)
E. Uniform

Yes, actually!

Strategy:

• 100 people are given a new website design.
• 𝑋 = # people whose time on site increases
• CEO will endorse the new design if 𝑋 ≥ 65.
• The design actually has no effect, so P(time on site increases) = 0.5 independently.

What is 𝑃 CEO endorses change ? Give a numerical approximation.

(where we left off)
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Website testing
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Approach 1: Binomial

𝑋~Bin 𝑛 = 100, 𝑝 = 0.5
Want: 𝑃 𝑋 ≥ 65

𝑃 𝑋 ≥ 65 = J
KLMN

OPP
100
𝑖 0.5K 1 − 0.5 OPP1K

Define

Solve

• 100 people are given a new website design.
• 𝑋 = # people whose time on site increases
• CEO will endorse the new design if 𝑋 ≥ 65.
• The design actually has no effect, so P(time on site increases) = 0.5 independently.

What is 𝑃 CEO endorses change ? Give a numerical approximation.
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Don’t worry, Normal approximates Binomial

Galton Board

(We’ll explain where 
this approximation 
comes from
in 2 weeks’ time)

9
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Website testing
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Approach 1: Binomial

𝑋~Bin 𝑛 = 100, 𝑝 = 0.5
Want: 𝑃 𝑋 ≥ 65

Define

Approach 2: approximate with Normal
Define
𝑌~𝒩 𝜇, 𝜎'

𝜇 = 𝑛𝑝 = 50
𝜎' = 𝑛𝑝 1 − 𝑝 = 25
𝜎 = 25 = 5

𝑃 𝑋 ≥ 65 ≈ 0.0018
𝑃 𝑋 ≥ 65 ≈ 𝑃 𝑌 ≥ 65 = 1 − 𝐹U(65)

= 1 − Φ MN1NP
N = 1 − Φ 3 ≈ 0.0013 ?

(this approach is actually missing something)⚠⚠

🤨

• 100 people are given a new website design.
• 𝑋 = # people whose time on site increases
• CEO will endorse the new design if 𝑋 ≥ 65.
• The design actually has no effect, so P(time on site increases) = 0.5 independently.

What is 𝑃 CEO endorses change ? Give a numerical approximation.

Solve
Solve
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You must perform a continuity correction when approximating a discrete RV 
with a continuous RV.

Website testing with continuity correction

11

64 65 66               

𝑃 𝑋 ≥ 65

𝑌~𝒩 50, 25 approximates 𝑋~Bin 100,0.5

65

≈ 𝑃 𝑌 ≥ 64.5
≈ 0.0018 ✅

Binomial

Normal
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🤔
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Continuity correction

If 𝑌~𝒩 𝑛𝑝, 𝑛𝑝(1 − 𝑝) approximates 
𝑋~Bin(𝑛, 𝑝), how do we approximate the 
following probabilities?

Discrete (e.g., Binomial) 
probability question

Continuous (Normal) 
probability question

𝑃 𝑋 = 6
𝑃 𝑋 ≥ 6
𝑃 𝑋 > 6
𝑃 𝑋 < 6
𝑃 𝑋 ≤ 6

…  5 6 7 …
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🤔
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Continuity correction

If 𝑌~𝒩 𝑛𝑝, 𝑛𝑝(1 − 𝑝) approximates 
𝑋~Bin(𝑛, 𝑝), how do we approximate the 
following probabilities?

Discrete (e.g., Binomial) 
probability question

Continuous (Normal) 
probability question

𝑃 𝑋 = 6
𝑃 𝑋 ≥ 6
𝑃 𝑋 > 6
𝑃 𝑋 < 6
𝑃 𝑋 ≤ 6

𝑃 5.5 ≤ 𝑌 ≤ 6.5
𝑃 𝑌 ≥ 5.5
𝑃 𝑌 ≥ 6.5
𝑃 𝑌 ≤ 5.5
𝑃 𝑌 ≤ 6.5

…  5 6 7 …
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Who gets to approximate?
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👉 1. If there is a choice, use Normal to approx.
2. When using Normal to approximate a 
discrete RV, use a continuity correction.

Poisson approximation
𝑛 large (> 20), 𝑝 small (< 0.05)

slight dependence okay

Normal approximation
𝑛 large (> 20), 𝑝 mid-ranged (𝑛𝑝 1 − 𝑝 > 10)

independence

0
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🤔
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Stanford Admissions (a while back)
Stanford accepts 2480 students.
• Each accepted student has 68% chance of attending (independent trials)
• Let 𝑋 = # of students who will attend

What is 𝑃 𝑋 > 1745 ? Give a numerical approximation.
Strategy: A. Just Binomial

B. Poisson
C. Normal
D. None/other
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🤔
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Stanford Admissions (a while back)
Stanford accepts 2480 students.
• Each accepted student has 68% chance of attending (independent trials)
• Let 𝑋 = # of students who will attend

What is 𝑃 𝑋 > 1745 ? Give a numerical approximation.
Strategy: A. Just Binomial

B. Poisson
C. Normal
D. None/other

𝐸 𝑋 = 𝑛𝑝 = 1686
Var 𝑋 = 𝑛𝑝 1 − 𝑝 ≈ 540 → 𝜎 = 23.3

𝑛 = 2480, computationally expensive
𝑝 = 0.68, not small enough
Variance 𝑛𝑝 1 − 𝑝 = 540 > 10

Define an approximation Solve
Let 𝑌~𝒩 𝐸 𝑋 , Var 𝑋

𝑃 𝑋 > 1745 ≈ 𝑃 𝑌 ≥ 1745.5 Continuity
correction

⚠

𝑃 𝑌 ≥ 1745.5 = 1 − 𝐹 1745.5

= 1 − Φ
1745.5 − 1686

23.3
= 1 − Φ 2.54 ≈ 0.0055

✅
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Changes in Stanford Admissions
Stanford accepts 2480 students.
• Each accepted student has 68% chance of attending (independent trials)
• Let 𝑋 = # of students who will attend

What is 𝑃 𝑋 > 1745 ? Give a numerical approximation.

17

Admit rate: 4.3%

Yield rate: 81.9%

Yield rate 20 
years ago

People love coming to Stanford!
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Today’s plan

Normal approximation for Binomial

Joint distributions (discrete)

Multinomial Random Variable

Text analysis

18

Cool normal facts
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68% rule
You may have heard the statement:
“68% of the class will fall within 1 standard deviation of the exam average.”
This is only true of normal distributions:

19

= 𝐹 𝜇 + 𝜎 − 𝐹 𝜇 − 𝜎

Let 𝑋~𝒩 𝜇, 𝜎' with CDF 𝐹.

= Φ
𝜇 + 𝜎 − 𝜇

𝜎
− Φ

𝜇 − 𝜎 − 𝜇
𝜎

= Φ 1 −Φ −1 = Φ 1 − 1 −Φ 1

= 2Φ 1 − 1 ≈ 2 0.8413 − 1 = 0.68260

0.01

0.02

0.03

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

!

" "

𝑥

𝑃 𝑋 − 𝜇 < 𝜎 = 𝑃 𝜇 − 𝜎 < 𝑋 < 𝜇 + 𝜎
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68% rule

20

You may have heard the statement:
“68% of the class will fall within 1 standard deviation of the exam average.”
This is only true of normal distributions:

𝛼 𝛽
𝑥

𝑓 𝑥
1

𝛽 − 𝛼

𝜇 = 𝐸 𝑋 =
𝛼 + 𝛽
2

Var 𝑋 =
𝛽 − 𝛼 '

12 𝜎 = SD 𝑋 =
𝛽 − 𝛼
12

Counterexample: Let 𝑋~Unif 𝛼, 𝛽 .

=
1

𝛽 − 𝛼 ⋅ 𝜇 + 𝜎 − 𝜇 − 𝜎

=
1

𝛽 − 𝛼
2𝜎 =

1
𝛽 − 𝛼

⋅ 2 ⋅
𝛽 − 𝛼
12

= 2/ 12 ≈ 0.58

𝑃 𝑋 − 𝜇 < 𝜎 = 𝑃 𝜇 − 𝜎 < 𝑋 < 𝜇 + 𝜎
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How does a computer sample the Normal?

How does Python 
generate random values 
according to a Normal 
distribution?

21

from scipy import stats
mean = 0
std = 1
for i in range(10):
sample = stats.norm.rvs(mean, std)
print(sample)

-1.5213511002970745
1.3986457271717916
2.1661966495582745

-0.09612045842653026
-0.6504681012424954
-0.6614649985106745
-1.1273650614139048
-1.8898482565694437
-2.4804202575017054
0.8141949960752278

0

0.2

0.4

0.6

0.8

1

-5 0 5

optional

CDF of Standard Normal, Φ 𝑥

𝑥

Inverse transform sampling
1. Generate a random probability 𝑢 from 

𝑈~Unif 0,1 .
2. Find 𝑥 such that Φ 𝑥 = 𝑢. In other words, 

compute 𝑥 = Φ1O 𝑢 .
(Since Φ1O has no analytical solution, look up Box-Muller 
transform for further reading)
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Today’s plan

Normal approximation for Binomial

Joint distributions (discrete)

Multinomial Random Variable

Text analysis

22
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Joint distributions

23

So far, we have only worked with 1-dimensional random variables:

However, in the real world, events often occur with other events.

0
0.1
0.2
0.3
0.4
0.5

-3 -2 -1 0 1 2 3

! = 1.31

0
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 !
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 =
 #)

Number of earthquakes, # 

2 successes in minute 1, 
none in minutes 2-4,

3 successes in minute 5

# successes 
in a minute

Outcomes on 
two dice rolls

1 2 3 4 5 6

Single 
dice roll
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ELO ratings

24

What is the probability that the Warriors win?
How do you model zero-sum games?

Review
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ELO ratings

25

Want: 𝑃 Warriors win = 𝑃 𝐴g > 𝐴h

≈ 0.7488, calculated by sampling

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1470

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1657
Warriors )*~, - = 1657, 2000

Opponents )1~, - = 1470, 2000

from scipy import stats
WARRIORS_ELO = 1657
OPPONENT_ELO = 1470
STDEV = 200
NTRIALS = 10000

nSuccess = 0
for i in range(NTRIALS):

w = stats.norm.rvs(WARRIORS_ELO, STDEV)
b = stats.norm.rvs(OPPONENT_ELO, STDEV)
if w > b:
nSuccess += 1

print("Warriors sampled win fraction", 
float(nSuccess) / NTRIALS)

Review

CS109 Goal: Reason about probabilities 
involving multiple random variables.
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Joint probability mass functions

26

Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

𝑃 𝑋 = 1
probability of

an event

𝑃 𝑋 = 𝑘
probability mass function

𝑋
random variable
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Joint probability mass functions

27

Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

𝑋
random variable

𝑃 𝑋 = 1
probability of

an event

𝑃 𝑋 = 𝑘
probability mass function

𝑃 𝑋 = 1 ∩ 𝑌 = 6

probability of the intersection
of two events

𝑃 𝑋 = 1, 𝑌 = 6
new notation: the comma

𝑋, 𝑌
random variables

𝑃 𝑋 = 𝑎, 𝑌 = 𝑏

joint probability mass function
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Discrete joint distributions
For two discrete joint random variables 𝑋 and 𝑌,
the joint probability mass function is defined as:

𝑝m,U 𝑎, 𝑏 = 𝑃 𝑋 = 𝑎, 𝑌 = 𝑏

The marginal distributions of the joint PMF are defined as:

28

Use marginal distributions to get a 1-D RV 
from a joint PMF.👉

𝑝m 𝑎 = 𝑃 𝑋 = 𝑎 =J
7

𝑝m,U 𝑎, 𝑦 𝑝U 𝑏 = 𝑃 𝑌 = 𝑏 =J
3

𝑝m,U 𝑥, 𝑏
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Two dice
Roll two 6-sided dice, yielding values 𝑋 and 𝑌.
1. What is the joint PMF of 𝑋 and 𝑌?

2. What is the marginal PMF of 𝑋?

29

𝑝m,U 𝑎, 𝑏 = 1/36 𝑎, 𝑏 ∈ 1,1 , … , 6,6

𝑝m 𝑎 = 𝑃 𝑋 = 𝑎 =J
7

𝑝m,U 𝑎, 𝑦 = J
7LO

M
1
36

=
1
6 𝑎 ∈ 1,… , 6
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Two dice
Roll two 6-sided dice, yielding values 𝑋 and 𝑌.
1. What is the joint PMF of 𝑋 and 𝑌?

30

𝑝m,U 𝑎, 𝑏 = 1/36

𝑋

1 2 3 4 5 6

𝑌

1 1/36 ... ... ... ... 1/36 

2 ... ... ... ... ... ...

3 ... ... ... ... ... ...

4 ... ... ... ... ... ...

5 ... ... ... ... ... ...

6 1/36 ... ... ... ... 1/36 

Probability table
• All possible outcomes

for several discrete RVs
• Not parametric (e.g., 

parameter 𝑝 in Ber(𝑝))

𝑃 𝑋 = 4, 𝑌 = 2

2. What is the marginal PMF of 𝑋?



Break for jokes/ 
announcements

31
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Announcements

32

Problem Set 1

Problem 16 solutions posted

Concept checks

Due date: Tuesdays 1:00pm
Selected anonymous answers

(with consent)

Late days

Free: 2 free class days
No late days after last day of 

quarter (Fri 12/7)
(note PS#6 due Wed 12/5)
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A computer (or three) in every house.

33

0 1 2 3

0 .16 ? .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌
(#

 P
Cs

)

A. 1 − .16 + .12 + .07 +⋯+ .04 = 0.12
B. .24 − .12 = 0.12
C. 0.5 .24 = 0.12
D. All of the above
E. None/other

Consider households in Silicon Valley.
• A household has 𝐶 computers,

where 𝐶 = 𝑋 Macs + 𝑌 PCs.
• Each computer in a household is

equally likely to be a Mac or PC.

𝑃 (𝐶 = 𝑐) =

0.16, 𝑐 = 0
0.24, 𝑐 = 1
0.28, 𝑐 = 2
0.32, 𝑐 = 3

What is 𝑃 𝑋 = 1, 𝑌 = 0 , the missing 
entry in the probability table?
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A computer (or three) in every house.

34

0 1 2 3

0 .16 ? .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌
(#

 P
Cs

)

A. 1 − .16 + .12 + .07 +⋯+ .04 = 0.12
B. .24 − .12 = 0.12
C. 0.5 .24 = 0.12
D. All of the above
E. None/other

Consider households in Silicon Valley.
• A household has 𝐶 computers,

where 𝐶 = 𝑋 Macs + 𝑌 PCs.
• Each computer in a household is

equally likely to be a Mac or PC.

𝑃 (𝐶 = 𝑐) =

0.16, 𝑐 = 0
0.24, 𝑐 = 1
0.28, 𝑐 = 2
0.32, 𝑐 = 3

A joint probability table must sum to 1.👉

What is 𝑃 𝑋 = 1, 𝑌 = 0 , the missing 
entry in the probability table?
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A computer (or three) in every house.
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C. 

Consider households in Silicon Valley.
• A household has 𝐶 computers,

where 𝐶 = 𝑋 Macs + 𝑌 PCs.
• Each computer in a household is

equally likely to be a Mac or PC.

𝑃 (𝐶 = 𝑐) =

0.16, 𝑐 = 0
0.24, 𝑐 = 1
0.28, 𝑐 = 2
0.32, 𝑐 = 3

Which entries in the probability table 
correspond to 𝑃(𝐶 = 3)?
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Consider households in Silicon Valley.
• A household has 𝐶 computers,

where 𝐶 = 𝑋 Macs + 𝑌 PCs.
• Each computer in a household is

equally likely to be a Mac or PC.
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0 1 2 3

0 .16 .12 .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌
(#
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)

𝑃 𝑋 = 0, 𝑌 = 3
= 𝑃 𝑋 = 0, 𝑌 = 3|𝐶 = 3 𝑃 𝐶 = 3
+𝑃 𝑋 = 0, 𝑌 = 3|𝐶 ≠ 3 𝑃 𝐶 ≠ 3

= 3
0 0.5P0.5u ⋅ 0.32 + 0

= 0.04

Consider households in Silicon Valley.
• A household has 𝐶 computers,

where 𝐶 = 𝑋 Macs + 𝑌 PCs.
• Each computer in a household is

equally likely to be a Mac or PC.

𝑃 (𝐶 = 𝑐) =

0.16, 𝑐 = 0
0.24, 𝑐 = 1
0.28, 𝑐 = 2
0.32, 𝑐 = 3

How do you compute 𝑃(𝑋 = 0, 𝑌 = 3)?

Law of Total 
Probability

Bin(n=3,p=0.5)
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A computer (or three) in every house.
Consider households in Silicon Valley.
• A household has 𝐶 computers,

where 𝐶 = 𝑋 Macs + 𝑌 PCs.
• Each computer in a household is

equally likely to be a Mac or PC.
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𝑃 (𝐶 = 𝑐) =

0.16, 𝑐 = 0
0.24, 𝑐 = 1
0.28, 𝑐 = 2
0.32, 𝑐 = 3
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Which entries in the probability table 
correspond to the marginal PMF of 𝑋?
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correspond to the marginal PMF of 𝑋?
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A computer (or three) in every house.
Consider households in Silicon Valley.
• A household has 𝐶 computers,

where 𝐶 = 𝑋 Macs + 𝑌 PCs.
• Each computer in a household is

equally likely to be a Mac or PC.
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𝑃 (𝐶 = 𝑐) =

0.16, 𝑐 = 0
0.24, 𝑐 = 1
0.28, 𝑐 = 2
0.32, 𝑐 = 3

0 1 2 3

0 .16 .12 .07 .04 .39

1 .12 .14 .12 0 .38

2 .07 .12 0 0 .19

3 .04 0 0 0 .04

.39 .38 .19 .04

𝑋 (# Macs)
𝑌

(#
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)

=J
7

𝑝m,U 𝑥, 𝑦

𝑝U 𝑦 =J
3

𝑝m,U 𝑥, 𝑦

To find a marginal 
distribution over one 
variable, sum over all 
other variables.

👉
Marginal PMF of 𝑋, 𝑝m 𝑥

Marginal PMF of 𝑌,
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Today’s plan

Normal approximation for Binomial

Joint distributions (discrete)

Multinomial Random Variable

Text analysis

41
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Recall the good times
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Permutations
𝑛!

How many ways are 
there to order 𝑛

objects?



Lisa Yan, CS109, 2019

Counting unordered objects

43

Binomial coefficient

How many ways are there
to group 𝑛 objects into

two groups of size 𝑘 and 
𝑛 − 𝑘, respectively?

Called the binomial coefficient
because of something from Algebra

Multinomial coefficient

How many ways are there
to group 𝑛 objects into

𝑟 groups of sizes 𝑛O, 𝑛', …, 𝑛x
respectively?

Multinomial generalizes Binomial
for counting.👉

𝑛
𝑘 =

𝑛!
𝑘! 𝑛 − 𝑘 !

𝑛
𝑛O, 𝑛', … , 𝑛x =

𝑛!
𝑛O! 𝑛'!⋯𝑛x!
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Probability
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Binomial RV

What is the probability
of getting 𝑘 successes 

and 𝑛 − 𝑘 failures
in 𝑛 trials?

Binomial # of ways of 
ordering the successes

Probability of each ordering 
of 𝑘 successes is equal + 
mutually exclusive 

𝑃 𝑋 = 𝑘 = 𝑛
𝑘 𝑝y 1 − 𝑝 z1y

Multinomial RV

What is the probability of 
getting 𝑐O of outcome 1,
𝑐' of outcome 2, …, and

𝑐{ of outcome 𝑚
in 𝑛 trials?

Multinomial RVs also  generalize 
Binomial RVs for probability!👉
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Multinomial Random Variable
Consider an experiment:
• 𝑛 independent trials
• Each trial results in one of 𝑚 outcomes with respective probabilities

𝑝O, 𝑝', …, 𝑝{ where ∑KLO{ 𝑝K = 1
• Let 𝑋K =# of trials with outcome 𝑖.

def A Multinomial random variable 𝑋 is defined as follows:

45

Joint PMF

Multinomial # of ways of 
ordering the outcomes

Probability of each ordering is 
equal + mutually exclusive 

𝑃 𝑋O = 𝑐O, 𝑋' = 𝑐', … , 𝑋{ = 𝑐{ =
𝑛

𝑐O, 𝑐', … , 𝑐{ 𝑝O
~�𝑝'

~9 ⋯𝑝{
~�

where J
KLO

{

𝑐K = 𝑛 and
𝑛

𝑐O, 𝑐', … , 𝑐{ =
𝑛!

𝑐O!𝑐'!⋯ 𝑐{!
is a multinomial coefficient
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🤔
46

Hello dice rolls, my old friends
A 6-sided die is rolled 7 times.
What is the probability of getting:

• 1 one
• 1 two

• 0 threes
• 2 fours

• 0 fives
• 3 sixes

A. Law of total probability
B. Counting
C. Multinomial RV
D. Binomial RV
E. None/other

Strategy (choose all that apply):
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Hello dice rolls, my old friends
A 6-sided die is rolled 7 times.
What is the probability of getting:

• 1 one
• 1 two

• 0 threes
• 2 fours

• 0 fives
• 3 sixes

A. Law of total probability
B. Counting
C. Multinomial RV
D. Binomial RV
E. None/other

Strategy (choose all that apply):
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🤔
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Hello dice rolls, my old friends
A 6-sided die is rolled 7 times.
What is the probability of getting:

• 1 one
• 1 two

• 0 threes
• 2 fours

• 0 fives
• 3 sixes

𝑃 𝑋O = 1, 𝑋' = 1, 𝑋u = 0, 𝑋� = 2, 𝑋N = 0, 𝑋M = 3

= 7
1,1,0,2,0,3

1
6

O 1
6

O 1
6

P 1
6

' 1
6

P 1
6

u

= 420
1
6

�
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Today’s plan

Normal approximation for Binomial

Joint distributions (discrete)

Multinomial Random Variable

Text analysis
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Probabilistic text analysis
Ignoring the order of words…
What is the probability of any given word that you write in English?
• 𝑃 word = “the” > 𝑃 word = “pokemon”
• 𝑃 word = “Stanford” > 𝑃 word = “Cal”

Probabilities of counts of words = Multinomial distribution

50

👈

A document is a large multinomial.
(according to the Global Language Monitor,
there are 988,968 words in the English language 
used on the internet.)
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Probabilistic text analysis
Probabilities of counts of words = Multinomial distribution

Example document:
“When my late husband was alive he deposited some amount of Money 
with china Bank in which the amount will be declared to you once you 

respond to this message indicating your interest in helping to receive the 
fund and use it for Gods work as my wish.”

51

#words: 𝑛 = 48

𝑃 spam =
𝑛!

1! 1! 1! 1!⋯3!
𝑝bank
O 𝑝fund

O ⋯𝑝to
u

bank = 1
fund = 1
money = 1
wish = 1
…
to = 3 Note: 𝑃 bank spam

writer ≫ 𝑃 bank writer=
you
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Probabilistic text analysis

Probabilities of counts of words = Multinomial distribution

What about probability of those same words in someone else’s writing?
• 𝑃 word = “probability” writer =

you > 𝑃 word = “probability” writer =
non−CS109 student

To determine authorship:
1. Estimate 𝑃 word|writer from known writings
2. Use Bayes’ Theorem to determine 𝑃 writer|document for a new writing!
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Who wrote The Federalist Papers?

👈
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Old and New Analysis

Authorship of The Federalist Papers
• 85 essays advocating ratification

of the US constitution
• Written under the pseudonym “Publius”

(really, Alexander Hamilton, James Madison, John Jay)

Who wrote which essays?
• Analyze probability of words in each essay

and compare against word distributions from known writings of three authors

53

Let’s write a program!


