13: Independent RVs

Lisa Yan
October 21, 2019

Probabilities from joint CDFs

$$
\begin{gathered}
\text { Joint CDF: } P(X \leq x, Y \leq y)=F_{X, Y}(x, y) \\
P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)= \\
F_{X, Y}\left(a_{2}, b_{2}\right)-F_{X, Y}\left(a_{1}, b_{2}\right)-F_{X, Y}\left(a_{2}, b_{1}\right)+F_{X, Y}\left(a_{1}, b_{1}\right)
\end{gathered}
$$

Probabilities from joint CDFs

$$
\begin{aligned}
& \quad \text { Joint CDF: } P(X \leq x, Y \leq y)=F_{X, Y}(x, y) \\
& P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)= \\
& F_{X, Y}\left(a_{2}, b_{2}\right)-F_{X, Y}\left(a_{1}, b_{2}\right)-F_{X, Y}\left(a_{2}, b_{1}\right)+F_{X, Y}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

Probabilities from joint CDFs

$$
\begin{aligned}
& \text { Joint CDF: } P(X \leq x, Y \leq y)=F_{X, Y}(x, y) \\
& P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)= \\
& F_{X, Y}\left(a_{2}, b_{2}\right)-F_{X, Y}\left(a_{1}, b_{2}\right)-F_{X, Y}\left(a_{2}, b_{1}\right)+F_{X, Y}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

Probabilities from joint CDFs

$$
\begin{aligned}
& \text { Joint CDF: } P(X \leq x, Y \leq y)=F_{X, Y}(x, y) \\
& P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)= \\
& F_{X, Y}\left(a_{2}, b_{2}\right)-F_{X, Y}\left(a_{1}, b_{2}\right)-F_{X, Y}\left(a_{2}, b_{1}\right)+F_{X, Y}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

Probabilities from joint CDFs

$$
\begin{aligned}
& \text { Joint CDF: } P(X \leq x, Y \leq y)=F_{X, Y}(x, y) \\
& P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)= \\
& F_{X, Y}\left(a_{2}, b_{2}\right)-F_{X, Y}\left(a_{1}, b_{2}\right)-F_{X, Y}\left(a_{2}, b_{1}\right)+F_{X, Y}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

Probabilities from joint CDFs

$$
\begin{aligned}
& \text { Joint CDF: } P(X \leq x, Y \leq y)=F_{X, Y}(x, y) \\
& P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)= \\
& F_{X, Y}\left(a_{2}, b_{2}\right)-F_{X, Y}\left(a_{1}, b_{2}\right)-F_{X, Y}\left(a_{2}, b_{1}\right)+F_{X, Y}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

Probabilities from joint CDFs

$$
\begin{aligned}
& \text { Joint CDF: } P(X \leq x, Y \leq y)=F_{X, Y}(x, y) \\
& P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)= \\
& F_{X, Y}\left(a_{2}, b_{2}\right)-F_{X, Y}\left(a_{1}, b_{2}\right)-F_{X, Y}\left(a_{2}, b_{1}\right)+F_{X, Y}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

Probability with Instagram!

$$
\begin{aligned}
& P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)= \\
& \quad F_{X, Y}\left(a_{2}, b_{2}\right)-F_{X, Y}\left(a_{1}, b_{2}\right)-F_{X, Y}\left(a_{2}, b_{1}\right)+F_{X, Y}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blur

$$
\begin{aligned}
& P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)= \\
& \quad F_{X, Y}\left(a_{2}, b_{2}\right)-F_{X, Y}\left(a_{1}, b_{2}\right)-F_{X, Y}\left(a_{2}, b_{1}\right)+F_{X, Y}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

In a Gaussian blur, for every pixel:

- Weight each pixel by the probability that X and Y are both within the pixel bounds
- The weighting function is a Gaussian joint PDF with a standard deviation parameter σ.

Gaussian blurring with $\sigma=3$
Joint PDF:

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \cdot 3^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 \cdot 3^{2}}
$$

Joint CDF:

$$
F_{X, Y}(x, y)=\Phi\left(\frac{x}{3}\right) \Phi\left(\frac{y}{3}\right)
$$

Weight matrix:
Center pixel: $(0,0)$ Pixel bounds:
$-0.5<x \leq 0.5$
$-0.5<y \leq 0.5$

Gaussian blur

$$
\begin{aligned}
& P\left(a_{1}<X \leq a_{2}, b_{1}<Y \leq b_{2}\right)= \\
& \quad F_{X, Y}\left(a_{2}, b_{2}\right)-F_{X, Y}\left(a_{1}, b_{2}\right)-F_{X, Y}\left(a_{2}, b_{1}\right)+F_{X, Y}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

In a Gaussian blur:

- Weight each pixel by the probability that X and Y are both within the pixel bounds

What is the weight of the center pixel?

$$
\begin{aligned}
& P(-0.5<X \leq 0.5,-0.5<Y \leq 0.5) \\
& =F_{X, Y}(0.5,0.5)-F_{X, Y}(-0.5,0.5) \\
& \quad \quad-F_{X, Y}(0.5,-0.5)+F_{X, Y}(-0.5,-0.5) \\
& =\Phi\left(\frac{0.5}{3}\right) \Phi\left(\frac{0.5}{3}\right)-2 \cdot \Phi\left(\frac{-0.5}{3}\right) \Phi\left(\frac{0.5}{3}\right) \\
& \quad+\Phi\left(\frac{-0.5}{3}\right) \Phi\left(\frac{-0.5}{3}\right)
\end{aligned}
$$

$\approx 0.5662^{2}-2 \cdot 0.5662 \cdot 0.4338+0.4338^{2}$
≈ 0.206

Gaussian blurring with $\sigma=3$

 Joint PDF:$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \cdot 3^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 \cdot 3^{2}}
$$

Joint CDF:

$$
F_{X, Y}(x, y)=\Phi\left(\frac{x}{3}\right) \Phi\left(\frac{y}{3}\right)
$$

Weight matrix:
Center pixel: $(0,0)$ Pixel bounds:

$$
\begin{aligned}
& -0.5<x \leq 0.5 \\
& -0.5<y \leq 0.5
\end{aligned}
$$

CSio9 roadmap

Multiple events:
intersection
$P(E \cap F)$
$=P(E F)$
conditional probability
$P(E \mid F)=\frac{P(E F)}{P(F)}$
independence

$$
P(E F)=P(E) P(F)
$$

Joint (Multivariate) distributions
Model ALL
joint PMF/PDF
$p_{X, Y}(x, y)$
$f_{X, Y}(x, y)$

conditional
distributions?
Yes!
(Wednesday)

independent
RVs?
Yes!
(today)

Today's plan (covered on midterm)

Independent RVs

Sum of independent RVs

- Binomial
- Convolution

- Poisson
- Normal
- ! Uniform

Expectation of sum of RVs (next class)

Independent discrete RVs

Recall the definition of independent events E and F :

$$
P(E F)=P(E) P(F)
$$

Two discrete random variables X and Y are independent if:
! for all x, y : !

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

Different notation, same idea:

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

Intuitively: knowing value of X tells us nothing about the distribution of Y (and vice versa)

If two variables are not independent, they are called dependent.

Dice (after all this time, still our friends)

Let: $\quad D_{1}$ and D_{2} be the outcomes of two rolls $S=D_{1}+D_{2}$, the sum of two rolls

- Each roll of a 6 -sided die is an independent trial.
- D_{1} and D_{2} are independent.

Are S and D_{1} independent?

1. $P\left(D_{1}=1, S=7\right)$?
2. $P\left(D_{1}=1, S=5\right)$?

Dice (after all this time, still our friends)

Let: $\quad D_{1}$ and D_{2} be the outcomes of two rolls $S=D_{1}+D_{2}$, the sum of two rolls

- Each roll of a 6-sided die is an independent trial.
- D_{1} and D_{2} are independent.

Are S and D_{1} independent? \times

1. $P\left(D_{1}=1, S=7\right)$?

$$
\text { 2. } P\left(D_{1}=1, S=5\right) \text { ? }
$$

Event $(S=7):\{(1,6),(2,5),(3,4)$,

$$
\text { Event }(S=5):\{(1,4),(2,3),(3,2),(4,1)\}
$$ $(4,3),(5,2),(6,1)\}$

$$
\begin{aligned}
P\left(D_{1}=\right. & 1) P(S=7)=(1 / 6)(1 / 6) \\
& =1 / 36=P\left(D_{1}=1, S=7\right)
\end{aligned}
$$

$$
\begin{aligned}
P\left(D_{1}=1\right) & P(S=5)=(1 / 6)(4 / 36) \\
& \neq 1 / 36=P\left(D_{1}=1, S=5\right)
\end{aligned}
$$

Independent events $\left(D_{1}=1\right),(S=7)$
Dependent events $\left(D_{1}=1\right),(S=5)$

All events ($X=x, Y=y$) must be independent for X, Y to be independent random variables.

Coin flips

Flip a coin with probability p of "heads" a total of $n+m$ times.
Let $\quad X=$ number of heads in first n flips. $X \sim \operatorname{Bin}(n, p)$ $Y=$ number of heads in next m flips. $Y \sim \operatorname{Bin}(m, p)$
$Z=$ total number of heads in $n+m$ flips.

1. Are X and Z independent? X

Counterexample: What if $Z=0$?

Coin flips

Flip a coin with probability p of "heads" a total of $n+m$ times.
Let $\quad X=$ number of heads in first n flips. $X \sim \operatorname{Bin}(n, p)$
$Y=$ number of heads in next m flips. $Y \sim \operatorname{Bin}(m, p)$
$Z=$ total number of heads in $n+m$ flips.

1. Are X and Z independent? \boldsymbol{X}

Counterexample: What if $Z=0$?
2. Are X and Y independent?

Strategy:
A. No, proof by counterexample
B. Yes, proof by counting
C. None/other

Coin flips

Flip a coin with probability p of "heads" a total of $n+m$ times.
Let $\quad X=$ number of heads in first n flips. $X \sim \operatorname{Bin}(n, p)$
$Y=$ number of heads in next m flips. $Y \sim \operatorname{Bin}(m, p)$
$Z=$ total number of heads in $n+m$ flips.

1. Are X and Z independent? \boldsymbol{X}

Counterexample: What if $Z=0$?
2. Are X and Y independent? ∇

Strategy:

A. No, proof by counterexample
B. Yes, proof by counting
C. None/other

Coin flips

Flip a coin with probability p of "heads" a total of $n+m$ times.
Let $\quad X=$ number of heads in first n flips. $X \sim \operatorname{Bin}(n, p)$
$Y=$ number of heads in next m flips. $Y \sim \operatorname{Bin}(m, p)$
$Z=$ total number of heads in $n+m$ flips.

1. Are X and Z independent? \boldsymbol{X}

Counterexample: What if $Z=0$?

2. Are X and Y independent? ∇

$$
\begin{aligned}
P(X & =x, Y=y)=P\binom{\text { first } n \text { flips have } x \text { heads }}{\text { and next } m \text { flips have } y \text { heads }} \\
& =\binom{n}{x} p^{x}(1-p)^{n-x}\binom{m}{y} p^{y}(1-p)^{m-y} \\
& =P(X=x) P(Y=y)
\end{aligned}
$$

outcomes in event $:\binom{x}{x}(y)$
P (each outcome)
$=p^{x}(1-p)^{n-x} p^{y}(1-p)^{m-y}$

Independent continuous RVs

Two continuous random variables X and Y are independent if:

$$
P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y)
$$

Equivalently:

$$
\begin{aligned}
F_{X, Y}(x, y) & =F_{X}(x) F_{Y}(y) \\
f_{X, Y}(x, y) & =f_{X}(x) f_{Y}(y)
\end{aligned}
$$

More generally, X and Y are independent if joint density factors separately:

$$
f_{X, Y}(x, y)=h(x) g(y), \text { where }-\infty<x, y<\infty
$$

Is the Gaussian blur distribution independent?

Gaussian blurring with $\sigma=3$
Joint PDF:

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \cdot 3^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 \cdot 3^{2}}
$$

Joint CDF:

$$
F_{X, Y}(x, y)=\Phi\left(\frac{x}{3}\right) \Phi\left(\frac{y}{3}\right)
$$

Weight matrix:
Center pixel: $(0,0)$ Pixel bounds:

$$
\begin{aligned}
& -0.5<x \leq 0.5 \\
& -0.5<y \leq 0.5
\end{aligned}
$$

Independent continuous RVs

Two continuous random variables X and Y are independent if:

$$
P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y)
$$

Equivalently:

$$
\begin{aligned}
F_{X, Y}(x, y) & =F_{X}(x) F_{Y}(y) \\
f_{X, Y}(x, y) & =f_{X}(x) f_{Y}(y)
\end{aligned}
$$

More generally, X and Y are independent if joint density factors separately:

$$
\int f_{X, Y}(x, y)=g(x) h(y), \text { where }-\infty<x, y<\infty
$$

Are X and Y independent in the following cases?

$$
\begin{aligned}
& \text { 1. } f_{X, Y}(x, y)=6 e^{-3 x} e^{-2 y} \\
& \text { where } 0<x, y<\infty \\
& \text { 2. } f_{X, Y}(x, y)=4 x y \\
& \text { where } 0<x, y<1 \\
& \text { 3. } f_{X, Y}(x, y)=4 x y \\
& \text { where } 0<x+y<1
\end{aligned}
$$

Are X and Y independent in the following cases?
∇ 1. $f_{X, Y}(x, y)=6 e^{-3 x} e^{-2 y}$ where $0<x, y<\infty$
2. $f_{X, Y}(x, y)=4 x y$ where $0<x, y<1$
3. $f_{X, Y}(x, y)=4 x y$ where $0<x+y<1$

Separable functions: $g(x)=3 e^{-3 x}$
$h(y)=2 e^{-2 y}$

Separable functions: $g(x)=2 x$ $h(y)=2 y$

Cannot capture constraint on $x+y$ into factorization!

Break for jokes/ announcements

Announcements

Midterm exam
When: Tuesday, October 29th, 7:00pm-9:00pmHewlett 200
Covers: Up to (and including) week $4+$ Lecture Notes \#13
Practice: http://web.stanford.edu/class/cs109/exams/midterm.html
Review session: Saturday, 10am-12pm, Shiram 104
not recorded; materials will be posted though

Problem Set 4

Out:
Due:
Midterm coverage:
later today Wednesday 11/6 First half (marked)

Concept checks
Week 4's:
Tuesday 10/22 1pm
Week 5's: Wednesday 10/31 1pm

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution

RV PARK

- Poisson
- Normal
- ! Uniform

Expectation of sum of RVs (next class)

Sum of independent Binomials

$$
\begin{aligned}
& X \sim \operatorname{Bin}\left(n_{1}, p\right) \\
& Y \sim \operatorname{Bin}\left(n_{2}, p\right)
\end{aligned}
$$

$X+Y \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$

X, Y independent
Intuition:

- Each trial in X and Y is independent and has same success probability p
- Define $Z=n_{1}+n_{2}$ independent trials, each with success probability p $Z \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$, and also $Z=X+Y$

Holds in general case:

$$
\begin{gathered}
X_{i} \sim \operatorname{Bin}\left(n_{i}, p\right) \\
X_{i} \text { independent for } i=1, \ldots, n
\end{gathered}
$$

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}\left(\sum_{i=1}^{n} n_{i}, p\right)
$$

Convolution: Sum of independent random variables

For any discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k, Y=n-k)
$$

In particular, for independent discrete random variables X and Y :

$$
P(X+Y=n)=\underbrace{\sum_{k} P(X=k) P(Y=n-k)}_{\text {the convolution of } p_{X} \text { and } p_{Y}}
$$

Insight into convolution

For independent discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k) \quad \begin{aligned}
& \text { the convolution } \\
& \text { of } p_{X} \text { and } p_{Y}
\end{aligned}
$$

Suppose X and Y are independent, both with support $\{0,1, \ldots\}$:
\(\left.\begin{array}{ccc}\hline X=k \& Y=n-k \& Probability

\hline 0 \& n \& P(X=0) P(Y=n)

1 \& n-1 \& P(X=1) P(Y=n-1)

2 \& n-2 \& P(X=2) P(Y=n-2)

··· \& ··· \& \cdots

n \& 0 \& P(X=n) P(Y=0)

n+1 \& - \& 0\end{array}\right] \quad\)| Sum of mutually |
| :--- |
| exclusive events |

X and Y + discrete

$$
P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k)
$$

$$
X+Y=n
$$

The distribution of a sum of dice rolls is a convolution.

Note for $k, n-k$ in the support,

$$
\begin{aligned}
& P(X=k, Y=n-k) \\
& \quad=P(X=k) P(Y=n-k) \\
& \quad=1 / 36
\end{aligned}
$$

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution

- Poisson
- Normal
- ! Uniform

Expectation of sum of RVs (next class)

Sum of independent Poissons

$X \sim \operatorname{Poi}\left(\lambda_{1}\right), Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$ X, Y independent
 $X+Y \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)$

Proof (just for reference):

$$
\begin{aligned}
& P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k) \\
& \quad=\sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!}=e^{-\left(\lambda_{1}+\lambda_{2}\right)} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k!(n-k)!} \\
& \quad=\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k}=\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!}\left(\lambda_{1}+\lambda_{2}\right)^{n} \\
& \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)
\end{aligned}
$$

X and Y independent, convolution

PMF of Poisson RVs

Binomial Theorem:
$(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$

General sum of independent Poissons

Holds in general case:

$X_{i} \sim \operatorname{Poi}\left(\lambda_{i}\right)$
X_{i} independent for $i=1, \ldots, n$

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Poi}\left(\sum_{i=1}^{n} \lambda_{i}\right)
$$

Sum of independent Gaussians

$$
\begin{gathered}
X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), \\
Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right) \\
X, Y \text { independent }
\end{gathered}
$$

$$
X+Y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

(proof left to Wikipedia)
Holds in general case:

$$
X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

X_{i} independent for $i=1, \ldots, n$

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_{1}=0.1$
- G2: 100 people, each independently infected with $p_{2}=0.4$

What is P (people infected ≥ 55)?

1. Define RVs
\& state goal
Let $A=\#$ infected in G1.
$A \sim \operatorname{Bin}(200,0.1)$
$B=$ \# infected in G2.
$B \sim \operatorname{Bin}(100,0.4)$
Want: $P(A+B \geq 55)$

Strategy:

A. Dance, Dance, Convolution
B. Sum of indep. Binomials
C. (approximate) Sum of indep. Poissons
D. (approximate) Sum of indep. Normals
E. None/other

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_{1}=0.1$
- G2: 100 people, each independently infected with $p_{2}=0.4$

What is P (people infected ≥ 55)?

1. Define RVs
\& state goal
Let $A=$ \# infected in G1.
$A \sim \operatorname{Bin}(200,0.1)$
$B=$ \# infected in G2.
$B \sim \operatorname{Bin}(100,0.4)$
Want: $P(A+B \geq 55)$

Strategy:
(A.) Dance, Dance, Convolution
B. Sum of indep. Binomials
C. (approximate) Sum of indep. Poissons
D. (approximate) Sum of indep. Normals
E. None/other

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_{1}=0.1$
- G2: 100 people, each independently infected with $p_{2}=0.4$

What is P (people infected ≥ 55)?

1. Define RVs
\& state goal
Let $A=$ \# infected in G1.
$A \sim \operatorname{Bin}(200,0.1)$
$B=$ \# infected in G2.
$B \sim \operatorname{Bin}(100,0.4)$
Want: $P(A+B \geq 55)$
2. Approximate as sum of Normals

$$
\begin{aligned}
& A \approx X \sim \mathcal{N}(20,18) \quad B \approx Y \sim \mathcal{N}(40,24) \\
& P(A+B \geq 55) \approx P(X+Y \geq 54.5) \begin{array}{l}
\text { continuity } \\
\text { correction }
\end{array}
\end{aligned}
$$

3. Solve

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_{1}=0.1$
- G2: 100 people, each independently infected with $p_{2}=0.4$

What is P (people infected ≥ 55)?

1. Define RVs
\& state goal
Let $A=\#$ infected in G1.
$A \sim \operatorname{Bin}(200,0.1)$
$B=\#$ infected in G2.
$B \sim \operatorname{Bin}(100,0.4)$
Want: $P(A+B \geq 55)$
2. Approximate as sum of Normals

$$
\begin{aligned}
& A \approx X \sim \mathcal{N}(20,18) \quad B \approx Y \sim \mathcal{N}(40,24) \\
& P(A+B \geq 55) \approx P(X+Y \geq 54.5) \begin{array}{l}
\text { continuity } \\
\text { correction }
\end{array}
\end{aligned}
$$

3. Solve

Let $W=X+Y \sim \mathcal{N}(20+40=60,18+24=42)$
$P(W \geq 54.5)=1-\Phi\left(\frac{54.5-60}{\sqrt{42}}\right) \approx 1-\Phi(-0.85)$
$\quad \approx 0.8023$

Linear transforms vs. independence

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $Y=X+X$. What is the distribution of Y ?

- Are both approaches valid?

Independent RVs approach

Let $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ be independent.
Then $Y=X_{1}+X_{2} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$

Linear transform approach
Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
If $Y=a X+b$, then $Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$.

Linear transforms vs. independence

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $Y=X+X$. What is the distribution of Y ?

- Are both approaches valid?

Independent RVs approach

Let $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ be independent.
Then $Y=X_{1}+X_{2} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$
$Y=X+X$
X is NOT
$X+X \sim \mathcal{N}\left(\mu+\mu, \sigma^{2}+\sigma^{2}\right)$ independent $Y \sim \mathcal{N}\left(2 \mu, 2 \sigma^{2}\right) ?$

Linear transform approach

$$
\begin{gathered}
\text { Let } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) . \\
\text { If } Y=a X+b, \\
\text { then } Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right) .
\end{gathered}
$$

$$
\begin{aligned}
& Y=2 X \\
& Y \sim \mathcal{N}\left(2 \mu, 4 \sigma^{2}\right)
\end{aligned}
$$

Motivating idea: Zero sum games

Want: $P($ Warriors win $)=P\left(A_{W}>A_{B}\right)$

$$
=P\left(A_{W}-A_{B}>0\right)
$$

Assume A_{W}, A_{B} are independent.
Let $D=A_{W}-A_{B}$.
What is the distribution of D ?
A. $\quad D \sim \mathcal{N}\left(1657-1470,200^{2}-200^{2}\right)$
B. $D \sim \mathcal{N}\left(1657-1470,200^{2}+200^{2}\right)$
C. $D \sim \mathcal{N}\left(1657+1470,200^{2}+200^{2}\right)$
D. Dance, Dance, Convolution
E. None/other

Motivating idea: Zero sum games

Want: $P($ Warriors win $)=P\left(A_{W}>A_{B}\right)$

$$
=P\left(A_{W}-A_{B}>0\right)
$$

Assume A_{W}, A_{B} are independent.
Let $D=A_{W}-A_{B}$.
What is the distribution of D ?

$$
\begin{array}{ll}
\text { A. } & D \sim \mathcal{N}\left(1657-1470,200^{2}-200^{2}\right) \\
\text { B. } & D \sim \mathcal{N}\left(1657-1470,200^{2}+200^{2}\right) \\
\text { C. } & D \sim \mathcal{N}\left(1657+1470,200^{2}+200^{2}\right)
\end{array}
$$

D. Dance, Dance, Convolution
E. None/other

Motivating idea: Zero sum games

Want: $P($ Warriors win $)=P\left(A_{W}>A_{B}\right)$

$$
=P\left(A_{W}-A_{B}>0\right)
$$

Assume A_{W}, A_{B} are independent.
Let $D=A_{W}-A_{B}$.
$D \sim \mathcal{N}\left(1657-1470, \quad 200^{2}+200^{2}\right)$
$\sim \mathcal{N}\left(187,2 \cdot 200^{2}\right) \quad \sigma \approx 283$
$P(D>0)=1-F_{D}(0)=1-\Phi\left(\frac{0-187}{283}\right)$
≈ 0.7454

Compare with 0.7488 , calculated by sampling!

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution

RV PARK

- V Poisson
- Normal
- ! Uniform

Expectation of sum of RVs (next class)

Dance, Dance, Convolution Extreme

For independent discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k)
$$

the convolution
of p_{X} and p_{Y}

For independent continuous random variables X and Y :

$$
f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x
$$

the convolution of f_{X} and f_{Y}

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent random variables. What is the distribution of $X+Y, f_{X+Y}$?

$$
f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(k) f_{Y}(\alpha-k) d k
$$

$$
f_{X}(k) f_{Y}(\alpha-k)=1 \text { when: (select one) }
$$

A. between 0 and 1
B. $0 \leq k \leq 1$
C. $0 \leq \alpha-k \leq 1$
D. $0 \leq \alpha \leq 2$
(E.) Other

Sum of independent Uniforms

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent random variables. What is the distribution of $X+Y, f_{X+Y}$?

$$
f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(k) f_{Y}(\alpha-k) d k
$$

What are the bounds on k when:

1. $\alpha=1 / 2$?

$$
f_{X}(k) f_{Y}(\alpha-k)=1:
$$

$$
\begin{aligned}
& 0 \leq k \leq \alpha \\
& \int_{k=0}^{\alpha} 1 d k \quad=\alpha \quad=1 / 2
\end{aligned}
$$

2. $\alpha=3 / 2$?
$\alpha-1 \leq k \leq 1$
$\int_{k=\alpha-1}^{1} 1 d k=\alpha-1=1 / 2$
3. $\alpha=1$?
$0 \leq k \leq \alpha$
$\int_{k=0}^{\alpha} 1 d k \quad=\alpha=1$
(the other bound works too)

Sum of independent Uniforms

$$
\begin{aligned}
& \quad X \text { and } Y \\
& \text { independent } f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x \\
& + \text { continuous }
\end{aligned}
$$

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent random variables. What is the distribution of $X+Y, f_{X+Y}$?
$f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(k) f_{Y}(\alpha-k) d k$
$f_{X}(k) f_{Y}(\alpha-k)=1$ when:

$$
0 \leq \alpha \leq 2
$$

$$
0 \leq k \leq 1
$$

$$
\left\{\begin{array}{l}
0 \leq \alpha \leq k \leq 1 \\
\alpha-1 \leq k \leq \alpha
\end{array}\right\}
$$

The precise integration bounds on k depend on α.

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution

RV PARK

- V Poisson
- Normal
- ! Uniform

Expectation of sum of RVs (next class)

Properties of Expectation, extended to two RVs

1. Linearity:
$E[a X+b Y+c]=a E[X]+b E[Y]+c$
2. Expectation of a sum $=$ sum of expectation:

$$
E[X+Y]=E[X]+E[Y]
$$

3. Unconscious statistician:

$$
\begin{aligned}
& E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y) \\
& E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y
\end{aligned}
$$

Proof of expectation of a sum of RVs

$$
E[X+Y]=E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)=\sum_{x} \sum_{y}(x+y) p_{X, Y}(x, y)_{g(X, Y)=X+Y}^{\text {Lotus, }}
$$

$$
=\sum_{x} \sum_{y} x p_{X, Y}(x, y)+\sum_{x} \sum_{y} y p_{X, Y}(x, y)
$$

Linearity of summations

$$
=\sum_{x} x \sum_{y} p_{X, Y}(x, y)+\sum_{y} y \sum_{x} p_{X, Y}(x, y)
$$

(cont. case: linearity of integrals)

$$
=\sum_{x} x p_{X}(x)+\sum_{y} y p_{Y}(y)
$$

Marginal PMFs for X and Y

$=E[X]+E[Y]$

Even if the joint distribution is unknown, you can calculate the expectation of sum as sum of expectations.

Example: $E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]$ despite dependent trials X_{i}

Expectations of common RVs

$X \sim \operatorname{Bin}(n, p) \quad E[X]=n p$

$X=\sum_{i=1}^{n} X_{i} \begin{gathered}\text { Let } X_{i}=i \text { th trial is heads } \\ X_{i} \sim \operatorname{Ber}(p), E\left[X_{i}\right]=p\end{gathered}$

$$
E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} p=n p
$$

Expectations of common RVs

$X \sim \operatorname{Bin}(n, p) \quad E[X]=n p$
$X=\sum_{i=1}^{n} X_{i} \begin{gathered}\text { Let } X_{i}=i \text { th trial is heads } \\ X_{i} \sim \operatorname{Ber}(p), E\left[X_{i}\right]=p\end{gathered}$

$Y \sim \operatorname{NegBin}(r, p) \quad E[Y]=\frac{r}{p}$

Suppose:

$$
Y=\sum_{i=1}^{?} Y_{i}
$$

How should we define Y_{i} ?
A. $Y_{i}=i$ th trial is heads. $Y_{i} \sim \operatorname{Ber}(p), i=1, \ldots, n$
B. $Y_{i}=\#$ trials to get i th success (after $(i-1)$ th success) $Y_{i} \sim \operatorname{Geo}(p), i=1, \ldots, r$
C. $Y_{i}=\#$ successes in n trials $Y_{i} \sim \operatorname{Bin}(n, p), i=1, \ldots, r$, we look for $P\left(Y_{i}=1\right)$

Expectations of common RVs

$X \sim \operatorname{Bin}(n, p) \quad E[X]=n p$
 $X=\sum_{i=1}^{n} X_{i} \begin{gathered}\text { Let } X_{i}=i \text { th trial is heads } \\ X_{i} \sim \operatorname{Ber}(p), E\left[X_{i}\right]=p\end{gathered}$

$Y \sim \operatorname{NegBin}(r, p) \quad E[Y]=\frac{r}{p}$

$$
Y=\sum_{i=1}^{r} Y_{i} \quad \begin{gathered}
\text { Let } Y_{i}=\# \text { trials to get } i \text { th } \\
\text { success (after } \\
(i-1) \text { th success) } \\
Y_{i} \sim \operatorname{Geo}(p), E\left[Y_{i}\right]=\frac{1}{p}
\end{gathered}
$$

$$
E[Y]=E\left[\sum_{i=1}^{r} Y_{i}\right]=\sum_{i=1}^{r} E\left[Y_{i}\right]=\sum_{i=1}^{r} \frac{1}{p}=\frac{r}{p}
$$

