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Probabilities from joint CDFs Review

JointCDF: P(X < x,Y <y) = Fxy(x,y)
P(a1 <XSa2;b1 <YSb2):

Fyy (az,bz) —Fyy (a1,b2) —Fyy (az,b1) + Fyy (a1,b1)
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Probabilities from joint CDFs Review
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P(a1<XSa2,b1<YSb2)=

Probability with Instagram! Fuy (a3by) — Fy(ayby) — Fyy(aghy) + Fey(ayby)

-

Original

In image processing, a Gaussian blur is the result of blurring an
image by a Gaussian function. It is a widely used effect in
graphics software, typically to reduce image noise.

StDev = 10
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P(a1<XSa2,b1<YSb2)=

(GGaussian blur Fyy (@3 by) — Fey(ayby) — Fuy(ayby) + Fyy(asby)

In a Gaussian blur, for every pixel:

. Weight each pixel by the probability that x ~ Caussian blurmng with = 3

and Y are both within the pixel bounds Joint PDF:
* The weighting function is a Gaussian joint Foy(t,y) = o—(x2+y?)/2:3
PDF with a standard deviation parameter ¢. Xy Y) =532

N ' Joint CDF:
Fyy(x,y) =@ (3—36) b (%)

5

-1

Weight matrix:

Center pixel: (0, 0) .
Pixel bounds: >
—-05<x <05

—05<y <05

15
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Gaussian blur

Pla; <X <a, by <Y<bhy) =
FX,Y(az,bZ) - FX,Y(al,bZ) - FX,Y(aZ,bl) + FX,Y(al,bl)

What is the weight of the center pixel?

P(-0.5< X <0.5,—-0.5<Y < 0.5)
— FX,y(O.S,O.S) — FX’y(—O.S, 05)
~Fyy(0.5,—0.5) + Fy y(—0.5,

—0.5)

-0 (2)0(2)-2-0(2) (%)

o ()0 (3
~ 0.5662% —2-0.5662 - 0.4338 +
~ 0.206

0.43384
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Joint CDF:
Fry(ny) = @ (3) @ (3)

-0.5 1
-1.51 0.5

5

Weight matrix:

Center pixel: (0, 0) .
Pixel bounds: ;
—-05<x <05

—05<y <05

15
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CS109 roadmap

Multiple events:

. : conditional .

intersection sxalsz s Independence

P(ENF) P(EF)

= P(EF) P(E|F) = P(F) P(EF) = P(E)P(F)

Joint (Multivariate) distributions
Model ALL

" conditional independent | the things!
JoIE LAl I j[> distributions? t RVs? v-

pX,Y (xl 3’) Yes! Yes!

fxy(x,y) (Wednesday) (today)
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T()day’s plan (covered on midterm)

= Indepen.dent RVS \*INDE%EEBENCE
Sum of independent RVs
- ¥ Binomial
* Convolution
- 4 Poisson
- 4 Normal
* L Uniform

*

Expectation of sum of RVs (nhext class)
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Independent discrete RVs

Recall the definition of independent events E and F:
P(EF) = P(E)P(F)

Two discrete random variables X and Y are independent if:
boforall x,y:

PX=xY=y)=PX=x)P(Y =vy)

Different notation,

same idea: Pxy (x,y) = px()py (¥)

Intuitively:  knowing value of X tells us nothing about the distribution of Y
(and vice versa)

If two variables are not independent, they are called dependent.
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Dice (after all this time, still our friends)

Let: D, and D, be the outcomes of two rolls A
S =D, + D,, the sum of two rolls ﬁ

* Each roll of a 6-sided die is an independent trial.
* Dq and D, are independent.

Are S and D, independent?

1. P(D, =1,S=7)? 2. P(D; =1,5S =5)?
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Dice (after all this time, still our friends)

Let: D, and D, be the outcomes of two rolls
S = Dy + D,, the sum of two rolls

* Each roll of a 6-sided die is an independent trial.
* Dq and D, are independent.

Are S and D, independent? X

1. P(D;=1,8§=7)7 2. P(D;=1,8S=5)?
Event (S = 7):{(1,6),(2,5), (3,4), Event (S = 5): {(1,4), (2,3), (3,2), (4,1)}
(4,3),(5,2),(6,1)}
P(D; =1P(S=7) =(1/6)(1/6) P(D; =1)P(§ =5) =(1/6)(4/36)
Independent events (D; = 1),(S =7) % Allevents (X = x,¥ = y) must K? Yy
Dependent events (Dl _ 1)’(5 _ 5) ew/ beindependent for X,Y to be \?)

independent random variables.
Lisa Yan, C$109, 2019 Stanford University 16




Coin flips

Flip a coin with probability p of “heads” a total of n + m times.

Let X = number of heads in first n flips. X~Bin(n, p)
Y = number of heads in next m flips. Y ~Bin(m, p)
Z = total number of heads in n + m flips.

Are X and Z independent? X Counterexample: What if Z = 07?

2
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Coin flips

Flip a coin with probability p of “heads” a total of n + m times.

Let X = number of heads in first n flips. X~Bin(n, p)
Y = number of heads in next m flips. Y ~Bin(m, p)
Z = total number of heads in n + m flips.

X
Are X and Y independent?

Strategy:
No, proof by counterexample
Yes, proof by counting
None/other
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Coin flips

Flip a coin with probability p of “heads” a total of n + m times.

Let X = number of heads in first n flips. X~Bin(n, p)
Y = number of heads in next m flips. Y ~Bin(m, p)
Z = total number of heads in n + m flips.

X

Are X and Y independent?

) # of mutually exclusive | (n) (m)
first n flips have x heads ) outcomes in event  \x/\Y¥

and next m flips have y heads P(each outcome)
=p (1 =p)" 7 pY(1 —p)™?

P(X=x,Y=y)=P(

= (Z) p*(1—p)*™ (7;,1) p’(1—p)™~

~~
o

= P(X = )P(Y = y) &
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Independent continuous RVs

Two continuous random variables X and Y are independent if:
PX<x,Y<y)=PX<x)P(Y <vy)
Equivalently:

FX,Y(X» y) = Fx(x)Fy(y)
fX,Y(x: y) = fx () fy(y)
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[s the Gaussian blur distribution independent?

P 1

Original

Lisa Yan, CS109, 2019

Gaussian blurring with o = 3

Joint PDF:

_ —(x2+y?)/2-32
Joint CDF:
Fyy(x,y) = @ (f) D (X)
’ 3

Weight matrix:

Center pixel: (0, 0) '

Pixel bounds:
—05<x<0.5

—05<y <05

15
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Independent continuous RVs

More generally, X and Y are independent if joint density factors separately:

= fxy(x,y) = g(x)h(y), where — 0 < x,y <

-
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. . . . fxy(x,y) = gx)h(y), independent
Pop quiz! (just kidding) where — o0 <x,y <0 | XandY

Are X and Y independent in the following cases?

fry(x,y) = 6e* e~
where 0 < x,y < o

fX,Y(ny) — 4xy
where 0 < x,y <1

fX,Y(ny) — 4xy
where0 <x+ y <1

2
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. . . . fxy(x,y) = gx)h(y), independent
POP qUIZ! (]USt l(lddlng) where — o0 < x,y < XandY

Are X and Y independent in the following cases?

fry(x,y) = 6e 3Xp—2Y Separable functions: g(x) = 3e™3*

where 0 < x,y < o0 h(y) = 2%
fxy(x,y) = 4xy Separable functions: g(x) = 2x
where 0 < x,y < 1 h(y) = 2y
fxy(x,y) = 4xy Cannot capture constrainton x + y
where 0 < x + y<1 into factorization!

“=» If you can factor densities over all of the K? ?‘)
@&/ support, you have independence.
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Break for jokes/
announcements




Announcements

/I\/Iidterm exam \

When: Tuesday, October 29, 7:00pm-9:00pm
Where: Hewlett 200
Covers: Up to (and including) week 4 + Lecture Notes #13 (1u§/dza§d
Practice: http://web.stanford.edu/class/cs109/exams/midterm.html
\Review session: Saturday, 10am-12pm, Shiram 104
not recorded; materials will be posted though
KProbIem Set 4 A 4 N
Concept checks
Out: later today 4 16/99 1
Due: Wednesday 11/6 Week 4's: Tuesday 10/ pm
Week 5’s: Wednesday 10/31 1pm

Midterm coverage: First half (marked
N . marked),

o J
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Today's plan

* 1776
. A INDEPENDENCE

*

=) Sum of independent RVs
- ¥ Binomial
* Convolution
- 4 Poisson
- 4 Normal
* L Uniform

Expectation of sum of RVs (nhext class)
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Sum of independent Binomials

X~Bin(n{,p)
Y ~Bin(n,, p) X +Y ~Bin(ny + n,,p)
X, Y independent

Intuition:

Each trial in X and Y is independent and has same success probability p

Define Z = n{ + n, independent trials, each with success probability p
Z~Bin(n; + n,,p),andalsoZ =X +Y

Holds in general case: n n
: . If only it were
X;~Bin(n;,p) zxi NB'”(Z n;,p) aK/vaysso

i=1 i=1

Xjindependentfori =1,..,n simple...

Lisa Yan, C$109, 2019 Stanford University 29



Convolution: Sum of independent random variables

For any discrete random variables X and Y

PX+Y=n)= ) PX=kY=n—k)
2

In particular, for independent discrete random variables X and Y

P(X+Y=n)=ZP(X=k)P(Y=n—k)
k

the convolution of py and py

Lisa Yan, C$109, 2019 Stanford University 30




Insight into convolution

For independent discrete random variables X and Y:

P(X 4+ Y = n) — Z P(X — k)P(Y = n — k) the convolution
= of py and py

Suppose X and Y are independent, both with support {0, 1, ... }:

X=k Y=n—k Probability
0 n P(X=0)P( =n)
1 1 P(X=1P({Y =n—1
, " , P(X 2)P(Y " 2) Sum of mutually
- X =2)P(Y =n-2) exclusive events
n 0 P(X =n)P(Y =0)

n+1 — 0
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XandY
Sum Of dice I‘()HS independent PX+Y =n)= Z P(X =k)P(Y =n—k)

+ discrete k

e 7 o
_5/36 % g 2 The distribution of a sum of
= 4/36 2 é 7 é 7 dice rolls is a convolution.
: .
3/36 2%%2%% %% |
7 é 7 7 7 % é , Note for k,n — k in the support,
X236 2 2%%%%%%%
~ 1/36 yééé?éééééf/ PX=kY=n=Fk)
5%%%%%%%% %% ~ PO =P =n=h

N
w
D
O1
(0))
00
O
=
O
=
=
=
N

<
_|_
~ N
|l
>
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Today's plan

‘ 1776
KpoediiSece X
=> « Convolution

° Poisson
° Normal

o /b Uniform

Expectation of sum of RVs (nhext class)
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Sum of independent Poissons

X~Poi(4,),Y~Poi(4,) :
X(,)II/ independerlmt : X+7Y NPOI(Al + /12)

Proof (just for reference):

_ _ _ o X and Y independent,
PUX+Y =m)= ) PXX = I)P(Y =n—k) X and ¥ inc
k
n K n—k N 9k gn—k
— 2 e~M /1_1 e~ A2 — o~ (A1+42) z 1 42 PMF of Poisson RVs
k! (n —k)! k! (n —k)!
k=0 k=0
o~ (A1+22) n nl N o~ (A1+13) ) Binomial Theé)rem:
Tl Z k! (n—k)! M4 = it ) (a+bym =) (i) akbm*
k=0 \ 7 J k=0
Lisa Yan, CSlO9BQli(A1 + AZ)
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General sum of independent Poissons

Holds in general case:

n n
XiNPOi(Ai) .
X; independentfori =1, ...,n z Xi PO'(Z ;)
=1 =1
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Sum of independent Gaussians

XNN(.“l’O-lz);
Y~ (i, 02) X+Y~N(u + uy 0f +05)

X, Y independent

(proof left to Wikipedia)

Holds in general case:

n
Xi~]\f(ui, aiz)
E X;~N E , E o2
X; independentfori =1, ...,n Hi i

1= =1
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https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

Virus infections

Suppose you are working with the WHO to plan a response to the initial
conditions of a virus. There are two exposed groups:

G1: 200 people, each independently infected with p; = 0.1
G2: 100 people, each independently infected with p, = 0.4

What is P(people infected > 55)7?

Define RVs
& state goal

Let A = # infected in G1.

A~Bin(200,0.1)

B = # infected in G2.

B~Bin(100,0.4)
Want: P(A + B = 55)

Strategy:
Dance, Dance, Convolution
Sum of indep. Binomials
(approximate) Sum of indep. Poissons
(approximate) Sum of indep. Normals
None/other

~~
o

&
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Virus infections

Suppose you are working with the WHO to plan a response to the initial
conditions of a virus. There are two exposed groups:

G1: 200 people, each independently infected with p; = 0.1
G2: 100 people, each independently infected with p, = 0.4

What is P(people infected > 55)7?

Define RVs
& state goal

Let A = # infected in G1.

A~Bin(200,0.1)

B = # infected in G2.

B~Bin(100,0.4)
Want: P(A + B = 55)

Strategy:
Dance, Dance, Convolution
Sum of indep. Binomials
(approximate) Sum of indep. Poissons
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None/other
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o
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Virus infections

Suppose you are working with the WHO to plan a response to the initial
conditions of a virus. There are two exposed groups:

G1: 200 people, each independently infected with p; = 0.1
G2: 100 people, each independently infected with p, = 0.4

What is P(people infected > 55)7?

Approximate as sum of Normals
A= X~N(20,18) B=Y ~N(40,24)
P(A+ B >55)~ P(X+Y > 54.5) contnulty

correction
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Virus infections

Suppose you are working with the WHO to plan a response to the initial
conditions of a virus. There are two exposed groups:

G1: 200 people, each independently infected with p; = 0.1
G2: 100 people, each independently infected with p, = 0.4

What is P(people infected > 55)7?

Solve
LetW =X +Y~N(20 + 40 = 60,18 + 24 = 42)

54.5 — 60
P(W > 54.5) = 1—c1>( =
~ 0.8023

) ~1— ®d(-0.85)

Stanford University 40




Linear transforms vs. independence

Let X~N(u,0%) and Y = X + X. What is the distribution of Y?
Are both approaches valid?

Independent RVs approach Linear transform approach
Let X1~N(u1l 0-12)1 XZ NN(.“ZJ 0-22) Let XNN(M} 0-2)'
be independent. IfY =aX + b,
ThenY = X; + Xo~N(uq + Uy, 62 + 0%) then Y~N (au + b, a’c?).

2
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Linear transforms vs. independence :

Let X~N(u,0%) and Y = X + X. What is the distribution of Y?
Are both approaches valid?

Independent RVs approach x Linear transform approach
Let X~ (uq, 02), Xo~N (y, 05) Let X~V (u, o2).
be independent. IfY =aX + b,
ThenY = X; + Xo~N(uq + Uy, 62 + 0%) then Y~N (au + b, a’c?).
Y=X+X ¥ i NOT Y =2X
X+ X~N(u+u, 0%+ 0?) independent Y~N(2u,40?)
f X!
Y~N(2u, 262)? ’

2
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Motivating idea: Zero sum games

# 55 madlin :
h- -fi‘?ﬁ;’ﬁ AN

Want: P(Warriors win) = P(4y, > Ap) Warriors Ay~ (S = 1657,200%)
0.0025 - —=1657

0.002 -

. 0.0015 -
Assume Ay, A are independent. 0.001 -

Let D = AW — AB' 0-0002 il
1000 15IOO 20IOO 25IOO

What is the distribution of D? Opponents . ~V-(S — 1470, 200%)
D~N (1657 — 1470, 2002 — 200%) 0.0025 1

D~N (1657 — 1470, 2002 + 2002) e

D~N (1657 + 1470, 200% + 2002) 0.001 -

Dance, Dance, Convolution o] | o
None/other 1000 1500 2000 2500

2
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Motivating idea: Zero sum games

] N
=

Want: P(Warriors win) = P(4y, > Ap) Warriors Ay~ (S = 1657,200%)
0.0025 - —=1657

0.002 -

. 0.0015 -
Assume Ay, A are independent. 0.001 -

Let D = AW — AB' 0-0002 il
1000 15IOO 20IOO 25IOO

What is the distribution of D? Opponents . ~V-(S — 1470, 200%)
D~N (1657 — 1470, 2002 — 200%) 0.0025 1

D~N (1657 — 1470, 2002 + 2002) oot
D~N (1657 + 1470, 200% + 200%) 0.001 -
Dance, Dance, Convolution ] | -
None/other 1000 1500 2000 2500
2> IfX~N(uq,0?), \??9
eo/  then (—X)~N(—p, (—1)%02 = g2) =
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Motivating idea: Zero sum games

Want: P(Warriors win) = P(4y, > Ap) OVg/:;;iffrs Aw~N (S = 1657,200%)
= P(Ay — Ap > 0) ooz ] T
Assume A,,, Ag are independent. e
letD = Ay, — Ap. 0.0005 - |
D"’N(1657 - 14‘70, 2002 +2002) 01000 15|()oI 20|oo 25loo
~N(187,2-200%) o =~ 283 Opponents Az~ (S = 1470, 2002)
0.0025 -
0.002 A
0— 187 0.0015 -
P(D>O)=1—FD(O)=1—CI>( ) 0.001
283 0.0005 A

~ (0.7454 0 |

1000 1500 2000 2500

Compare with 0.7488, calculated by sampling! K‘?/
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Today's plan

‘ 1776

K pnpesarsence K
.
.

=) - /A Uniform
Expectation of sum of RVs (nhext class)
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Dance, Dance, Convolution Extreme

For independent continuous random variables X and Y:

fror@ = | feof@=ndx G
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XandY

Sum of independent Uniforms  ohiniens 9~ | _neonta=nax

Let X~Uni(0,1) and Y~Uni(0,1) be independent random variables.
What is the distribution of X + Y, fyx.y?

fx+y(a) = J_ (B fy(a — k)dk

fx (k) fy(a — k) = 1 when: (select one)

between 0 and 1

0<k<1

0<a—-k<1

0<axs?2 .
Other \’:d
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XandY

Sum of independent Uniforms . ominuoss 7@ " | pomta—xax

Let X~Uni(0,1) and Y~Uni(0,1) be independent random variables.
What is the distribution of X + Y, fyx.y?

fx+v(@) = Joofx(k)fy(a — k)dk What are the bounds on k when:
—® a = 1/2'? 0<k<a
fooldk =a =1/2
fx(k)fy(a —k) = 1:
0<a<? a=3/2? a-lsk=l
0<k<1 foey ldk=a—1=1/2
a—1<k<a a=17? 0<k<a
The precise integration Je—o 1k =a =1 55

| -
bounds on k depend on «. (the other bound works too) ()
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XandY

Sum of independent Uniforms . ominuoss 7@ " | pomta—xax

Let X~Uni(0,1) and Y~Uni(0,1) be independent random variables.
What is the distribution of X + Y, fyx.y?

o0 1
fror@ = | fofa-ldk ),
—00 H%-
0 | | | | a
fx (k) fy (@ — k) = 1 when: 0o 1/2 1 3/2 2
0<a<s?
0<k<1 (

a 0<ac<l1l
fX_|_y(C()=<2—a 1<a<?2

L 0 otherwise

a—1<k<a

The precise integration C\T
bounds on k depend on a. ‘()
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Today's plan

* 1776
. A INDEPENDENCE

¢
¢
o /b Uniform

=) Expectation of sum of RVs (next class)
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Properties of Expectation, extended to two RVs

1. Linearity:
ElaX + bY 4+ c| = aE|X]| + bE|Y] + C

2. Expectation of a sum = sum of expectation: |
L (we’ve seen this;

E[X T Y] — E[X] T E[Y] we’ll prove this next)

3. Unconscious statistician:

Elgt, 0l = ) ) g y)pey(6,y)
x Yy

Elg(X,Y)] = f f g, y)fxy(x,y) dx dy
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Proof of expectation of a sum of RVs E[X +Y] = EX] + E[Y]

ELX +Y] = E[g(x, V) 229(" PPy () = ZZ(x FPar (o) G0y

= z z xpxy(x,y) + z 2 yoxy(x,y)
X y X Yy

= 2 xz pxy(x,y) + 2 yz Pxy(x,y)
% y y Z

—_

Linearity of summations
(cont. case: linearity of integrals)

- 2 xpx (x) + 2 ypy () Marginal PMFs for X and Y
X y
= E[X] + E[Y] # _ Even if the joint distribution is unknown, you can calculate the

— expectation of sum as sum of expectations.

Example: E[Y.]-; X;] = 2.1 E[X;] despite dependent trials X;
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Expectations of common RVs

X~Bin(n,p) E[X]=np

n
Let X; = ith trial is heads
X = Z:X- : E\X|=FE
L% X~Ber(p), ELXi] = p u
1=
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Expectations of common RVs

Y~NegBin(r,p) E[Y] =£

Suppose: How should we define Y;?
? Y; = ith trial is heads. Y;~Ber(p),i =1, ...,n
YV = z Y. Y; = # trials to get ith success (after (i — 1)th success)
l Y;~Geo(p),i=1,..,r
=1 . .
Y; = # successes in n trials 5P

Y;~Bin(n,p),i =1, ...,r, we look for P(Y; = 1) </
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Expectations of common RVs

Y ~NegBin(r,p) EIY]=-

r Let Y; = # trials to get ith
v — Z V. success (after E[Y]=E
— l
i=1

< | =

(i — 1)th success) ;
1
Yi~Geo(p), ELY;] = K\.{j
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