13: Independent RVs

Lisa Yan October 21, 2019

Probabilities from joint CDFs

$\begin{aligned} \text{Joint CDF: } P(X \le x, Y \le y) &= F_{X,Y}(x, y) \\ P(a_1 < X \le a_2, b_1 < Y \le b_2) &= \\ F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) - F_{X,Y}(a_2, b_1) + F_{X,Y}(a_1, b_1) \end{aligned}$

Lisa Yan, CS109, 2019

Probabilities from joint CDFs

Probability with Instagram!

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) - F_{X,Y}(a_2, b_1) + F_{X,Y}(a_1, b_1)$

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blur

In a Gaussian blur, for every pixel:

- Weight each pixel by the probability that *X* and *Y* are both within the pixel bounds
- The weighting function is a Gaussian joint PDF with a standard deviation parameter σ .

Gaussian blurring with $\sigma = 3$ Joint PDF: $f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-(x^2 + y^2)/2 \cdot 3^2}$ Joint CDF: $F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right) \Phi\left(\frac{y}{3}\right)$ X -1.5 0.' Weight matrix: Center pixel: (0, 0) Pixel bounds: $-0.5 < x \le 0.5$ $-0.5 < y \le 0.5$

 $F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2) - F_{X,Y}(a_2,b_1) + F_{X,Y}(a_1,b_1)$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$

Gaussian blur

In a Gaussian blur:

• Weight each pixel by the probability that *X* and *Y* are both within the pixel bounds

What is the weight of the center pixel?

$$P(-0.5 < X \le 0.5, -0.5 < Y \le 0.5)$$

= $F_{X,Y}(0.5, 0.5) - F_{X,Y}(-0.5, 0.5)$
 $-F_{X,Y}(0.5, -0.5) + F_{X,Y}(-0.5, -0.5)$
= $\Phi\left(\frac{0.5}{3}\right) \Phi\left(\frac{0.5}{3}\right) - 2 \cdot \Phi\left(\frac{-0.5}{3}\right) \Phi\left(\frac{0.5}{3}\right)$
 $+ \Phi\left(\frac{-0.5}{3}\right) \Phi\left(\frac{-0.5}{3}\right)$

 $\approx 0.5662^2 - 2 \cdot 0.5662 \cdot 0.4338 + 0.4338^2$

≈ 0.206

Gaussian blurring with
$$\sigma = 3$$

Joint PDF:
 $f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-(x^2+y^2)/2 \cdot 3^2}$
Joint CDF:
 $F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right) \Phi\left(\frac{y}{3}\right)$
Weight matrix:
Center pixel: $(0, 0) \stackrel{Y}{_{15}}$
Pixel bounds:
 $-0.5 < x \le 0.5$
 $-0.5 < y \le 0.5$

 $F_{X,Y}(a_{2,b_{2}}) - F_{X,Y}(a_{1,b_{2}}) - F_{X,Y}(a_{2,b_{1}}) + F_{X,Y}(a_{1,b_{1}})$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$

CS109 roadmap

Multiple events:

Joint (Multivariate) distributions

Lisa Yan, CS109, 2019

Today's plan (covered on midterm)

Independent RVs

Sum of independent RVs

- 🔹 🗹 Binomial
- Convolution
- 🔹 🗹 Poisson
- 🔹 🔽 Normal
- 🔔 Uniform

Expectation of sum of RVs (next class)

Independent discrete RVs

Recall the definition of independent events *E* and *F*: P(EF) = P(E)P(F)

Two discrete random variables *X* and *Y* are **independent** if:

Different notation, same idea:

for all
$$x, y$$
:

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

$$n_{YY}(x, y) = n_Y(x)n_Y(y)$$

Intuitively: knowing value of X tells us nothing about the distribution of Y (and vice versa)

If two variables are not independent, they are called dependent.

Dice (after all this time, still our friends)

- Let: D_1 and D_2 be the outcomes of two rolls $S = D_1 + D_2$, the sum of two rolls
- Each roll of a 6-sided die is an independent trial.
- D_1 and D_2 are independent.
- Are S and D_1 independent?

1. $P(D_1 = 1, S = 7)$?

2. $P(D_1 = 1, S = 5)$?

Dice (after all this time, still our friends)

- Let: D_1 and D_2 be the outcomes of two rolls $S = D_1 + D_2$, the sum of two rolls
- Each roll of a 6-sided die is an independent trial.
- D_1 and D_2 are independent.

Are S and D_1 independent? X

1.
$$P(D_1 = 1, S = 7)$$
?
Event $(S = 7)$: {(1,6), (2,5), (3,4),
(4,3), (5,2), (6,1)}
 $P(D_1 = 1) P(S = 7) = (1/6)(1/6)$

 $P(D_1 = 1)P(S = 7) = (1/6)(1/6)$ $= 1/36 = P(D_1 = 1, S = 7)$

Independent events $(D_1 = 1), (S = 7)$ Dependent events $(D_1 = 1), (S = 5)$

2.
$$P(D_1 = 1, S = 5)$$
?
Event $(S = 5)$: {(1,4), (2,3), (3,2), (4,1)}

$$P(D_1 = 1)P(S = 5) = (1/6)(4/36) \neq 1/36 = P(D_1 = 1, S = 5)$$

Flip a coin with probability p of "heads" a total of n + m times.

Let X = number of heads in first n flips. $X \sim Bin(n, p)$ Y = number of heads in next m flips. $Y \sim Bin(m, p)$ Z = total number of heads in n + m flips.

1. Are *X* and *Z* independent? ×

Counterexample: What if Z = 0?

Flip a coin with probability p of "heads" a total of n + m times.

- Let X = number of heads in first n flips. $X \sim Bin(n, p)$ Y = number of heads in next m flips. $Y \sim Bin(m, p)$ Z = total number of heads in n + m flips.
- 1. Are *X* and *Z* independent? ×
- 2. Are *X* and *Y* independent?
 - Strategy:
 - A. No, proof by counterexample
 - B. Yes, proof by counting
 - C. None/other

Counterexample: What if Z = 0?

Flip a coin with probability p of "heads" a total of n + m times.

- Let X = number of heads in first n flips. $X \sim Bin(n, p)$ Y = number of heads in next m flips. $Y \sim Bin(m, p)$ Z = total number of heads in n + m flips.
- 1. Are *X* and *Z* independent? ×
- 2. Are X and Y independent? \checkmark
 - Strategy: A. No, proof by counterexample B. Yes, proof by counting C. None/other

Flip a coin with probability p of "heads" a total of n + m times.

- Let X = number of heads in first *n* flips. $X \sim Bin(n, p)$ Y = number of heads in next *m* flips. $Y \sim Bin(m, p)$ Z = total number of heads in n + m flips.
- 1. Are X and Z independent? X
- 2. Are X and Y independent? \checkmark

$$P(X = x, Y = y) = P\left(\begin{array}{c} \text{first } n \text{ flips have } x \text{ heads} \\ \text{and next } m \text{ flips have } y \text{ heads} \end{array}\right)$$

$$= \binom{n}{x} p^{x} (1-p)^{n-x} \binom{m}{y} p^{y} (1-p)^{m-y}$$

$$= P(X = x)P(Y = y)$$

Counterexample: What if Z = 0?

of mutually exclusive outcomes in event $: \binom{n}{x} \binom{m}{y}$ P(each outcome) $= p^{x}(1-p)^{n-x}p^{y}(1-p)^{m-y}$

Independent continuous RVs

Two continuous random variables *X* and *Y* are **independent** if:

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

Equivalently:

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

More generally, X and Y are independent if joint density factors separately:

$$f_{X,Y}(x,y) = h(x)g(y)$$
, where $-\infty < x, y < \infty$

Is the Gaussian blur distribution independent?

Gaussian blurring with $\sigma = 3$ Joint PDF: $f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-(x^2 + y^2)/2 \cdot 3^2}$ Joint CDF: $F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right)\Phi\left(\frac{y}{3}\right)$ X -1.5 0.5 Weight matrix: Center pixel: (0, 0) Pixel bounds: 15 $-0.5 < x \le 0.5$ $-0.5 < y \le 0.5$

Lisa Yan, CS109, 2019

Independent continuous RVs

Two continuous random variables *X* and *Y* are **independent** if:

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

Equivalently:

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

More generally, X and Y are independent if joint density factors separately:

$$f_{X,Y}(x,y) = g(x)h(y), \text{ where } -\infty < x, y < \infty$$

$$f_{X,Y}(x,y) = g(x)h(y),$$

where $-\infty < x, y < \infty$ independent
X and Y

Are X and Y independent in the following cases?

1.
$$f_{X,Y}(x, y) = 6e^{-3x}e^{-2y}$$

where $0 < x, y < \infty$

2.
$$f_{X,Y}(x, y) = 4xy$$

where $0 < x, y < 1$

3.
$$f_{X,Y}(x, y) = 4xy$$

where $0 < x + y < 1$

$$f_{X,Y}(x,y) = g(x)h(y),$$

where $-\infty < x, y < \infty$ independent
X and Y

Are *X* and *Y* independent in the following cases?

- ✓ 1. $f_{X,Y}(x,y) = 6e^{-3x}e^{-2y}$ Separable functions: $g(x) = 3e^{-3x}$ where $0 < x, y < \infty$ $h(y) = 2e^{-2y}$
 - 2. $f_{X,Y}(x,y) = 4xy$ where 0 < x, y < 1

Separable functions: g(x) = 2xh(y) = 2y

3. $f_{X,Y}(x, y) = 4xy$ where 0 < x + y < 1 Cannot capture constraint on x + yinto factorization!

Lisa Yan, CS109, 2019

Break for jokes/ announcements

Announcements

Midterm ex	<u>xam</u>	
When: Where:	Tuesday, October 29 th , 7:00pm-9:00pm Hewlett 200	
Covers:	Up to (and including) week 4 + Lecture Notes #13	(updated 10/21)
Practice: Review ses	http://web.stanford.edu/class/cs109/exams/midterm.html ssion: Saturday, 10am-12pm, Shiram 104 not recorded; materials will be posted though	

Problem Set 4Out:later todayDue:Wednesday 11/6Midterm coverage:First half (marked)

Today's plan

Independent RVs

- Sum of independent RVs
 - 🔹 🗹 Binomial
 - Convolution
 - 🔹 🗹 Poisson
 - 🔹 🔽 Normal
 - 🔔 Uniform

Expectation of sum of RVs (next class)

Sum of independent Binomials

$$X \sim Bin(n_1, p)$$

 $Y \sim Bin(n_2, p)$
 X, Y independent
 $X + Y \sim Bin(n_1 + n_2, p)$

Intuition:

- Each trial in X and Y is independent and has same success probability p
- Define $Z = n_1 + n_2$ independent trials, each with success probability $p Z \sim Bin(n_1 + n_2, p)$, and also Z = X + Y

Holds in general case: $X_i \sim Bin(n_i, p)$

 X_i independent for i = 1, ..., n

Convolution: Sum of independent random variables

For any discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k, Y = n - k)$$

In particular, for independent discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

the convolution of p_X and p_Y

Insight into convolution

For independent discrete random variables *X* and *Y*:

$$P(X+Y=n) = \sum_{k} P(X=k)P(Y=n-k)$$

the convolution of p_X and p_Y

Suppose *X* and *Y* are independent, both with support {0, 1, ... }:

X = k	Y = n - k	Probability	_	
0	n	P(X=0)P(Y=n)	٦	Sum of mutually exclusive events
1	n-1	P(X=1)P(Y=n-1)		
2	n-2	P(X=2)P(Y=n-2)		
•••	•••	•••		
n	0	P(X=n)P(Y=0)		
n + 1	—	0		

Sum of dice rolls

The distribution of a sum of dice rolls is a convolution.

Note for k, n - k in the support, P(X = k, Y = n - k) = P(X = k)P(Y = n - k) = 1/36

Today's plan

Independent RVs

Sum of independent RVs

- 🔽 Binomial
- Convolution
- 🔹 🔽 Poisson
- 🔹 🔽 Normal
- 🔔 Uniform

Expectation of sum of RVs (next class)

Sum of independent Poissons

 $X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$ X, Y independent

 $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$

Proof (just for reference): $P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$ X and Y independent, convolution $=\sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!} = e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k! (n-k)!}$ PMF of Poisson RVs $=\frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!}\sum_{k=0}^{n}\frac{n!}{k!(n-k)!}\lambda_{1}^{k}\lambda_{2}^{n-k}=\frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!}(\lambda_{1}+\lambda_{2})^{n}$ **Binomial Theorem:** $(a+b)^n = \sum \binom{n}{k} a^k b^{n-k}$ $\operatorname{Poi}_{\text{Lisa Yan, CS109, 2019}}(\lambda_1 + \lambda_2)$ Stanford University 34

General sum of independent Poissons

Holds in general case:

 $X_i \sim \text{Poi}(\lambda_i)$ X_i independent for i = 1, ..., n

Lisa Yan, CS109, 2019

Sum of independent Gaussians

$$X \sim \mathcal{N}(\mu_1, \sigma_1^2),$$

 $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$
 X, Y independent

$$X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

(proof left to Wikipedia)

Holds in general case:

$$X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

 X_i independent for $i = 1, ..., n$

$$\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$$

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is *P*(people infected \geq 55)?

1. Define RVs & state goal

Let A = # infected in G1. $A \sim Bin(200,0.1)$ B = # infected in G2. $B \sim Bin(100,0.4)$

Want: $P(A + B \ge 55)$

Strategy:

- A. Dance, Dance, Convolution
- B. Sum of indep. Binomials
- C. (approximate) Sum of indep. Poissons
- D. (approximate) Sum of indep. Normals
- E. None/other

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 55)$?

1. Define RVs & state goal

Let A = # infected in G1. $A \sim Bin(200,0.1)$ B = # infected in G2. $B \sim Bin(100,0.4)$

Want: $P(A + B \ge 55)$

Strategy:

- (A.) Dance, Dance, Convolution
 - B. Sum of indep. Binomials
 - C. (approximate) Sum of indep. Poissons D. (approximate) Sum of indep. Normals
 - E. None/other

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 55)$?

Define RVs
 & state goal

Let A = # infected in G1. $A \sim Bin(200,0.1)$ B = # infected in G2. $B \sim Bin(100,0.4)$ 2. Approximate as sum of Normals $A \approx X \sim \mathcal{N}(20,18)$ $B \approx Y \sim \mathcal{N}(40,24)$ $P(A + B \ge 55) \approx P(X + Y \ge 54.5)$ continuity correction 3. Solve

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 55)$?

Define RVs
 & state goal

Let A = # infected in G1. $A \sim Bin(200,0.1)$ B = # infected in G2. $B \sim Bin(100,0.4)$

Want: $P(A + B \ge 55)$

2. Approximate as sum of Normals $A \approx X \sim \mathcal{N}(20,18)$ $B \approx Y \sim \mathcal{N}(40,24)$ $P(A + B \ge 55) \approx P(X + Y \ge 54.5)$ continuity correction

3. Solve

Let $W = X + Y \sim \mathcal{N}(20 + 40 = 60, 18 + 24 = 42)$ $P(W \ge 54.5) = 1 - \Phi\left(\frac{54.5 - 60}{\sqrt{42}}\right) \approx 1 - \Phi(-0.85)$ ≈ 0.8023 Stanford University 40

Linear transforms vs. independence

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = X + X. What is the distribution of Y?

Are both approaches valid?

Independent RVs approach

Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent. Then $Y = X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Linear transform approach

Let $X \sim \mathcal{N}(\mu, \sigma^2)$. If Y = aX + b, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Linear transforms vs. independence

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = X + X. What is the distribution of Y?

Are both approaches valid?

Independent RVs approach 🗙

Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent. Then $Y = X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Y = X + X X is NOT $X + X \sim \mathcal{N}(\mu + \mu, \sigma^2 + \sigma^2) \text{ independent}$ $Y \sim \mathcal{N}(2\mu, 2\sigma^2)?$

Linear transform approach 🔽

Let $X \sim \mathcal{N}(\mu, \sigma^2)$. If Y = aX + b, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Y = 2X $Y \sim \mathcal{N}(2\mu, 4\sigma^2)$

Motivating idea: Zero sum games

Want:
$$P(\text{Warriors win}) = P(A_W > A_B)$$

= $P(A_W - A_B > 0)$

Assume A_W , A_B are independent. Let $D = A_W - A_B$.

What is the distribution of *D*?

- A. $D \sim \mathcal{N}(1657 1470, \ 200^2 200^2)$
- B. $D \sim \mathcal{N}(1657 1470, \ 200^2 + 200^2)$
- C. $D \sim \mathcal{N}(1657 + 1470, \ 200^2 + 200^2)$
- D. Dance, Dance, Convolution
- E. None/other

Motivating idea: Zero sum games

Want:
$$P(\text{Warriors win}) = P(A_W > A_B)$$

= $P(A_W - A_B > 0)$

Assume A_W , A_B are independent. Let $D = A_W - A_B$.

What is the distribution of *D*?

- A. $D \sim \mathcal{N}(1657 1470, 200^2 200^2)$ B. $D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$ C. $D \sim \mathcal{N}(1657 + 1470, 200^2 + 200^2)$
- D. Dance, Dance, Convolution
- E. None/other

Lisa Yan, CS109, 2019

Motivating idea: Zero sum games

Want:
$$P(\text{Warriors win}) = P(A_W > A_B)$$

= $P(A_W - A_B > 0)$

Assume A_W, A_B are independent. Let $D = A_W - A_B$. $D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$ $\sim \mathcal{N}(187, 2 \cdot 200^2) \quad \sigma \approx 283$

$$P(D > 0) = 1 - F_D(0) = 1 - \Phi\left(\frac{0 - 187}{283}\right)$$

\$\approx 0.7454\$

Compare with 0.7488, calculated by sampling!

Lisa Yan, CS109, 2019

Today's plan

Independent RVs

Sum of independent RVs

- 🔽 Binomial
- Convolution
- 🔽 Poisson
- 🔽 Normal
- 🕨 🔸 Uniform

Expectation of sum of RVs (next class)

Dance, Dance, Convolution Extreme

For independent discrete random variables *X* and *Y*:

$$P(X+Y=n) = \sum_{k} P(X=k)P(Y=n-k)$$

the convolution of p_X and p_Y

For independent continuous random variables *X* and *Y*:

$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

the convolution of f_X and f_Y

X and *Y*
independent
$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

+ continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent random variables. What is the distribution of X + Y, f_{X+Y} ?

$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(k) f_Y(\alpha - k) dk$$

 $f_X(k)f_Y(\alpha - k) = 1$ when: (select one)

A. between 0 and 1

B.
$$0 \le k \le 1$$

C.
$$0 \le \alpha - k \le 1$$

D. $0 \le \alpha \le 2$ (E.) Other

X and Y
independent
$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

+ continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent random variables. What is the distribution of X + Y, f_{X+Y} ?

$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(k) f_Y(\alpha - k) dk$$
$$f_X(k) f_Y(\alpha - k) = 1:$$
$$0 \le \alpha \le 2$$
$$0 \le k \le 1$$
$$0 \le \alpha - k \le 1$$
$$\alpha - 1 \le k \le \alpha$$

The precise integration bounds on k depend on α .

What are the bounds on *k* when:

1.
$$\alpha = 1/2$$
? $0 \le k \le \alpha$
 $\int_{k=0}^{\alpha} 1 dk = \alpha = 1/2$

2.
$$\alpha = 3/2$$
? $\alpha - 1 \le k \le 1$
 $\int_{k=\alpha-1}^{1} 1dk = \alpha - 1 = 1/2$

3. $\alpha = 1$? $0 \le k \le \alpha$

 $0 \le k \le \alpha$ $\int_{k=0}^{\alpha} 1 dk = \alpha = 1$ (the other bound works too)

bounds on k depend on α .

X and Y
independent
$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

+ continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent random variables. What is the distribution of X + Y, f_{X+Y} ?

Today's plan

Independent RVs

Sum of independent RVs

- 🔽 Binomial
- Convolution
- 🗸 Poisson
- 🗸 Normal
- 🔔 Uniform

Properties of Expectation, extended to two RVs

1. Linearity: E[aX + bY + c] = aE[X] + bE[Y] + c

2. Expectation of a sum = sum of expectation: E[X + Y] = E[X] + E[Y]

(we've seen this; we'll prove this next)

3. Unconscious statistician:

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$
$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, dx \, dy$$
$$\operatorname{Lisa Yan, CS109, 2019}$$

Stanford University 52

Proof of expectation of a sum of RVs

E[X+Y] = E[X] + E[Y]

$$E[X + Y] = E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y)p_{X,Y}(x,y) = \sum_{x} \sum_{y} (x+y)p_{X,Y}(x,y) \xrightarrow{\text{LOTUS},}{g(X,Y) = X + Y}$$

$$= \sum_{x} \sum_{y} xp_{X,Y}(x,y) + \sum_{x} \sum_{y} yp_{X,Y}(x,y)$$
Linearity of summations
$$= \sum_{x} x \sum_{y} p_{X,Y}(x,y) + \sum_{y} y \sum_{x} p_{X,Y}(x,y)$$
Linearity of summations
(cont. case: linearity of integrals)
$$= \sum_{x} xp_{X}(x) + \sum_{y} yp_{Y}(y)$$
Marginal PMFs for X and Y
$$= E[X] + E[Y]$$
Even if the joint distribution is unknown, you can calculate the expectation of sum as sum of expectations.
Example: $E[\sum_{i=1}^{n} X_{i}] = \sum_{i=1}^{n} E[X_{i}]$ despite dependent trials X_{i}

Lisa Yan, CS109, 2019

Stanford University 53

Expectations of common RVs

$$X \sim Bin(n, p) \quad E[X] = np$$

$$X = \sum_{i=1}^{n} X_i \quad \text{Let } X_i = i \text{th trial is heads} \\ X_i \sim \text{Ber}(p), E[X_i] = p$$

s
$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np$$

Expectations of common RVs

$$X \sim Bin(n,p) \quad E[X] = np$$

 $X = \sum_{i=1}^{n} X_i \quad \text{Let } X_i = i \text{th trial is heads} \\ X_i \sim \text{Ber}(p), E[X_i] = p$

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np$$

$$Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}$$

Suppose:

$$Y = \sum_{i=1}^{?} Y_i$$

How should we define Y_i ? A. $Y_i = i$ th trial is heads. $Y_i \sim \text{Ber}(p), i = 1, ..., n$ B. $Y_i = \#$ trials to get *i*th success (after (i - 1)th success) $Y_i \sim \text{Geo}(p), i = 1, ..., r$ C. $Y_i = \#$ successes in *n* trials $Y_i \sim \text{Bin}(n, p), i = 1, ..., r$, we look for $P(Y_i = 1)$

Lisa Yan, CS109, 2019

Expectations of common RVs

$$X \sim Bin(n,p) \quad E[X] = np$$

 $X = \sum_{i=1}^{n} X_i \quad \text{Let } X_i = i \text{th trial is heads} \\ X_i \sim \text{Ber}(p), E[X_i] = p$

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np$$

$$Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}$$

 $Y = \sum_{i=1}^{r} Y_i \qquad \text{Let } Y_i = \# \text{ trials to get } i\text{th} \\ \text{success (after} \\ (i-1)\text{th success}) \\ Y_i \sim \text{Geo}(p), E[Y_i] = \frac{1}{p} \qquad E[Y] = E\left[\sum_{i=1}^{r} Y_i\right] = \sum_{i=1}^{r} E[Y_i] = \sum_{i=1}^{r} \frac{1}{p} = \frac{r}{p}$