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Probabilities from joint CDFs
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Probability with Instagram!
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In image processing, a Gaussian blur is the result of blurring an 
image by a Gaussian function. It is a widely used effect in 
graphics software, typically to reduce image noise.

𝑃 𝑎- < 𝑋 ≤ 𝑎/, 𝑏- < 𝑌 ≤ 𝑏/ =
𝐹*,+ 𝑎/,𝑏/ − 𝐹*,+ 𝑎-,𝑏/ − 𝐹*,+ 𝑎/,𝑏- + 𝐹*,+ 𝑎-,𝑏-



Lisa Yan, CS109, 2019

Gaussian blur
In a Gaussian blur, for every pixel:
• Weight each pixel by the probability that 𝑋

and 𝑌 are both within the pixel bounds
• The weighting function is a Gaussian joint 

PDF with a standard deviation parameter 𝜎.

Center pixel: (0, 0)
Pixel bounds:
−0.5 < 𝑥 ≤ 0.5
−0.5 < 𝑦 ≤ 0.5

Gaussian blurring with 𝜎 = 3

Joint PDF:

𝑓*,+ 𝑥, 𝑦 =
1

2𝜋 ⋅ 3/
𝑒> ?@AB@ //⋅D@

Joint CDF:

𝐹*,+ 𝑥, 𝑦 = Φ
𝑥
3
Φ

𝑦
3

Weight matrix:

10

𝑃 𝑎- < 𝑋 ≤ 𝑎/, 𝑏- < 𝑌 ≤ 𝑏/ =
𝐹*,+ 𝑎/,𝑏/ − 𝐹*,+ 𝑎-,𝑏/ − 𝐹*,+ 𝑎/,𝑏- + 𝐹*,+ 𝑎-,𝑏-
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Gaussian blur
In a Gaussian blur:
• Weight each pixel by the probability that 𝑋

and 𝑌 are both within the pixel bounds

What is the weight of the center pixel?

11

Center pixel: (0, 0)
Pixel bounds:
−0.5 < 𝑥 ≤ 0.5
−0.5 < 𝑦 ≤ 0.5

Gaussian blurring with 𝜎 = 3

Joint PDF:

𝑓*,+ 𝑥, 𝑦 =
1

2𝜋 ⋅ 3/
𝑒> ?@AB@ //⋅D@

Joint CDF:

𝐹*,+ 𝑥, 𝑦 = Φ
𝑥
3
Φ

𝑦
3

Weight matrix:

𝑃 −0.5 < 𝑋 ≤ 0.5, −0.5 < 𝑌 ≤ 0.5
= 𝐹*,+ 0.5,0.5 − 𝐹*,+ −0.5, 0.5

−𝐹*,+ 0.5, −0.5 + 𝐹*,+ −0.5, −0.5

= Φ F.G
D

Φ F.G
D

− 2 ⋅ Φ >F.G
D

Φ F.G
D

+Φ >F.G
D Φ >F.G

D

𝑃 𝑎- < 𝑋 ≤ 𝑎/, 𝑏- < 𝑌 ≤ 𝑏/ =
𝐹*,+ 𝑎/,𝑏/ − 𝐹*,+ 𝑎-,𝑏/ − 𝐹*,+ 𝑎/,𝑏- + 𝐹*,+ 𝑎-,𝑏-

≈ 0.5662/ − 2 ⋅ 0.5662 ⋅ 0.4338 + 0.4338/

≈ 0.206
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CS109 roadmap
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Model ALL 
the things!

Multiple events:

𝑃 𝐸 𝐹 =
𝑃 𝐸𝐹
𝑃 𝐹

conditional 
probability

𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)

independence

Joint (Multivariate) distributions

joint PMF/PDF

𝑝*,+ 𝑥, 𝑦
𝑓*,+ 𝑥, 𝑦

intersection

𝑃 𝐸 ∩ 𝐹
= 𝑃 𝐸𝐹

conditional 
distributions?

independent
RVs?

Yes!
(Wednesday)

Yes!
(today)
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Today’s plan

Independent RVs
Sum of independent RVs
• ✅ Binomial
• Convolution 
• ✅ Poisson
• ✅ Normal
• ⚠ Uniform

Expectation of sum of RVs (next class)

13

(covered on midterm)
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Independent discrete RVs
Recall the definition of independent events 𝐸 and 𝐹:

𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃 𝐹

Two discrete random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

𝑝*,+ 𝑥, 𝑦 = 𝑝* 𝑥 𝑝+ 𝑦

Intuitively: knowing value of 𝑋 tells us nothing about the distribution of 𝑌
(and vice versa)

If two variables are not independent, they are called dependent.
14

for all 𝑥, 𝑦:

Different notation,
same idea:

⚠⚠
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🤔
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Dice (after all this time, still our friends)
Let: 𝐷- and 𝐷/ be the outcomes of two rolls

𝑆 = 𝐷- + 𝐷/, the sum of two rolls
• Each roll of a 6-sided die is an independent trial.
• 𝐷- and 𝐷/ are independent.

Are 𝑆 and 𝐷- independent?

1. 𝑃 𝐷- = 1, 𝑆 = 7 ? 2. 𝑃 𝐷- = 1, 𝑆 = 5 ?



Lisa Yan, CS109, 2019

🤔
16

Dice (after all this time, still our friends)
Let: 𝐷- and 𝐷/ be the outcomes of two rolls

𝑆 = 𝐷- + 𝐷/, the sum of two rolls
• Each roll of a 6-sided die is an independent trial.
• 𝐷- and 𝐷/ are independent.

Are 𝑆 and 𝐷- independent?

1. 𝑃 𝐷- = 1, 𝑆 = 7 ? 2. 𝑃 𝐷- = 1, 𝑆 = 5 ?
Event 𝑆 = 7 : { 1,6 , 2,5 , 3,4 ,

4,3 , 5,2 , 6,1 }

= 1/36 = 𝑃 𝐷- = 1, 𝑆 = 7

Independent events 𝐷- = 1 , 𝑆 = 7

𝑃 𝐷- = 1 𝑃 𝑆 = 7 = 1/6 1/6

All events 𝑋 = 𝑥, 𝑌 = 𝑦 must 
be independent for 𝑋, 𝑌 to be
independent random variables.

👉

Event 𝑆 = 5 : { 1,4 , 2,3 , 3,2 , 4,1 }

≠ 1/36 = 𝑃 𝐷- = 1, 𝑆 = 5
𝑃 𝐷- = 1 𝑃 𝑆 = 5 = 1/6 4/36

Dependent events 𝐷- = 1 , 𝑆 = 5

❌
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🤔
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Coin flips
Flip a coin with probability 𝑝 of “heads” a total of 𝑛 +𝑚 times.
Let 𝑋 = number of heads in first 𝑛 flips. 𝑋~Bin(𝑛, 𝑝)

𝑌 = number of heads in next 𝑚 flips. 𝑌~Bin 𝑚, 𝑝
𝑍 = total number of heads in 𝑛 +𝑚 flips.

1. Are 𝑋 and 𝑍 independent? ❌ Counterexample: What if 𝑍 = 0?
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🤔
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Coin flips
Flip a coin with probability 𝑝 of “heads” a total of 𝑛 +𝑚 times.
Let 𝑋 = number of heads in first 𝑛 flips. 𝑋~Bin(𝑛, 𝑝)

𝑌 = number of heads in next 𝑚 flips. 𝑌~Bin(𝑚, 𝑝)
𝑍 = total number of heads in 𝑛 +𝑚 flips.

1. Are 𝑋 and 𝑍 independent?
2. Are 𝑋 and 𝑌 independent?

❌

Strategy:
A. No, proof by counterexample
B. Yes, proof by counting
C. None/other

Counterexample: What if 𝑍 = 0?
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Coin flips
Flip a coin with probability 𝑝 of “heads” a total of 𝑛 +𝑚 times.
Let 𝑋 = number of heads in first 𝑛 flips. 𝑋~Bin(𝑛, 𝑝)

𝑌 = number of heads in next 𝑚 flips. 𝑌~Bin(𝑚, 𝑝)
𝑍 = total number of heads in 𝑛 +𝑚 flips.

1. Are 𝑋 and 𝑍 independent?
2. Are 𝑋 and 𝑌 independent?

❌

Strategy:
A. No, proof by counterexample
B. Yes, proof by counting
C. None/other

✅

Counterexample: What if 𝑍 = 0?
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🤔
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Coin flips
Flip a coin with probability 𝑝 of “heads” a total of 𝑛 +𝑚 times.
Let 𝑋 = number of heads in first 𝑛 flips. 𝑋~Bin(𝑛, 𝑝)

𝑌 = number of heads in next 𝑚 flips. 𝑌~Bin(𝑚, 𝑝)
𝑍 = total number of heads in 𝑛 +𝑚 flips.

1. Are 𝑋 and 𝑍 independent?
2. Are 𝑋 and 𝑌 independent?

❌

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 first 𝑛 flips have 𝑥 heads
and next 𝑚 flips have 𝑦 heads

# of mutually exclusive
outcomes in event ∶ 𝑛

𝑥
𝑚
𝑦

𝑃 each outcome
= 𝑝? 1 − 𝑝 \>?𝑝B 1 − 𝑝 ]>B

= 𝑛
𝑥 𝑝? 1 − 𝑝 \>? 𝑚

𝑦 𝑝B 1 − 𝑝 ]>B

= 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

✅

Counterexample: What if 𝑍 = 0?
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Independent continuous RVs
Two continuous random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑃 𝑌 ≤ 𝑦
Equivalently:

𝐹*,+ 𝑥, 𝑦 = 𝐹* 𝑥 𝐹+ 𝑦
𝑓*,+ 𝑥, 𝑦 = 𝑓* 𝑥 𝑓+ 𝑦

More generally, 𝑋 and 𝑌 are independent if joint density factors separately:

𝑓*,+ 𝑥, 𝑦 = ℎ 𝑥 𝑔 𝑦 , where−∞ < 𝑥, 𝑦 < ∞

21
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Is the Gaussian blur distribution independent?

Center pixel: (0, 0)
Pixel bounds:
−0.5 < 𝑥 ≤ 0.5
−0.5 < 𝑦 ≤ 0.5

Gaussian blurring with 𝜎 = 3

Joint PDF:

𝑓*,+ 𝑥, 𝑦 =
1

2𝜋 ⋅ 3/
𝑒> ?@AB@ //⋅D@

Joint CDF:

𝐹*,+ 𝑥, 𝑦 = Φ
𝑥
3
Φ

𝑦
3

Weight matrix:

22

✅
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Independent continuous RVs
Two continuous random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑃 𝑌 ≤ 𝑦
Equivalently:

𝐹*,+ 𝑥, 𝑦 = 𝐹* 𝑥 𝐹+ 𝑦
𝑓*,+ 𝑥, 𝑦 = 𝑓* 𝑥 𝑓+ 𝑦

More generally, 𝑋 and 𝑌 are independent if joint density factors separately:

𝑓*,+ 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 , where−∞ < 𝑥, 𝑦 < ∞

23

👉
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🤔
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Pop quiz! (just kidding)

Are 𝑋 and 𝑌 independent in the following cases?

1. 𝑓*,+ 𝑥, 𝑦 = 6𝑒>D?𝑒>/B
where 0 < 𝑥, 𝑦 < ∞

2. 𝑓*,+ 𝑥, 𝑦 = 4𝑥𝑦
where 0 < 𝑥, 𝑦 < 1

3. 𝑓*,+ 𝑥, 𝑦 = 4𝑥𝑦
where 0 < 𝑥 + 𝑦 < 1

independent
𝑋 and 𝑌

𝑓*,+ 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 ,
where−∞ < 𝑥, 𝑦 < ∞
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Pop quiz! (just kidding)

Are 𝑋 and 𝑌 independent in the following cases?

1. 𝑓*,+ 𝑥, 𝑦 = 6𝑒>D?𝑒>/B
where 0 < 𝑥, 𝑦 < ∞

2. 𝑓*,+ 𝑥, 𝑦 = 4𝑥𝑦
where 0 < 𝑥, 𝑦 < 1

3. 𝑓*,+ 𝑥, 𝑦 = 4𝑥𝑦
where 0 < 𝑥 + 𝑦 < 1

𝑔 𝑥 = 3𝑒>D?
ℎ 𝑦 = 2𝑒>/B

𝑔 𝑥 = 2𝑥
ℎ 𝑦 = 2𝑦

Cannot capture constraint on 𝑥 + 𝑦
into factorization!

✅

If you can factor densities over all of the 
support, you have independence.👉

independent
𝑋 and 𝑌

𝑓*,+ 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 ,
where−∞ < 𝑥, 𝑦 < ∞

Separable functions:

Separable functions:



Break for jokes/ 
announcements

26
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Midterm exam

When: Tuesday, October 29th, 7:00pm-9:00pm
Where: Hewlett 200

Covers: Up to (and including) week 4 + Lecture Notes #13
Practice: http://web.stanford.edu/class/cs109/exams/midterm.html
Review session: Saturday, 10am-12pm, Shiram 104

Announcements

27

not recorded; materials will be posted though

Problem Set 4

Out: later today
Due: Wednesday 11/6
Midterm coverage: First half (marked)

(updated
10/21)

Concept checks

Week 4’s: Tuesday 10/22 1pm
Week 5’s: Wednesday 10/31 1pm

http://web.stanford.edu/class/cs109/exams/midterm.html
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Today’s plan

Independent RVs
Sum of independent RVs
• ✅ Binomial
• Convolution 
• ✅ Poisson
• ✅ Normal
• ⚠ Uniform

Expectation of sum of RVs (next class)

28
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Sum of independent Binomials

Intuition:
• Each trial in 𝑋 and 𝑌 is independent and has same success probability 𝑝
• Define 𝑍 = 𝑛- + 𝑛/ independent trials, each with success probability 𝑝
𝑍~Bin 𝑛- + 𝑛/, 𝑝 , and also 𝑍 = 𝑋 + 𝑌

29

𝑋~Bin(𝑛-, 𝑝)
𝑌~Bin(𝑛/, 𝑝) 𝑋 + 𝑌 ~Bin(𝑛- + 𝑛/, 𝑝)

If only it were 
always so 

simple…

𝑋, 𝑌 independent

𝑋a~Bin(𝑛a, 𝑝)
𝑋a independent for 𝑖 = 1,… , 𝑛

d
ae-

\

𝑋a ~Bin(d
ae-

\

𝑛a , 𝑝)
Holds in general case:
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Convolution: Sum of independent random variables
For any discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =d
f

𝑃 𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘

In particular, for independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =d
f

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

30

the convolution of 𝑝* and 𝑝+
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the convolution
of 𝑝* and 𝑝+

Insight into convolution
For independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =d
f

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

Suppose 𝑋 and 𝑌 are independent, both with support 0, 1, … :

31

𝑋 = 𝑘 𝑌 = 𝑛 − 𝑘 Probability
0 𝑛 𝑃 𝑋 = 0 𝑃 𝑌 = 𝑛
1 𝑛 − 1 𝑃 𝑋 = 1 𝑃 𝑌 = 𝑛 − 1
2 𝑛 − 2 𝑃 𝑋 = 2 𝑃 𝑌 = 𝑛 − 2
⋯ ⋯ ⋯
𝑛 0 𝑃 𝑋 = 𝑛 𝑃 𝑌 = 0

𝑛 + 1 − 0

Sum of mutually
exclusive events
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Sum of dice rolls

32

2 3 4 5 6 7 8 9 10 11 12

6/36

0

% + ' = )

5/36
4/36
3/36
2/36
1/36.

%
+
'
=
)

The distribution of a sum of 
dice rolls is a convolution.

Note for 𝑘, 𝑛 − 𝑘 in the support,

𝑃 𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘
= 𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘
= 1/36

𝑃 𝑋 + 𝑌 = 𝑛 =d
f

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘
𝑋 and 𝑌

independent
+ discrete
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Today’s plan

Independent RVs
Sum of independent RVs
• ✅ Binomial
• Convolution 
• ✅ Poisson
• ✅ Normal
• ⚠ Uniform

Expectation of sum of RVs (next class)

33
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Sum of independent Poissons

34

𝑋~Poi 𝜆- , 𝑌~Poi 𝜆/
𝑋, 𝑌 independent 𝑋 + 𝑌 ~Poi(𝜆- + 𝜆/)

𝑃 𝑋 + 𝑌 = 𝑛 =d
f

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘 𝑋 and 𝑌 independent, 
convolution

= d
feF

\

𝑒>jk
𝜆-f

𝑘!
𝑒>j@

𝜆/\>f

(𝑛 − 𝑘)!
= 𝑒>(jkAj@)d

feF

\
𝜆-f 𝜆/\>f

𝑘! (𝑛 − 𝑘)!
PMF of Poisson RVs

=
𝑒> jkAj@

𝑛!
d
feF

\
𝑛!

𝑘! (𝑛 − 𝑘)!
𝜆-f 𝜆/\>f =

𝑒> jkAj@

𝑛!
𝜆- + 𝜆/ \

Proof (just for reference):

𝑎 + 𝑏 \ = d
feF

\
𝑛
𝑘 𝑎f𝑏\>f

Binomial Theorem:

Poi 𝜆- + 𝜆/
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General sum of independent Poissons

35

Holds in general case:

𝑋a~Poi 𝜆a
𝑋a independent for 𝑖 = 1,… , 𝑛 d

ae-

\

𝑋a ~Poi(d
ae-

\

𝜆a)
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Sum of independent Gaussians

36

𝑋~𝒩 𝜇-, 𝜎-/ ,
𝑌~𝒩 𝜇/, 𝜎//
𝑋, 𝑌 independent

𝑋 + 𝑌 ~𝒩(𝜇- + 𝜇/, 𝜎-/ + 𝜎//)

(proof left to Wikipedia)

Holds in general case:

𝑋a~𝒩 𝜇a, 𝜎a/

𝑋a independent for 𝑖 = 1,… , 𝑛 d
ae-

\

𝑋a ~𝒩 d
ae-

\

𝜇a ,d
ae-

\

𝜎a/

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
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🤔
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝- = 0.1
• G2: 100 people, each independently infected with 𝑝/ = 0.4

What is 𝑃 people infected ≥ 55 ? 

Strategy:
A. Dance, Dance, Convolution
B. Sum of indep. Binomials
C. (approximate) Sum of indep. Poissons
D. (approximate) Sum of indep. Normals
E. None/other

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

1. Define RVs
& state goal
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝- = 0.1
• G2: 100 people, each independently infected with 𝑝/ = 0.4

What is 𝑃 people infected ≥ 55 ? 

Strategy:
A. Dance, Dance, Convolution
B. Sum of indep. Binomials
C. (approximate) Sum of indep. Poissons
D. (approximate) Sum of indep. Normals
E. None/other

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

1. Define RVs
& state goal
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝- = 0.1
• G2: 100 people, each independently infected with 𝑝/ = 0.4

What is 𝑃 people infected ≥ 55 ? 

39

2. Approximate as sum of Normals

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

𝐴 ≈ 𝑋 ~𝒩 20,18 𝐵 ≈ 𝑌 ~𝒩 40,24
1. Define RVs

& state goal
𝑃 𝐴 + 𝐵 ≥ 55 ≈ 𝑃 𝑋 + 𝑌 ≥ 54.5 continuity 

correction

3. Solve
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝- = 0.1
• G2: 100 people, each independently infected with 𝑝/ = 0.4

What is 𝑃 people infected ≥ 55 ? 

40

2. Approximate as sum of Normals

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

𝐴 ≈ 𝑋 ~𝒩 20,18 𝐵 ≈ 𝑌 ~𝒩 40,24
1. Define RVs

& state goal
𝑃 𝐴 + 𝐵 ≥ 55 ≈ 𝑃 𝑋 + 𝑌 ≥ 54.5 continuity 

correction

3. Solve
Let 𝑊 = 𝑋 + 𝑌~𝒩 20 + 40 = 60, 18 + 24 = 42

≈ 0.8023
= 1 −Φ

54.5 − 60
42

≈ 1 − Φ −0.85𝑃 𝑊 ≥ 54.5
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Linear transforms vs. independence

Let 𝑋~𝒩(𝜇, 𝜎/) and 𝑌 = 𝑋 + 𝑋. What is the distribution of 𝑌?
• Are both approaches valid?

Independent RVs approach

⚠

Let 𝑋~𝒩(𝜇, 𝜎/).
If 𝑌 = 𝑎𝑋 + 𝑏,

then 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎/𝜎/).

Let 𝑋-~𝒩 𝜇-, 𝜎-/ , 𝑋/~𝒩 𝜇/, 𝜎//
be independent.

Then 𝑌 = 𝑋- + 𝑋/~𝒩(𝜇- + 𝜇/, 𝜎-/ + 𝜎//)

Linear transform approach
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Linear transforms vs. independence

Let 𝑋~𝒩(𝜇, 𝜎/) and 𝑌 = 𝑋 + 𝑋. What is the distribution of 𝑌?
• Are both approaches valid?

𝑋 is NOT 
independent 

of 𝑋!

Independent RVs approach ❌

𝑌 = 𝑋 + 𝑋
𝑋 + 𝑋~𝒩(𝜇 + 𝜇, 𝜎/ + 𝜎/)
𝑌~𝒩 2𝜇, 2𝜎/ ?

⚠

Let 𝑋~𝒩(𝜇, 𝜎/).
If 𝑌 = 𝑎𝑋 + 𝑏,

then 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎/𝜎/).

Let 𝑋-~𝒩 𝜇-, 𝜎-/ , 𝑋/~𝒩 𝜇/, 𝜎//
be independent.

Then 𝑌 = 𝑋- + 𝑋/~𝒩(𝜇- + 𝜇/, 𝜎-/ + 𝜎//)

𝑌 = 2𝑋

Linear transform approach

𝑌~𝒩(2𝜇, 4𝜎/)

✅
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Motivating idea: Zero sum games
Want: 𝑃 Warriors win = 𝑃 𝐴t > 𝐴v

= 𝑃 𝐴t − 𝐴v > 0

Assume 𝐴t, 𝐴v are independent.
Let 𝐷 = 𝐴t − 𝐴v.

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1470

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1657
Warriors )*~, - = 1657, 2000

Opponents )1~, - = 1470, 2000
A. 𝐷~𝒩 1657 − 1470, 200/ − 200/
B. 𝐷~𝒩 1657 − 1470, 200/ + 200/
C. 𝐷~𝒩 1657 + 1470, 200/ + 200/
D. Dance, Dance, Convolution
E. None/other

What is the distribution of 𝐷?
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Motivating idea: Zero sum games

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1470

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1657
Warriors )*~, - = 1657, 2000

Opponents )1~, - = 1470, 2000
A. 𝐷~𝒩 1657 − 1470, 200/ − 200/
B. 𝐷~𝒩 1657 − 1470, 200/ + 200/
C. 𝐷~𝒩 1657 + 1470, 200/ + 200/
D. Dance, Dance, Convolution
E. None/other

If 𝑋~𝒩 𝜇-, 𝜎/ ,
then −𝑋 ~𝒩 −𝜇, −1 /𝜎/ = 𝜎/👉

What is the distribution of 𝐷?

Want: 𝑃 Warriors win = 𝑃 𝐴t > 𝐴v
= 𝑃 𝐴t − 𝐴v > 0

Assume 𝐴t, 𝐴v are independent.
Let 𝐷 = 𝐴t − 𝐴v.
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Motivating idea: Zero sum games

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1470

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1657
Warriors )*~, - = 1657, 2000

Opponents )1~, - = 1470, 2000
𝐷~𝒩 1657 − 1470, 200/+200/

~𝒩 187, 2 ⋅ 200/ 𝜎 ≈ 283

𝑃 𝐷 > 0 = 1 − 𝐹w 0 = 1 − Φ
0 − 187
283

≈ 0.7454

Compare with 0.7488, calculated by sampling!

Want: 𝑃 Warriors win = 𝑃 𝐴t > 𝐴v
= 𝑃 𝐴t − 𝐴v > 0

Assume 𝐴t, 𝐴v are independent.
Let 𝐷 = 𝐴t − 𝐴v.
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Today’s plan

Independent RVs
Sum of independent RVs
• ✅ Binomial
• Convolution 
• ✅ Poisson
• ✅ Normal
• ⚠ Uniform

Expectation of sum of RVs (next class)

46
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Dance, Dance, Convolution Extreme

47

the convolution 
of 𝑝* and 𝑝+

For independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =d
f

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

the convolution
of 𝑓* and 𝑓+

For independent continuous random variables 𝑋 and 𝑌:

𝑓*A+ 𝛼 = y
>z

z
𝑓* 𝑥 𝑓+ 𝛼 − 𝑥 𝑑𝑥
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Sum of independent Uniforms
Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋 + 𝑌, 𝑓*A+?

𝑓*A+ 𝛼 = y
>z

z
𝑓* 𝑥 𝑓+ 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

𝑓*A+ 𝛼 = y
>z

z
𝑓* 𝑘 𝑓+ 𝛼 − 𝑘 𝑑𝑘

A. between 0 and 1
B. 0 ≤ 𝑘 ≤ 1
C. 0 ≤ 𝛼 − 𝑘 ≤ 1
D. 0 ≤ 𝛼 ≤ 2
E. Other

𝑓* 𝑘 𝑓+ 𝛼 − 𝑘 = 1 when: (select one) 
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Sum of independent Uniforms
Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋 + 𝑌, 𝑓*A+?

𝑓*A+ 𝛼 = y
>z

z
𝑓* 𝑥 𝑓+ 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

𝑓*A+ 𝛼 = y
>z

z
𝑓* 𝑘 𝑓+ 𝛼 − 𝑘 𝑑𝑘

0 ≤ 𝛼 ≤ 2
0 ≤ 𝑘 ≤ 1
0 ≤ 𝛼 − 𝑘 ≤ 1
𝛼 − 1 ≤ 𝑘 ≤ 𝛼

The precise integration
bounds on 𝑘 depend on 𝛼.

𝑓* 𝑘 𝑓+ 𝛼 − 𝑘 = 1:

What are the bounds on 𝑘 when:
1. 𝛼 = 1/2?

2. 𝛼 = 3/2?

3. 𝛼 = 1?

0 ≤ 𝑘 ≤ 𝛼
∫feF
} 1𝑑𝑘 = 𝛼 = 1/2

𝛼 − 1 ≤ 𝑘 ≤ 1
∫fe}>-
- 1𝑑𝑘 = 𝛼 − 1 = 1/2

0 ≤ 𝑘 ≤ 𝛼
∫feF
} 1𝑑𝑘 = 𝛼 = 1

(the other bound works too)



Lisa Yan, CS109, 2019

🤔
50

Sum of independent Uniforms
Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋 + 𝑌, 𝑓*A+?

𝑓*A+ 𝛼 = y
>z

z
𝑓* 𝑥 𝑓+ 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

𝑓*A+ 𝛼 = y
>z

z
𝑓* 𝑘 𝑓+ 𝛼 − 𝑘 𝑑𝑘

0 ≤ 𝛼 ≤ 2
0 ≤ 𝑘 ≤ 1
0 ≤ 𝛼 − 𝑘 ≤ 1
𝛼 − 1 ≤ 𝑘 ≤ 𝛼

The precise integration
bounds on 𝑘 depend on 𝛼.

𝑓* 𝑘 𝑓+ 𝛼 − 𝑘 = 1 when:

𝑓*A+ 𝛼 = ~
𝑎 0 ≤ 𝑎 ≤ 1

2 − 𝑎 1 ≤ 𝑎 ≤ 2
0 otherwise

0

1/2

𝛼

𝑓 *
A
+
𝛼

1/2 1 3/2 2

1

0
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Today’s plan

Independent RVs
Sum of independent RVs
• ✅ Binomial
• Convolution 
• ✅ Poisson
• ✅ Normal
• ⚠ Uniform

Expectation of sum of RVs (next class)

51
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Properties of Expectation, extended to two RVs
1. Linearity:
𝐸 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌 + 𝑐

2. Expectation of a sum = sum of expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

52

(we’ve seen this; 
we’ll prove this next)

𝐸 𝑔 𝑋, 𝑌 =d
?

d
B

𝑔 𝑥, 𝑦 𝑝*,+(𝑥, 𝑦)

𝐸 𝑔 𝑋, 𝑌 = y
>z

z
y
>z

z
𝑔 𝑥, 𝑦 𝑓*,+ 𝑥, 𝑦 𝑑𝑥 𝑑𝑦
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Proof of expectation of a sum of RVs

53

Even if the joint distribution is unknown, you can calculate the 
expectation of sum as sum of expectations.

Example: 𝐸 ∑ae-\ 𝑋a = ∑ae-\ 𝐸 𝑋a despite dependent trials 𝑋a
👉

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

𝐸 𝑋 + 𝑌 = 𝐸 𝑔 𝑋, 𝑌 =d
?

d
B

𝑔 𝑥, 𝑦 𝑝*,+ 𝑥, 𝑦 =d
?

d
B

𝑥 + 𝑦 𝑝*,+ 𝑥, 𝑦 LOTUS,
𝑔 𝑋, 𝑌 = 𝑋 + 𝑌

=d
?

d
B

𝑥𝑝*,+ 𝑥, 𝑦 +d
?

d
B

𝑦𝑝*,+ 𝑥, 𝑦
Linearity of summations
(cont. case: linearity of integrals)

=d
?

𝑥d
B

𝑝*,+ 𝑥, 𝑦 +d
B

𝑦d
?

𝑝*,+ 𝑥, 𝑦

Marginal PMFs for 𝑋 and 𝑌=d
?

𝑥𝑝* 𝑥 +d
B

𝑦𝑝+ 𝑦

= 𝐸 𝑋 + 𝐸[𝑌]
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Expectations of common RVs

54

𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝

𝐸 𝑋 = 𝐸 d
ae-

\

𝑋a =d
ae-

\

𝐸 𝑋a =d
ae-

\

𝑝 = 𝑛𝑝𝑋 =d
ae-

\

𝑋a
Let 𝑋a = 𝑖th trial is heads
𝑋a~Ber 𝑝 , 𝐸 𝑋a = 𝑝

Review
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Expectations of common RVs

𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝

𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = �
�

𝑋 =d
ae-

\

𝑋a 𝐸 𝑋 = 𝐸 d
ae-

\

𝑋a =d
ae-

\

𝐸 𝑋a =d
ae-

\

𝑝 = 𝑛𝑝Let 𝑋a = 𝑖th trial is heads
𝑋a~Ber 𝑝 , 𝐸 𝑋a = 𝑝

How should we define 𝑌a? 
A. 𝑌a = 𝑖th trial is heads. 𝑌a~Ber 𝑝 , 𝑖 = 1,… , 𝑛
B. 𝑌a = # trials to get 𝑖th success (after 𝑖 − 1 th success)

𝑌a~Geo 𝑝 , 𝑖 = 1,… , 𝑟
C. 𝑌a = # successes in 𝑛 trials 

𝑌a~Bin 𝑛, 𝑝 , 𝑖 = 1,… , 𝑟, we look for 𝑃 𝑌a = 1

𝑌 =d
ae-

?

𝑌a

Suppose:
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Expectations of common RVs

𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝

𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = �
�

𝑋 =d
ae-

\

𝑋a 𝐸 𝑋 = 𝐸 d
ae-

\

𝑋a =d
ae-

\

𝐸 𝑋a =d
ae-

\

𝑝 = 𝑛𝑝Let 𝑋a = 𝑖th trial is heads
𝑋a~Ber 𝑝 , 𝐸 𝑋a = 𝑝

𝑌 =d
ae-

�

𝑌a

Let 𝑌a = # trials to get 𝑖th
success (after
𝑖 − 1 th success)

𝑌a~Geo 𝑝 , 𝐸 𝑌a = -
�

𝐸 𝑌 = 𝐸 d
ae-

�

𝑌a =d
ae-

�

𝐸 𝑌a =d
ae-

�
1
𝑝
=
𝑟
𝑝


