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Sum of independent random variables

X~Bin(ny, p), Y ~Bin(n,, p)
X,Y independent

X +Y ~Bin(ny +n,,p)

X~Poi(2,), Y ~Poi(1,) X +Y ~Poi(A; + 1,)

X,Y independent

X~N(uy, 07)
Y~ (uy, 02) X+Y~N(u + py,0f + 03)

X,Y independent

Note: these also hold in the general case (= 2 variables)
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Quick questions

X and Y have the following joint PDF: fxy(x,y) = §x3y

Are X and Y independent? where 0 < x < 1,1 <y < 2

Let X~Bin(30,0.01) and Y~Bin(50,0.02) be independent RVs. Can we
use sum of independent Poisson RVs to approximate P(X +Y = 1)?

2
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Quick questions

X and Y have the following joint PDF: fxy(x,y) = §x3y

Are X and Y independent? where 0 < x < 1,1 <y < 2

Separable  g(x) = C;x3

. where C4, C, are constants
functions h(y) = Cyy 1=z

Let A~Bin(30,0.01) and B~Bin(50, 0.02) be independent RVs. Can we
use sum of independent Poisson RVs to approximate P(A + B = 2)?

2
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Quick questions Review

2. Let A~Bin(30,0.01) and B~Bin(50, 0.02)be independent RVs. Can we
use sum of independent Poisson RVs to approximate P(A + B = 2)?

Sol 1: Approximate as sum of Poissons

A ~ X~Poi(1; = 30 - 0.01 = 0.3) 2
B ~ Y~Poi(1, = 50 - 0.02 = 1) PA+B=2)~PX+Y=2)=7€
X +Y~Poi(l=A; + 1, = 1.3) ~ 0.2302

Sol 2: No approximation

P(A+B—2)—ZP(A KP(B =2 —k)

Z 0 01%(0.99)30-k (25_0 k) 0.0227k0.9848+k ~ ().2327 KA‘;Q
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Today's plan

=> Sum of two Uniform independent RVs
Expectation of sum of two RVs
Discrete conditional distributions

Ratio of probabilities interlude

Continuous conditional distributions
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midterm content up to here
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Dance, Dance, Convolution Extreme Review

Recall for independent discrete random variables X and Y:

— _ _ I the convolution
P(X+Y =n) _Zp(x = OP(Y =n—k) [ecomolt
k
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Dance, Dance, Convolution Extreme

For independent continuous random variables X and Y:

fx+y(@) = j_oofx(x)fy(“ — x)dx ’(t)t;ef)c(:oar;]vdol;;tion
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XandY 0
Sum of independent Uniforms independent fy..y(a) = j fx (O fy (o — %) dx

+ continuous

Let X~Uni(0,1) and Y~Uni(0,1) be independent random variables.
What is the distribution of X + Y, fyx.y?

fx+y (@) = J_ fx (k) fy(a — k)dk

fx (k) fy(a — k) = 1 when: (select one)

always

0<k<1

0<a—-k<1

0<a<?2 -
Other \?)
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XandY 0
Sum of independent Uniforms independent fy..y(a) = j fx (O fy (o — %) dx

+ continuous

Let X~Uni(0,1) and Y~Uni(0,1) be independent random variables.
What is the distribution of X + Y, fyx.y?

fx+y (@) = J_ fx (k) fy(a — k)dk

fx (k) fy(a — k) = 1 when: (select one)

always

0<k<1

0<a—-k<1

0<a<?2 -
Other \?)
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XandY

Sum of independent Uniforms . ominuoss <™ | pomta—xax

Let X~Uni(0,1) and Y~Uni(0,1) be independent random variables.
What is the distribution of X + Y, fyx.y?

fx+y(a) = j (B fy(a — k)dk
What are the bounds on k when:
fx(k)fy(a —k) =1 when: a=1/2?

0<a<?2and
0<k<1and
a—1<k<a

The precise integration a = 3/2?
bounds on k depend on «. \?(9

Lisa Yan, C$109, 2019 Stanford University 11



XandY

Sum of independent Uniforms  &hiniens @~ | _neonta=nax

Let X~Uni(0,1) and Y~Uni(0,1) be independent random variables.
What is the distribution of X + Y, fyx.y?

fx+y(a) = j (B fy(a — k)dk
What are the bounds on k when:

fX(k)fy(a — k) = 1 when: a = 1/2?
0<a<2and 0<k<a
a
0 <k <1and Ji_oldk =a =1/2
a—1<k<a
The precise integration a = 3/2?
bounds on k depend on a. a—1<k<1 >

2
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XandY

Sum of independent Uniforms . ominuoss <™ | pomta—xax

Let X~Uni(0,1) and Y~Uni(0,1) be independent random variables.
What is the distribution of X + Y, fyx.y?

0 —_ 1
fror@ = | fofa-ldk ),
o E
0 i i i i a
fx(k)fy(a —k) =1 when: o 12 1 3/2 2
0<a<?2and
0<k<1and (

a 0<a<l1
fx+y(a)=<2—a 1<a<?
otherwise

a—1<k<a

The precise integration
bounds on k depend on a. \ 0

2
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whew




Today's plan

=) Expectation of sum of two RVs
Discrete conditional distributions

Continuous conditional distributions
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Properties of Expectation, extended to two RVs

1. Linearity:
ElaX + bY 4+ c| = aE|X]| + bE|Y] + C

2. Expectation of a sum = sum of expectation: |
L (we've seen this;

E[X T Y] — E[X] T E[Y] we’ll prove this next)

3. Unconscious statistician:

Elgt, 0l = ) ) g y)pey(6,y)
x Yy

Elg(X,Y)] = f f g, y)fxy(x,y) dx dy
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Proof of expectation of a sum of RVs E[X +Y] = EX] + E[Y]

E[X+Y] = 2 z(x + ¥)pxy(x,y) ;(E;T(Ui) —X+Y
X Yy

= z z xpxy(x,y) + z 2 yoxy(x,y)
X y X Yy

= 2 xz pxy(x,y) + 2 yz Pxy(x,y)
% y y Z

Linearity of summations
(cont. case: linearity of integrals)

[

— 2 xpy(x) + 2 ypy (V) Marginal PMFs for X and Y

X y
—F [ X] . [Y] #__ Evenif the joint distribution is unknown, you can calculate the
N ew’  expectation of sum as sum of expectations.

Example: E[),]-, X;] = Y= E[X;] despite dependent trials X;
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Expectations of common RVs

X~Bin(n,p) E[X]=np

n
Let X;: = ith trial is heads
X = Z:X- ' E\X|=FE
L% X~Ber(p), EXi] = p u
1=
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Expectations of common RVs

Y ~NegBin(r,p) EIY]=-

Suppose: How should we define Y;?
? Y; = ith trial is heads. Y;~Ber(p),i =1, ...,n
Yy = z Y, Y; = # trials to get ith success (after (i — 1)th success)
Y;~Geo(p),i=1,..,r

Y; = # successes in n trials \? v
Y;~Bin(n,p),i = 1, ...,r, we look for P(Y; = 1) =y
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Expectations of common RVs

Y~NegBin(r,p) E[Y] =£

Suppose: How should we define Y;?
? Y; = ith trial is heads. Y;~Ber(p),i =1, ...,n
YV = z Y. Y; = # trials to get ith success (after (i — 1)th success)
l Y;~Geo(p),i=1,..,r
=1 . .
Y; = # successes in n trials 5P

Y;~Bin(n,p),i =1, ...,r, we look for P(Y; = 1) </
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Expectations of common RVs

Y ~NegBin(r,p) EIY]=-

r Let Y; = # trials to get ith
v — Z V. success (after E[Y]=E
— l
i=1

< | =

(i — 1)th success) ;
1
Yi~Geo(p), ELY;] = K\.{j
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(beginning of non-midterm content)

Break for jokes/
announcements




Announcements

4 N

Midterm study tips
Easy to do: Charts/equations
Harder to do: Glean common strategies
from practice exams/section handouts/psets
No matter what: Start early. Take breaks. Stay hydrated. Sleep.
N /

~
Concept checks

Week 5’s: Wednesday 10/30 1pm

Includes mid-quarter feedback
S u id-qu Y

Lisa Yan, CS109, 2019

(essential,
but not hard)

(top priority:
reflect and
form links)
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Today's plan

=) Discrete conditional distributions

Continuous conditional distributions
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CS109 roadmap

Multiple events:

. . conditional .

Intersection ool Independence

P(ENF) P(EF)

— P(EF) P(E|F) = PR P(EF) = P(E)P(F)

Joint (Multivariate) distributions
Model ALL

- conditional independent  the things!
Rt P/ e j[> distributions? t RVs '-

PX,Y(X; y) today sum of

fX,Y (x, }’) independent RVs
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Discrete conditional distributions

Recall the definition of the conditional probability of event E given event F:
P(EF)
P(F)

P(E|F) =

For discrete random variables X and Y, the conditional PMF of X given Y is

PX=xY=y)
g P(Y = y)
Different notation, . pX,Y (x: Y)
same idea: pXIY(xDI) —

py(¥)
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e PX=xY=7)

Quick check P =)
Number or function?
1 P =2|Y =5) True or false?
number
2. P(X=x|Y =5) 5. ZP(X=x|Y=5)=1 true
1-D function x
3. P(X =2|Y =y) 5 Y PE=2Y=y)=1 false
1-D function 3" ‘
4. P(X =x|Y =y) 7 Zx‘(ZP(X=xIY=y)P(Y=y))=1
2-D function Y true

2
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Discrete probabilities of CS109

CS109 Acquaintance form
(Fall 2019)

Each student responds with (major X,
year Y, bool pokemon master M)

M =1 (yes) or M = 0 (no)

-
° %
<r\

Lisa Yan, C$109, 2019 Stanford University 28




Discrete probabilities of CS109

Each student responds with (major X,
year Y, bool pokemon master M):

Joint PMF of X, Y, M

Other Hum/
SymSys/ Eng/Sci SocSci/ Double
CS MCS/EE /Math Ling major Undec. .
X=1 X=2 X=3 X=4 X=5 X=6 Joint PMF of X, M

o Y=1[.006 .000 .000 .000 .000 .000 Other  Hum/

Y=2| .155 .069 .034 .006 .023 .029 SymSys/ Eng/Sci/ SocSci/ Double
I y—=3|.002 063 .023 .006 .006 .000 CS MCS/EE Math  Ling  major Undec.
2 Y=4|.017 .029 .011 .006 .000 .000 X=1 X=2 X=3 X=4 X=5 X=6|

y>5|.020 .006 .011 .006 .000 .000 M=0].299 .167 .080 .023 .029 .029
—, Y=1[.00 .000 .000 .000 .000 .000 M=1].184 |.086 .040 .040 .000 .023

Yy=2|.126 .040 .017 .017 .000 .017
I vy=3]| .046 .040 .006 .011 .000 .006 P(X=1,M=1) =018
2 Yy=4|.006 .006 .000 .000 .000 .000 -

Yy >5/||.006| .000 .017 .011 .000 .000 \\.?.j

PY>5X=1,M=1)
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. eye . vy P& =xY=y)
Discrete probabilities of CS109 U=V =9 =57 =
The below tables are conditional probability ~ Joint Pl\gtl:e?f ):umly
tables for the conditional PMFs SymSys/ Eng/Sci/ SocSci/ Double
P(M =m|X = x) and P(X = x|M = m). o1 %oy Hes s xes seel
. . P M=0|.299 .167 .080 .023 .029 .029
Which table is which® M=1|[184 1086 .040 .040 .000 .023

Fill in the missing probability. P(X=1,M=1)=0.18

Other Hum/ Other Hum/
SymSys/ Eng/Sci/ SocSci/ Double SymSys/ Eng/Sci/ SocSci/ Double
CS MCS/EE Math Ling major Undec. CS MCS/EE Math Ling major Undec.
X=1 X=2 X=3 X=4 X=5 X=6 X=1 X=2 X=3 X=4 X=5 X=
M=0| .619 .659 .667 .364 1.000 .556 M=0| .477 .206 .128 .037 .046 .046
M=1|.381 .341 .333 .636 .000 .444 M=1 231 108 .108 .000 .062

=)
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. vve B _ _P(X=x,Y=y)
Discrete probabilities of CS109 U=V =9 =57 =
The below tables are conditional probability ~ Joint Pl\gtl:e?f ):umly
tables for the conditional PMFs SymSys/ Eng/Sci/ SocSci/ Double
P(M =m|X = x) and P(X = x|M = m). o1 %oy Hes s xes seel
. . . o M=0| 030 017 0.08 0.02 0.03 0.03
Which table is which m=1|[018 10.09 004 004 0.0 0.02

Fill in the missing probability. P(X=1,M=1)=0.18

Conditional PMF P(M = m|X = x) Conditional PMF P(X = x|M = m)
Other Hum/ Other Hum/
SymSys/ Eng/Sci/ SocSci/ Double SymSys/ Eng/Sci/ SocSci/ Double
CS MCS/EE Math Ling major Undec. CS MCS/EE Math Ling major Undec.

X=1 X=2 X=3 X=4 X=5 X=6 X=1 X=2 X=3 X=4 X=5 X=6

2
Il
_ O

619 .659 .667 .364 1.000 .556 M=0| .477 .266 .128 .037 .046 .046
381 .341 .333 .636 .000 .444 M=1|-492 231 .108 .108 .000 .062

~~

“=» Be clear about which probabilities K\.?.)

— should sum to one.
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Extended to Amazon

FINEDINE
Stainless Steel Mixing Bowls by Finedine (Set of 6) Polished Mirror
Finish Nesting Bowl, % - 1.5-3 - 4-5 - 8 Quart - Cooking Supplies

¥ 2,566 customer reviews | 75 answered questions

X

for “stainless steel mixing bowds

Price: $24.99 & FREE Shipping on orders over $25 shipped by Amazon. Detalls
Get $40 off Instantly: Pay $0.00 upon approval for the Amazon.com Store Card

Prime | Try Fast, Free Shipping ~

With graduating sizes of %, 1.5, 3, 4, 5 and 8 quart, the bowl set allows users to be well equipped for serving
frult salads, marinating for the grill, and adding last ingredients for dessert.

Stalnless steel bowls with commercial grade metal that can be used as both baking mixing bowls and
serving bowls. These metal bowls won't stain or absorb odors and resist rust for years of durability.

An easy to grip rounded-lip on the stainless steel bowl set makes handling easier while a generous wide im
allows contents to flow evenly when pouring; flat base stabilizes the silver bowls making mixing all the
easler.

A space saving stackable design helps de-clutter kitchen cupboards while the attractive polished mirror
finish on the large mixing bowls adds a luxurlous aesthetic.

This incredible stainless steel mixing bowl set Is refrigerator, freezer, and dishwasher safe for quick and easy
meal prep and clean up. They'd also make a great gift!

Compare with similar items

Used & new (7) from $20.62 & FREE shipping on orders over $25.00. Detalls
C Report Incorrect product Information

Packaging may reveal contents. Choose Conceal Package at checkout.

KELIWA
Easy home baking
» Shop now

Silicone
ke Baking Pan
- Stick

Roll over image to zoom In

Ad feedback
Customers w
@ . So, ren
- L
N

- L

S Az,
ExcelSteel Stainless Steel 1Easylife 18/8 Stainless New Star Foodservice Rubbermald Easy Find Miusco 5 Plece Silicone Bellemain Micro- AmazonBasics 6-Plece HOMWE Kitchen Cutting
Colanders, Set of 3 Steel Measuring Spoons, 42917 Stainless Steel Lids Food Storage Cooking Utensil Set with perforated Stalnless Steel Nonstick Bakeware Set Board (3-Plece Set) | Juice
W R 301 Set of 6 for Measuring 4pcs Measuring Cups and Contalners, Racer Red, Natural Acacla Hard 5-quart Colander- N YT T 7 Grooves w/ Easy-Grip
$15.83 sprime Dry and Liquid Spoons Combo Set 42-Plece Set 1880801 Wood Handle Dishwasher Safe Handles | BPA-Free,...

Ingredients

¥7 1,042 Wik v7 10,319 wy ¥ 461 Yolrdrdl 2,797 ik ¥7 240
1,854 i1 Best Seller i) $19.99 vprime $20.99 vprime #1 Best Seller {1y $14.97 vprime
1 Best Seller {i Speclalty Spoons Colanders

Measuring Spoons $9.95 vprime $19.95 vprime

$9.99 vprime

ought item X | bought item Y
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Today's plan

E> Ratio of probabilities interlude
Continuous conditional distributions
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Relative probabilities of continuous random variables

Let X = time to finish problem set 2.
Suppose X~N(10,2).

How much more likely are you to complete
In 10 hours than 5 hours? |

f(x)

5 10 X
’;(éz_ls? _ 0/0 = undefined
- £(10)
f(5)

stay healthy

2
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Relative probabilities of continuous random variables

Let X = time to finish problem set 2.
Suppose X~N(10,2).

How much more likely are you to
complete in 10 hours than 5 hours? I

f(x)

5 10 X
I;(éz_ls? _ 0/0 = undefined
- £(10)
f(5)

stay healthy

2
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Relative probabilities of continuous random variables

Let X = time to finish problem set 2.
Suppose X~N(10,2). R
How much more likely are you to =
complete in 10 hours than 5 hours? I
5 10 X
P(X =10) f(10) . . a+t
P(X=5)  f(5) P(X = a) =P(a—§SX < a+§) =j Cf@dx ~ ef (@)
1 oG-y L P =)@ @
ol SO P =1b) " ef () fb)
o 27te 27
_ (10 -10)? 0
= = _Z.fo)z . = = 518 == Ratios of PDFs are meaningful
e~ 22 e 4 S
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Today's plan

Ratio of probabilities interlude

> Continuous conditional distributions
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Continuous conditional distributions

For continuous RVs X and Y, the conditional PDF of X given Y is

fX,Y(x' y)
fr»)

fX|Y(X|3’) =

mution: p(x = 2y =) = LD G2 e = BT

Note that conditional PDF fxy is a true density:

> fX,Y(x» y) dx — fr&y) _
—w ) fr(y)
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Bayes’ Theorem with Continuous RVs

For continuous RVs X and Y,

far @A)
leX(ylx) _ fX(x)
Intuition: . PX=x|[Yy=y)P(Y =y)
PY =ylX=x) = PIX = %)

i’

~ (arGIex) (fr 0)ey)
frix@x)ey = o
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iscourage

Don't feel d



Tracking in 2-D space?

You want to know

the 2-D location of
an object.

> \\\M“"’l"””lm,

v
T

=
=
-
g
s
~S
S
&

Your satellite ping
gives you a noisy 1-D
measurement of the
distance of the object
from the satellite (0,0).

S
7 NN
g
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Tracking in 2-D space

* You have a prior belief about the 2-D location of an object, (X,Y).

* You observe a noisy distance measurement, D = 4.

* What is your updated (posterior) belief of the 2-D location of the object after
observing the measurement?

likelihood prior
| i belief
Recall Bayes p%Setl?ngr (of evidence)
terminology: fD|X,Y (d |x’ Y)fx,y (x’ y)

fX,Y|D(xr:V|d) = . (d)

normalization constant
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Tracking in 2-D space

* You have a prior belief about the 2-D location of an object, (X,Y).

Top-down view 3-D view
5

Let (X,Y) = object’s 2-D location.
(your satellite is at (0,0)

3
Yo

Suppose the prior distribution is a
symmetric bivariate normal distribution:

X

3 [(x—3)2+(y—3)2] [(x_3)2+(y_3)2]

fxy(,y) = Y e 2(2%) =K, -e 8

normalizing constant
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Tracking in 2-D space

You observe a noisy distance measurement, D = 4.

Clark Center

ccccccccccccccccccccc
Teaching and Learning

Let D = distance from the satellite (radially).
Suppose you knew your actual position: (x, y).
il D is still noisy! Suppose noise is unit variance: 6% = 1
On average, D is your actual position: py = \/x2 + y?2

rrrrrrrrrr

Snilker Enaineerina

If you knew your actual location
(x,y), you could say how likely
a measurement D = 4 is!!
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Tracking in 2-D space

-, e . ——

) \4 Last known possible position of

X_ X" ) MH370 based on satellite data
Ny R (somewhere on red lines)

i~ L% AN ¥

probability density

Distance measurement of a ping is normal with respect to the true location.
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Tracking in 2-D space

You observe a noisy distance measurement, D = 4.

If you knew your actual location

(x,y), you could say how likely
a measurement D = 4 isl!l

probability density

If noise is normal: D|X,Y~N (,Ll = \/xz +vy2,0% = 1)

Distance measurement of a ping is normal with respect to the true location.
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Tracking in 2-D space

* You observe a noisy distance measurement, D = 4.

If you knew your actual location
(x,y), you could say how likely D|X,Y~N (,u = \/xz + y?, g% = 1)
a measurement D = 4 is!!

1 —(d-w)?
(D=d|X=xY=vy)= e 207
foixy | y oo
\‘,\&\)’@”L 2 d \/ﬁz
RGN e G i) ~(ayxt?)
T

normalizing constant
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Deep breath




Tracking in 2-D space

> You have a prior belief about the 2-D location of an object, (X,Y).

5
3

: . Top-
Prior belief Y o down
view
S5 0 3 5
_ [x=3)%+(y-3)?]
fX,Y(x: y) =K, -e 8
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Tracking in 2-D space

* You have a prior belief about the 2-D location of an object, (X,Y).
* You observe a noisy distance measurement, D = 4.

 What is your updated (posterior) belief of the 2-D location of the object after
observing the measurement?

5

3 . U= /xZ + y2
. . Too- Observation
Prior belief Y o P L o2 =1/_|_>
down likelihood
view -
B 0 3 5
" 2 2 2
 [e-3)2+(-3)2] _(d_ x +y)
fxy(x,y) =K; - e 8 foixy(d|x,y) =K, -e 2

Lisa Yan, CS109, 2019
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Tracking in 2-D space

* What is your updated (posterior) belief of the 2-D location of the object after
observing the measurement?

Poster!or fX,Y|D(x»3’|4) = fX,Y|D(X =x,Y=y|D=4)
belief
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Tracking in 2-D space

What is your updated (posterior) belief of the 2-D location of the object after observing
the measurement?

likelihood of D = 4 prior belief
fD|X,Y(D — 4_l)( — x’Y — y)fX,Y(x' y) Bayes’
fX,Y|D(X — er — le — 4) — f(D — 4_) Theorem

_ (4_\’ x2+y2)2 _[&=3)2+(y-3)?]

_ KZ ‘e 2 ’ Kl - e 8
f(D =4

_[(4—,/x2+y2) N [(x_3)2+(y_3)2]]

_ K3 o 2 8
fO=9

l<4—Jx2+y2) [(x—3)2+(y—3)2]‘

—K, e . + - For your notes...
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Tracking in 2-D space: Posterior belief

Prior belief Posterior belief

Top-down view 3-D view Top-down view 3-D view

(G5 +0-57) ferp (o y14) =

fX,Y(x» )’) =K -e 8
[(4—\/x2+y2)2 . [(x_3)2+(y_3)2]
2 8

K4' e_
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Good job today




