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Sum of independent random variables

2

Review

𝑋~Bin 𝑛$, 𝑝 , 𝑌~Bin(𝑛), 𝑝) 𝑋 + 𝑌 ~Bin(𝑛$ + 𝑛), 𝑝)𝑋, 𝑌 independent

𝑋~Poi 𝜆$ , 𝑌~Poi 𝜆)
𝑋, 𝑌 independent

𝑋 + 𝑌 ~Poi(𝜆$ + 𝜆))

𝑋~𝒩 𝜇$, 𝜎$)
𝑌~𝒩 𝜇), 𝜎))
𝑋, 𝑌 independent

𝑋 + 𝑌 ~𝒩(𝜇$ + 𝜇), 𝜎$) + 𝜎)))

Note: these also hold in the general case (≥ 2 variables)
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Quick questions
1. 𝑋 and 𝑌 have the following joint PDF:

Are 𝑋 and 𝑌 independent?

2. Let 𝑋~Bin 30, 0.01 and 𝑌~Bin 50, 0.02 be independent RVs. Can we 
use sum of independent Poisson RVs to approximate 𝑃 𝑋 + 𝑌 = 1 ?

Review

𝑓:,; 𝑥, 𝑦 =
8
3
𝑥?𝑦

where 0 < 𝑥 < 1,1 < 𝑦 < 2
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Quick questions
1. 𝑋 and 𝑌 have the following joint PDF:

Are 𝑋 and 𝑌 independent?

2. Let 𝐴~Bin 30, 0.01 and 𝐵~Bin 50, 0.02 be independent RVs. Can we 
use sum of independent Poisson RVs to approximate 𝑃 𝐴 + 𝐵 = 2 ?

Review

𝑔 𝑥 = 𝐶$𝑥?
ℎ 𝑦 = 𝐶)𝑦

Separable 
functions

, where 𝐶$, 𝐶) are constants

𝑓:,; 𝑥, 𝑦 =
8
3
𝑥?𝑦

where 0 < 𝑥 < 1,1 < 𝑦 < 2
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Quick questions
2. Let 𝐴~Bin 30, 0.01 and 𝐵~Bin 50, 0.02 be independent RVs. Can we 

use sum of independent Poisson RVs to approximate 𝑃 𝐴 + 𝐵 = 2 ?

Review

𝐴 ≈ 𝑋~Poi 𝜆$ = 30 ⋅ 0.01 = 0.3
𝐵 ≈ 𝑌~Poi 𝜆) = 50 ⋅ 0.02 = 1 𝑃 𝐴 + 𝐵 = 2 ≈ 𝑃 𝑋 + 𝑌 = 2

Sol 1: Approximate as sum of Poissons

𝑋 + 𝑌~Poi 𝜆 = 𝜆$ + 𝜆) = 1.3

=
𝜆)

2!
𝑒JK

Sol 2: No approximation

𝑃 𝐴 + 𝐵 = 2 = L
MNO

)

𝑃 𝐴 = 𝑘 𝑃 𝐵 = 2 − 𝑘

≈ 0.2302

= L
MNO

)
30
𝑘 0.01M 0.99 ?OJM 50

2 − 𝑘 0.02)JM0.98STUM ≈ 0.2327
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Today’s plan

Sum of two Uniform independent RVs

Expectation of sum of two RVs

Discrete conditional distributions

Continuous conditional distributions

6

Ratio of probabilities interlude

midterm content up to here
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Dance, Dance, Convolution Extreme
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the convolution
of 𝑝: and 𝑝;

Recall for independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =L
M

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

Review
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Dance, Dance, Convolution Extreme
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the convolution 
of 𝑝: and 𝑝;

Recall for independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =L
M

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

the convolution
of 𝑓: and 𝑓;

For independent continuous random variables 𝑋 and 𝑌:

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑥 𝑓; 𝛼 − 𝑥 𝑑𝑥
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Sum of independent Uniforms
Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋 + 𝑌, 𝑓:U;?

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑥 𝑓; 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑘 𝑓; 𝛼 − 𝑘 𝑑𝑘

A. always
B. 0 ≤ 𝑘 ≤ 1
C. 0 ≤ 𝛼 − 𝑘 ≤ 1
D. 0 ≤ 𝛼 ≤ 2
E. Other

𝑓: 𝑘 𝑓; 𝛼 − 𝑘 = 1 when: (select one) 
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Sum of independent Uniforms
Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋 + 𝑌, 𝑓:U;?

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑥 𝑓; 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑘 𝑓; 𝛼 − 𝑘 𝑑𝑘

A. always
B. 0 ≤ 𝑘 ≤ 1
C. 0 ≤ 𝛼 − 𝑘 ≤ 1
D. 0 ≤ 𝛼 ≤ 2
E. Other

𝑓: 𝑘 𝑓; 𝛼 − 𝑘 = 1 when: (select one) 
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Sum of independent Uniforms
Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋 + 𝑌, 𝑓:U;?

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑥 𝑓; 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑘 𝑓; 𝛼 − 𝑘 𝑑𝑘

0 ≤ 𝛼 ≤ 2 and
0 ≤ 𝑘 ≤ 1 and
0 ≤ 𝛼 − 𝑘 ≤ 1 ⇒ 𝛼 − 1 ≤ 𝑘 ≤ 𝛼
The precise integration
bounds on 𝑘 depend on 𝛼.

𝑓: 𝑘 𝑓; 𝛼 − 𝑘 = 1 when:
What are the bounds on 𝑘 when:
1. 𝛼 = 1/2?

2. 𝛼 = 3/2?
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Sum of independent Uniforms
Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋 + 𝑌, 𝑓:U;?

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑥 𝑓; 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑘 𝑓; 𝛼 − 𝑘 𝑑𝑘

0 ≤ 𝛼 ≤ 2 and
0 ≤ 𝑘 ≤ 1 and
0 ≤ 𝛼 − 𝑘 ≤ 1 ⇒ 𝛼 − 1 ≤ 𝑘 ≤ 𝛼
The precise integration
bounds on 𝑘 depend on 𝛼.

𝑓: 𝑘 𝑓; 𝛼 − 𝑘 = 1 when:
What are the bounds on 𝑘 when:
1. 𝛼 = 1/2?

2. 𝛼 = 3/2?

0 ≤ 𝑘 ≤ 𝛼
∫MNO
_ 1𝑑𝑘 = 𝛼 = 1/2

𝛼 − 1 ≤ 𝑘 ≤ 1
∫MN_J$
$ 1𝑑𝑘 = 2 − 𝛼 = 1/2
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Sum of independent Uniforms
Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋 + 𝑌, 𝑓:U;?

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑥 𝑓; 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

𝑓:U; 𝛼 = X
JY

Y
𝑓: 𝑘 𝑓; 𝛼 − 𝑘 𝑑𝑘

𝑓: 𝑘 𝑓; 𝛼 − 𝑘 = 1 when:

𝑓:U; 𝛼 = `
𝑎 0 ≤ 𝑎 ≤ 1

2 − 𝑎 1 ≤ 𝑎 ≤ 2
0 otherwise

0

1/2

𝛼

𝑓 :
U
;
𝛼

1/2 1 3/2 2

1

0

0 ≤ 𝛼 ≤ 2 and
0 ≤ 𝑘 ≤ 1 and
0 ≤ 𝛼 − 𝑘 ≤ 1 ⇒ 𝛼 − 1 ≤ 𝑘 ≤ 𝛼
The precise integration
bounds on 𝑘 depend on 𝛼.



whew
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Today’s plan

Sum of two Uniform independent RVs

Expectation of sum of two RVs

Discrete conditional distributions

Continuous conditional distributions

15
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Properties of Expectation, extended to two RVs
1. Linearity:
𝐸 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌 + 𝑐

2. Expectation of a sum = sum of expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

16

(we’ve seen this; 
we’ll prove this next)

𝐸 𝑔 𝑋, 𝑌 =L
e

L
f

𝑔 𝑥, 𝑦 𝑝:,;(𝑥, 𝑦)

𝐸 𝑔 𝑋, 𝑌 = X
JY

Y
X
JY

Y
𝑔 𝑥, 𝑦 𝑓:,; 𝑥, 𝑦 𝑑𝑥 𝑑𝑦
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Proof of expectation of a sum of RVs
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Even if the joint distribution is unknown, you can calculate the 
expectation of sum as sum of expectations.

Example: 𝐸 ∑hN$i 𝑋h = ∑hN$i 𝐸 𝑋h despite dependent trials 𝑋h
👉

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

L
e

L
f

𝑥 + 𝑦 𝑝:,; 𝑥, 𝑦
LOTUS,
𝑔 𝑋, 𝑌 = 𝑋 + 𝑌

=L
e

L
f

𝑥𝑝:,; 𝑥, 𝑦 +L
e

L
f

𝑦𝑝:,; 𝑥, 𝑦
Linearity of summations
(cont. case: linearity of integrals)

=L
e

𝑥L
f

𝑝:,; 𝑥, 𝑦 +L
f

𝑦L
e

𝑝:,; 𝑥, 𝑦

Marginal PMFs for 𝑋 and 𝑌=L
e

𝑥𝑝: 𝑥 +L
f

𝑦𝑝; 𝑦

= 𝐸 𝑋 + 𝐸[𝑌]

𝐸 𝑋 + 𝑌 =
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Expectations of common RVs
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𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝

𝐸 𝑋 = 𝐸 L
hN$

i

𝑋h =L
hN$

i

𝐸 𝑋h =L
hN$

i

𝑝 = 𝑛𝑝𝑋 =L
hN$

i

𝑋h
Let 𝑋h = 𝑖th trial is heads
𝑋h~Ber 𝑝 , 𝐸 𝑋h = 𝑝

Review
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Expectations of common RVs

𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝

𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = n
o

𝑋 =L
hN$

i

𝑋h 𝐸 𝑋 = 𝐸 L
hN$

i

𝑋h =L
hN$

i

𝐸 𝑋h =L
hN$

i

𝑝 = 𝑛𝑝Let 𝑋h = 𝑖th trial is heads
𝑋h~Ber 𝑝 , 𝐸 𝑋h = 𝑝

How should we define 𝑌h? 
A. 𝑌h = 𝑖th trial is heads. 𝑌h~Ber 𝑝 , 𝑖 = 1,… , 𝑛
B. 𝑌h = # trials to get 𝑖th success (after 𝑖 − 1 th success)

𝑌h~Geo 𝑝 , 𝑖 = 1,… , 𝑟
C. 𝑌h = # successes in 𝑛 trials 

𝑌h~Bin 𝑛, 𝑝 , 𝑖 = 1,… , 𝑟, we look for 𝑃 𝑌h = 1

𝑌 =L
hN$

?

𝑌h

Suppose:
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Expectations of common RVs

𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝

𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = n
o

𝑋 =L
hN$

i

𝑋h 𝐸 𝑋 = 𝐸 L
hN$

i

𝑋h =L
hN$

i

𝐸 𝑋h =L
hN$

i

𝑝 = 𝑛𝑝Let 𝑋h = 𝑖th trial is heads
𝑋h~Ber 𝑝 , 𝐸 𝑋h = 𝑝

How should we define 𝑌h? 
A. 𝑌h = 𝑖th trial is heads. 𝑌h~Ber 𝑝 , 𝑖 = 1,… , 𝑛
B. 𝑌h = # trials to get 𝑖th success (after 𝑖 − 1 th success)

𝑌h~Geo 𝑝 , 𝑖 = 1,… , 𝑟
C. 𝑌h = # successes in 𝑛 trials 

𝑌h~Bin 𝑛, 𝑝 , 𝑖 = 1,… , 𝑟, we look for 𝑃 𝑌h = 1

𝑌 =L
hN$

?

𝑌h

Suppose:
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Expectations of common RVs

𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝

𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = n
o

𝑋 =L
hN$

i

𝑋h 𝐸 𝑋 = 𝐸 L
hN$

i

𝑋h =L
hN$

i

𝐸 𝑋h =L
hN$

i

𝑝 = 𝑛𝑝Let 𝑋h = 𝑖th trial is heads
𝑋h~Ber 𝑝 , 𝐸 𝑋h = 𝑝

𝑌 =L
hN$

n

𝑌h

Let 𝑌h = # trials to get 𝑖th
success (after
𝑖 − 1 th success)

𝑌h~Geo 𝑝 , 𝐸 𝑌h = $
o

𝐸 𝑌 = 𝐸 L
hN$

n

𝑌h =L
hN$

n

𝐸 𝑌h =L
hN$

n
1
𝑝
=
𝑟
𝑝



Break for jokes/ 
announcements

22

(beginning of non-midterm content)



Lisa Yan, CS109, 2019

Midterm study tips

Easy to do: Charts/equations

Harder to do: Glean common strategies
from practice exams/section handouts/psets

No matter what: Start early. Take breaks. Stay hydrated. Sleep. 

Announcements

23

Concept checks

Week 5’s: Wednesday 10/30 1pm
Includes mid-quarter feedback

(essential,
but not hard)

(top priority:
reflect and
form links)
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Today’s plan

Sum of two Uniform independent RVs

Expectation of sum of two RVs

Discrete conditional distributions

Continuous conditional distributions

24
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CS109 roadmap
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Model ALL 
the things!

Multiple events:

𝑃 𝐸 𝐹 =
𝑃 𝐸𝐹
𝑃 𝐹

conditional 
probability

𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)

independence

Joint (Multivariate) distributions

joint PMF/PDF

𝑝:,; 𝑥, 𝑦
𝑓:,; 𝑥, 𝑦

intersection

𝑃 𝐸 ∩ 𝐹
= 𝑃 𝐸𝐹

conditional 
distributions?

today

independent
RVs

sum of 
independent RVs
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Discrete conditional distributions
Recall the definition of the conditional probability of event 𝐸 given event 𝐹:

𝑃 𝐸 𝐹 =
𝑃 𝐸𝐹
𝑃 𝐹

For discrete random variables 𝑋 and 𝑌, the conditional PMF of 𝑋 given 𝑌 is

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦

𝑝:|; 𝑥|𝑦 =
𝑝:,; 𝑥, 𝑦
𝑝; 𝑦

26

Different notation,
same idea:
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Quick check
Number or function?

1. 𝑃 𝑋 = 2 𝑌 = 5

2. 𝑃 𝑋 = 𝑥 𝑌 = 5

3. 𝑃 𝑋 = 2 𝑌 = 𝑦

4. 𝑃 𝑋 = 𝑥 𝑌 = 𝑦

True or false?

5.

6.

7. L
e

L
f

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 𝑃 𝑌 = 𝑦 = 1

L
f

𝑃 𝑋 = 2|𝑌 = 𝑦 = 1

L
e

𝑃 𝑋 = 𝑥|𝑌 = 5 = 1

2-D function

1-D function

1-D function

number
true

false

true

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦
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Discrete probabilities of CS109

Each student responds with (major 𝑋, 
year 𝑌, bool pokemon master 𝑀) 𝑀 = 1 (yes) or 𝑀 = 0 (no)
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Discrete probabilities of CS109
Each student responds with (major 𝑋, 
year 𝑌, bool pokemon master 𝑀):

CS
𝑋 = 1

SymSys/
MCS/EE
𝑋 = 2

Other 
Eng/Sci
/Math
𝑋 = 3

Hum/
SocSci/

Ling
𝑋 = 4

Double 
major
𝑋 = 5

Undec.
𝑋 = 6

𝑌 = 1 .006 .000 .000 .000 .000 .000
𝑌 = 2 .155 .069 .034 .006 .023 .029
𝑌 = 3 .092 .063 .023 .006 .006 .000
𝑌 = 4 .017 .029 .011 .006 .000 .000
𝑌 ≥ 5 .029 .006 .011 .006 .000 .000
𝑌 = 1 .000 .000 .000 .000 .000 .000
𝑌 = 2 .126 .040 .017 .017 .000 .017
𝑌 = 3 .046 .040 .006 .011 .000 .006
𝑌 = 4 .006 .006 .000 .000 .000 .000
𝑌 ≥ 5 .006 .000 .017 .011 .000 .000

𝑀
=
0

𝑀
=
1

𝑃 𝑌 ≥ 5, 𝑋 = 1 ,𝑀 = 1

Joint PMF of 𝑋, 𝑌,𝑀

CS
𝑋 = 1

SymSys/
MCS/EE
𝑋 = 2

Other 
Eng/Sci/

Math
𝑋 = 3

Hum/
SocSci/

Ling
𝑋 = 4

Double 
major
𝑋 = 5

Undec.
𝑋 = 6

𝑀 = 0 .299 .167 .080 .023 .029 .029
𝑀 = 1 .184 .086 .040 .040 .000 .023

𝑃 𝑋 = 1 ,𝑀 = 1 = 0.18

Joint PMF of 𝑋,𝑀
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Discrete probabilities of CS109
The below tables are conditional probability 
tables for the conditional PMFs
𝑃 𝑀 = 𝑚|𝑋 = 𝑥 and 𝑃 𝑋 = 𝑥|𝑀 = 𝑚 .
1. Which table is which?
2. Fill in the missing probability.

CS
𝑋 = 1

SymSys/
MCS/EE
𝑋 = 2

Other 
Eng/Sci/

Math
𝑋 = 3

Hum/
SocSci/

Ling
𝑋 = 4

Double 
major
𝑋 = 5

Undec.
𝑋 = 6

𝑀 = 0 .299 .167 .080 .023 .029 .029
𝑀 = 1 .184 .086 .040 .040 .000 .023

𝑃 𝑋 = 1 ,𝑀 = 1 = 0.18

Joint PMF of 𝑋,𝑀

CS
𝑋 = 1

SymSys/
MCS/EE
𝑋 = 2

Other 
Eng/Sci/

Math
𝑋 = 3

Hum/
SocSci/

Ling
𝑋 = 4

Double 
major
𝑋 = 5

Undec.
𝑋 = 6

𝑀 = 0 .619 .659 .667 .364 1.000 .556
𝑀 = 1 .381 .341 .333 .636 .000 .444

CS
𝑋 = 1

SymSys/
MCS/EE
𝑋 = 2

Other 
Eng/Sci/

Math
𝑋 = 3

Hum/
SocSci/

Ling
𝑋 = 4

Double 
major
𝑋 = 5

Undec.
𝑋 = 6

𝑀 = 0 .477 .266 .128 .037 .046 .046
𝑀 = 1 .231 .108 .108 .000 .062

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦
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Discrete probabilities of CS109
The below tables are conditional probability 
tables for the conditional PMFs
𝑃 𝑀 = 𝑚|𝑋 = 𝑥 and 𝑃 𝑋 = 𝑥|𝑀 = 𝑚 .
1. Which table is which?
2. Fill in the missing probability.

CS
𝑋 = 1

SymSys/
MCS/EE
𝑋 = 2

Other 
Eng/Sci/

Math
𝑋 = 3

Hum/
SocSci/

Ling
𝑋 = 4

Double 
major
𝑋 = 5

Undec.
𝑋 = 6

𝑀 = 0 0.30 0.17 0.08 0.02 0.03 0.03
𝑀 = 1 0.18 0.09 0.04 0.04 0.00 0.02

𝑃 𝑋 = 1 ,𝑀 = 1 = 0.18

Joint PMF of 𝑋,𝑀

CS
𝑋 = 1

SymSys/
MCS/EE
𝑋 = 2

Other 
Eng/Sci/

Math
𝑋 = 3

Hum/
SocSci/

Ling
𝑋 = 4

Double 
major
𝑋 = 5

Undec.
𝑋 = 6

𝑀 = 0 .619 .659 .667 .364 1.000 .556
𝑀 = 1 .381 .341 .333 .636 .000 .444

Conditional PMF 𝑃 𝑀 = 𝑚|𝑋 = 𝑥 Conditional PMF 𝑃 𝑋 = 𝑥|𝑀 = 𝑚

Be clear about which probabilities 
should sum to one.👉

CS
𝑋 = 1

SymSys/
MCS/EE
𝑋 = 2

Other 
Eng/Sci/

Math
𝑋 = 3

Hum/
SocSci/

Ling
𝑋 = 4

Double 
major
𝑋 = 5

Undec.
𝑋 = 6

𝑀 = 0 .477 .266 .128 .037 .046 .046
𝑀 = 1 .231 .108 .108 .000 .062.492

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦
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Extended to Amazon

32

P(bought item 𝑋 | bought item 𝑌)
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Today’s plan

Sum of two Uniform independent RVs

Expectation of sum of two RVs

Discrete conditional distributions

Continuous conditional distributions

33

Ratio of probabilities interlude
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🤔
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Relative probabilities of continuous random variables
Let 𝑋 = time to finish problem set 2.
Suppose 𝑋~𝒩 10,2 .
How much more likely are you to complete 
in 10 hours than 5 hours?

𝑃 𝑋 = 10
𝑃 𝑋 = 5

= A. 0/0 = undefined
B.

C. stay healthy 

𝑓 10
𝑓 5

5             10 !

"(
!)
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Relative probabilities of continuous random variables
Let 𝑋 = time to finish problem set 2.
Suppose 𝑋~𝒩 10,2 .
How much more likely are you to 
complete in 10 hours than 5 hours?

𝑃 𝑋 = 10
𝑃 𝑋 = 5

= A. 0/0 = undefined
B.

C. stay healthy 

𝑓 10
𝑓 5

5             10 !

"(
!)
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Relative probabilities of continuous random variables

36

Ratios of PDFs are meaningful👉

𝑃 𝑋 = 𝑎 = 𝑃 𝑎 −
𝜀
2
≤ 𝑋 ≤ 𝑎 +

𝜀
2

𝑃 𝑋 = 10
𝑃 𝑋 = 5

=
𝑓 10
𝑓 5

𝑃 𝑋 = 𝑎
𝑃 𝑋 = 𝑏 =

𝜀𝑓 𝑎
𝜀𝑓 𝑏 =

𝑓 𝑎
𝑓 𝑏Therefore

= X
zJ{)

zU{)
𝑓 𝑥 𝑑𝑥 ≈ 𝜀𝑓(𝑎)

=

1
𝜎 2𝜋

𝑒J
$O J } ~

)�~

1
𝜎 2𝜋

𝑒J
� J } ~

)�~

=
𝑒J

$O J$O ~

)⋅)

𝑒J
� J $O ~
)⋅)

=
𝑒O

𝑒J
)�
S

= 518

5             10 !

"(
!)

Let 𝑋 = time to finish problem set 2.
Suppose 𝑋~𝒩 10,2 .
How much more likely are you to 
complete in 10 hours than 5 hours?



Lisa Yan, CS109, 2019

Today’s plan

Sum of two Uniform independent RVs

Expectation of sum of two RVs

Discrete conditional distributions

Continuous conditional distributions

37

Ratio of probabilities interlude
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Continuous conditional distributions
For continuous RVs 𝑋 and 𝑌, the conditional PDF of 𝑋 given 𝑌 is

𝑓:|; 𝑥|𝑦 =
𝑓:,; 𝑥, 𝑦
𝑓; 𝑦

Intuition:

Note that conditional PDF 𝑓:|; is a true density: 

38

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦
𝑓:|; 𝑥 𝑦 𝜀: =

𝑓:,; 𝑥, 𝑦 𝜀e𝜀f
𝑓; 𝑦 𝜀f

X
JY

Y
𝑓e 𝑥|𝑦 𝑑𝑥 = X

JY

Y 𝑓:,; 𝑥, 𝑦
𝑓; 𝑦

𝑑𝑥 =
𝑓; 𝑦
𝑓; 𝑦

= 1
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Bayes’ Theorem with Continuous RVs
For continuous RVs 𝑋 and 𝑌,

𝑓;|: 𝑦|𝑥 =
𝑓:|; 𝑥|𝑦 𝑓; 𝑦

𝑓: 𝑥

39

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃 𝑋 = 𝑥|𝑌 = 𝑦 𝑃 𝑌 = 𝑦

𝑃 𝑋 = 𝑥

𝑓;|: 𝑦 𝑥 𝜀; =
𝑓:|; 𝑥|𝑦 𝜀: 𝑓; 𝑦 𝜀f

𝑓: 𝑥 𝜀:

Intuition:



Lisa Yan, CS109, 2019 40

This example is hard!
Don’t feel discouraged!⚠
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Tracking in 2-D space?

41

You want to know
the 2-D location of
an object.

Your satellite ping
gives you a noisy 1-D
measurement of the
distance of the object
from the satellite (0,0).
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Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .
• You observe a noisy distance measurement, 𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object after 

observing the measurement?

42

posterior
belief

likelihood
(of evidence)

prior
belief

normalization constant

Recall Bayes 
terminology:

𝑓:,;|� 𝑥, 𝑦|𝑑 =
𝑓�|:,; 𝑑|𝑥, 𝑦 𝑓:,; 𝑥, 𝑦

𝑓� 𝑑
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Top-down view

Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .
• You observe a noisy distance measurement, 𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object after 

observing the measurement?

43

Let 𝑋, 𝑌 = object’s 2-D location.
(your satellite is at (0,0)

Suppose the prior distribution is a
symmetric bivariate normal distribution:

𝑥

𝑦

𝑓 :
,;
𝑥,
𝑦

3-D view

𝑓:,; 𝑥, 𝑦 =
1

2𝜋2) 𝑒
J

eJ? ~U fJ? ~

) )~

normalizing constant

= 𝐾$ ⋅ 𝑒
J ��� ~� ��� ~

�
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Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .
• You observe a noisy distance measurement, 𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object after 

observing the measurement?

44

Let 𝐷 = distance from the satellite (radially).
Suppose you knew your actual position: 𝑥, 𝑦 .
• 𝐷 is still noisy! Suppose noise is unit variance: 𝜎) = 1
• On average, 𝐷 is your actual position: 𝜇 = 𝑥) + 𝑦)

If you knew your actual location 
𝑥, 𝑦 , you could say how likely

a measurement 𝐷 = 4 is!!
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Tracking in 2-D space

45

dpr
ob

ab
ili

ty
 d

en
si

ty 𝜇 = 𝑥) + 𝑦)

𝜎) = 1

Distance measurement of a ping is normal with respect to the true location.
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Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .
• You observe a noisy distance measurement, 𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object after 

observing the measurement?

46

If noise is normal: 𝐷|𝑋, 𝑌~𝑁 𝜇 = 𝑥) + 𝑦) , 𝜎) = 1

Distance measurement of a ping is normal with respect to the true location.

If you knew your actual location 
𝑥, 𝑦 , you could say how likely

a measurement 𝐷 = 4 is!!

dpr
ob

ab
ili

ty
 d

en
si

ty 𝜇 = 𝑥) + 𝑦)

𝜎) = 1
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Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .
• You observe a noisy distance measurement, 𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object after 

observing the measurement?

47

If you knew your actual location 
𝑥, 𝑦 , you could say how likely

a measurement 𝐷 = 4 is!!
𝐷|𝑋, 𝑌~𝒩 𝜇 = 𝑥) + 𝑦) , 𝜎) = 1

𝑓�|:,; 𝐷 = 𝑑|𝑋 = 𝑥, 𝑌 = 𝑦 =
1

𝜎 2𝜋
𝑒
J �J} ~

)�~

=
1
2𝜋

𝑒
J �J e~Uf~

~

)substitu
te

𝜇 and 𝜎
)

= 𝑒
J �J e~Uf~

~

)

normalizing constant

𝐾) ⋅



Deep breath

48
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Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .
• You observe a noisy distance measurement, 𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object after 

observing the measurement?

49

Top-
down 
view

Prior belief

𝑓:,; 𝑥, 𝑦 = 𝐾$ ⋅ 𝑒
J ��� ~� ��� ~

�
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Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .
• You observe a noisy distance measurement, 𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object after 

observing the measurement?

50

Top-
down 
view

Prior belief Observation 
likelihood

𝑓�|:,; 𝑑|𝑥, 𝑦 = 𝐾) ⋅ 𝑒
J �J e~Uf~

~

)

d

𝜇 = 𝑥) + 𝑦)

𝜎) = 1

𝑓:,; 𝑥, 𝑦 = 𝐾$ ⋅ 𝑒
J ��� ~� ��� ~

�
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Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .
• You observe a noisy distance measurement, 𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object after 

observing the measurement?

51

𝑓:,; 𝑥, 𝑦 = 𝐾$ ⋅ 𝑒
J ��� ~� ��� ~

�

Prior belief Observation 
likelihood

𝑓�|:,; 𝑑|𝑥, 𝑦 = 𝐾) ⋅ 𝑒
J �J e~Uf~

~

)

𝜇 = 𝑥) + 𝑦)

𝜎) = 1

𝑓:,;|� 𝑥, 𝑦|4 = 𝑓:,;|� 𝑋 = 𝑥, 𝑌 = 𝑦|𝐷 = 4

Top-
down 
view

Posterior
belief
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Tracking in 2-D space
What is your updated (posterior) belief of the 2-D location of the object after observing 
the measurement?

52

𝑓:,;|� 𝑋 = 𝑥, 𝑌 = 𝑦|𝐷 = 4 =
𝑓�|:,; 𝐷 = 4|𝑋 = 𝑥, 𝑌 = 𝑦 𝑓:,; 𝑥, 𝑦

𝑓(𝐷 = 4)
Bayes’
Theorem

=
𝐾) ⋅ 𝑒

J
SJ e~Uf~

~

) ⋅ 𝐾$ ⋅ 𝑒
J

eJ? ~U fJ? ~

T

𝑓(𝐷 = 4)

likelihood of 𝐷 = 4 prior belief

=
𝐾? ⋅ 𝑒

J
SJ e~Uf~

~

) U
eJ? ~U fJ? ~

T

𝑓(𝐷 = 4)

= 𝐾S ⋅ 𝑒
J

�� �~��~
~

~ U ��� ~� ��� ~

� For your notes…
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Tracking in 2-D space: Posterior belief

53

𝑓:,; 𝑥, 𝑦 = 𝐾$ ⋅ 𝑒
J ��� ~� ��� ~

�

Prior belief Posterior belief
Top-down view

𝑦

3-D view

𝑥

𝑦

𝑥

Top-down view 3-D view

𝑓:,;|� 𝑥, 𝑦|4 =

𝐾S⋅ 𝑒
J

SJ e~Uf~
~

) U
eJ? ~U fJ? ~

T



Good job today
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