14: Conditional Distributions

Lisa Yan
October 23, 2019

Sum of independent random variables

$$
\begin{array}{cc}
X \sim \operatorname{Bin}\left(n_{1}, p\right), Y \sim \operatorname{Bin}\left(n_{2}, p\right) & X+Y \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right) \\
X, Y \text { independent } & \\
X \sim \operatorname{Poi}\left(\lambda_{1}\right), Y \sim \operatorname{Poi}\left(\lambda_{2}\right) \\
X, Y \text { independent } \\
& X+Y \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right) \\
X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right) \\
Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right) & X+Y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
\end{array}
$$

Note: these also hold in the general case (≥ 2 variables)

Quick questions

1. X and Y have the following joint PDF: Are X and Y independent?

$$
\begin{gathered}
f_{X, Y}(x, y)=\frac{8}{3} x^{3} y \\
\text { where } 0<x<1,1<y<2
\end{gathered}
$$

2. Let $X \sim \operatorname{Bin}(30,0.01)$ and $Y \sim \operatorname{Bin}(50,0.02)$ be independent RVs. Can we use sum of independent Poisson RVs to approximate $P(X+Y=1)$?

Quick questions

1. X and Y have the following joint PDF: Are X and Y independent?

$$
\begin{gathered}
f_{X, Y}(x, y)=\frac{8}{3} x^{3} y \\
\text { where } 0<x<1,1<y<2
\end{gathered}
$$

$\begin{array}{ll}\text { Separable } & g(x)=C_{1} x^{3} \\ \text { functions } & h(y)=C_{2} y\end{array}$, where C_{1}, C_{2} are constants
2. Let $A \sim \operatorname{Bin}(30,0.01)$ and $B \sim \operatorname{Bin}(50,0.02)$ be independent RVs. Can we use sum of independent Poisson RVs to approximate $P(A+B=2)$?

Quick questions

2. Let $A \sim \operatorname{Bin}(30,0.01)$ and $B \sim \operatorname{Bin}(50,0.02)$ be independent RVs. Can we use sum of independent Poisson RVs to approximate $P(A+B=2)$?

Sol 1: Approximate as sum of Poissons

$$
\begin{aligned}
& A \approx X \sim \operatorname{Poi}\left(\lambda_{1}=30 \cdot 0.01=0.3\right) \\
& B \approx Y \sim \operatorname{Poi}\left(\lambda_{2}=50 \cdot 0.02=1\right) \\
& X+Y \sim \operatorname{Poi}\left(\lambda=\lambda_{1}+\lambda_{2}=1.3\right) \approx P(A+B=2) \\
& \approx P(X+Y=2)=\frac{\lambda^{2}}{2!} e^{-\lambda}
\end{aligned}
$$

Sol 2: No approximation

$$
\begin{aligned}
P(A+B=2) & =\sum_{k=0}^{2} P(A=k) P(B=2-k) \\
& =\sum_{k=0}^{2}\binom{30}{k} 0.01^{k}(0.99)^{30-k}\binom{50}{2-k} 0.02^{2-k} 0.98^{48+k} \approx 0.2327
\end{aligned}
$$

Today's plan

Sum of two Uniform independent RVs

Expectation of sum of two RVs
midterm content up to here
Discrete conditional distributions
Ratio of probabilities interlude
Continuous conditional distributions

Dance, Dance, Convolution Extreme

Recall for independent discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k) \quad \begin{aligned}
& \text { the convolution } \\
& \text { of } p_{X} \text { and } p_{Y}
\end{aligned}
$$

Dance, Dance, Convolution Extreme

Recall for independent discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k)
$$

the convolution
of p_{X} and p_{Y}

For independent continuous random variables X and Y :

$$
f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(\alpha-x) d x
$$

the convolution of f_{X} and f_{Y}

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent random variables. What is the distribution of $X+Y, f_{X+Y}$?
$f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} \underbrace{f_{X}(k) f_{Y}(\alpha-k)} d k$
$f_{X}(k) f_{Y}(\alpha-k)=1$ when: (select one)
A. always
B. $0 \leq k \leq 1$
C. $0 \leq \alpha-k \leq 1$
D. $0 \leq \alpha \leq 2$
E. Other

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent random variables.
What is the distribution of $X+Y, f_{X+Y}$?
$f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} \underbrace{f_{X}(k) f_{Y}(\alpha-k)} d k$
$f_{X}(k) f_{Y}(\alpha-k)=1$ when: (select one)
A. always
B. $0 \leq k \leq 1$
C. $0 \leq \alpha-k \leq 1$
D. $0 \leq \alpha \leq 2$
(E.) Other

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent random variables. What is the distribution of $X+Y, f_{X+Y}$?

$$
f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(k) f_{Y}(\alpha-k) d k
$$

$f_{X}(k) f_{Y}(\alpha-k)=1$ when:
$0 \leq \alpha \leq 2$ and
$0 \leq k \leq 1$ and
$0 \leq \alpha-k \leq 1 \Rightarrow \alpha-1 \leq k \leq \alpha$
The precise integration
bounds on k depend on α.

What are the bounds on k when:

1. $\alpha=1 / 2$?
2. $\alpha=3 / 2$?

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent random variables. What is the distribution of $X+Y, f_{X+Y}$?

$$
f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(k) f_{Y}(\alpha-k) d k
$$

$$
f_{X}(k) f_{Y}(\alpha-k)=1 \text { when: }
$$

$$
0 \leq \alpha \leq 2 \text { and }
$$

$$
0 \leq k \leq 1 \text { and }
$$

$$
0 \leq \alpha-k \leq 1 \Rightarrow \alpha-1 \leq k \leq \alpha
$$

The precise integration bounds on k depend on α.

What are the bounds on k when:

1. $\alpha=1 / 2$?

$$
\begin{aligned}
& 0 \leq k \leq \alpha \\
& \int_{k=0}^{\alpha} 1 d k \quad=\alpha \quad=1 / 2
\end{aligned}
$$

$$
\text { 2. } \alpha=3 / 2 ?
$$

$$
\alpha-1 \leq k \leq 1
$$

$$
\int_{k=\alpha-1}^{1} 1 d k=2-\alpha=1 / 2
$$

Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be independent random variables.
What is the distribution of $X+Y, f_{X+Y}$?

$$
f_{X+Y}(\alpha)=\int_{-\infty}^{\infty} f_{X}(k) f_{Y}(\alpha-k) d k
$$

$$
f_{X}(k) f_{Y}(\alpha-k)=1 \text { when: }
$$

$$
0 \leq \alpha \leq 2 \text { and }
$$

$$
0 \leq k \leq 1 \text { and }
$$

$$
0 \leq \alpha-k \leq 1 \Rightarrow \alpha-1 \leq k \leq \alpha
$$

The precise integration bounds on k depend on α.

$$
f_{X+Y}(\alpha)=\left\{\begin{array}{cl}
a & 0 \leq a \leq 1 \\
2-a & 1 \leq a \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

whew

Today's plan

Sum of two Uniform independent RVs

Expectation of sum of two RVs

Discrete conditional distributions

Continuous conditional distributions

Properties of Expectation, extended to two RVs

1. Linearity:
$E[a X+b Y+c]=a E[X]+b E[Y]+c$
2. Expectation of a sum $=$ sum of expectation:

$$
E[X+Y]=E[X]+E[Y]
$$

(we've seen this; we'll prove this next)
3. Unconscious statistician:

$$
\begin{aligned}
& E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y) \\
& E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y
\end{aligned}
$$

Proof of expectation of a sum of RVs

$$
\begin{aligned}
E[X & +Y]=\sum_{x} \sum_{y}(x+y) p_{X, Y}(x, y) \\
& =\sum_{x} \sum_{y} x p_{X, Y}(x, y)+\sum_{x} \sum_{y} y p_{X, Y}(x, y) \\
& =\sum_{x} x \sum_{y} p_{X, Y}(x, y)+\sum_{y} y \sum_{x} p_{X, Y}(x, y) \\
& =\sum_{x} x p_{X}(x)+\sum_{y} y p_{Y}(y)
\end{aligned}
$$

LOTUS,

$$
g(X, Y)=X+Y
$$

Linearity of summations
(cont. case: linearity of integrals)

Marginal PMFs for X and Y

Even if the joint distribution is unknown, you can calculate the expectation of sum as sum of expectations.

Example: $E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]$ despite dependent trials X_{i}

Expectations of common RVs

$X \sim \operatorname{Bin}(n, p) \quad E[X]=n p$

$X=\sum_{i=1}^{n} X_{i} \begin{gathered}\text { Let } X_{i}=i \text { th trial is heads } \\ X_{i} \sim \operatorname{Ber}(p), E\left[X_{i}\right]=p\end{gathered}$

$$
E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} p=n p
$$

Expectations of common RVs

$X \sim \operatorname{Bin}(n, p) \quad E[X]=n p$
$X=\sum_{i=1}^{n} X_{i} \begin{gathered}\text { Let } X_{i}=i \text { th trial is heads } \\ X_{i} \sim \operatorname{Ber}(p), E\left[X_{i}\right]=p\end{gathered}$

$Y \sim \operatorname{NegBin}(r, p) \quad E[Y]=\frac{r}{p}$

Suppose:

$$
Y=\sum_{i=1}^{?} Y_{i}
$$

How should we define Y_{i} ?
A. $\quad Y_{i}=i$ th trial is heads. $Y_{i} \sim \operatorname{Ber}(p), i=1, \ldots, n$
B. $\quad Y_{i}=\#$ trials to get i th success (after $(i-1)$ th success) $Y_{i} \sim \operatorname{Geo}(p), i=1, \ldots, r$
C. $Y_{i}=\#$ successes in n trials $Y_{i} \sim \operatorname{Bin}(n, p), i=1, \ldots, r$, we look for $P\left(Y_{i}=1\right)$

Expectations of common RVs

$X \sim \operatorname{Bin}(n, p) \quad E[X]=n p$
$X=\sum_{i=1}^{n} X_{i} \begin{gathered}\text { Let } X_{i}=i \text { th trial is heads } \\ X_{i} \sim \operatorname{Ber}(p), E\left[X_{i}\right]=p\end{gathered}$

$Y \sim \operatorname{NegBin}(r, p) \quad E[Y]=\frac{r}{p}$

Suppose:

$$
Y=\sum_{i=1}^{?} Y_{i}
$$

How should we define Y_{i} ?
A. $Y_{i}=i$ th trial is heads. $Y_{i} \sim \operatorname{Ber}(p), i=1, \ldots, n$
B. $Y_{i}=\#$ trials to get i th success (after $(i-1)$ th success) $Y_{i} \sim \operatorname{Geo}(p), i=1, \ldots, r$
C. $Y_{i}=\#$ successes in n trials $Y_{i} \sim \operatorname{Bin}(n, p), i=1, \ldots, r$, we look for $P\left(Y_{i}=1\right)$

Expectations of common RVs

$X \sim \operatorname{Bin}(n, p) \quad E[X]=n p$
 $X=\sum_{i=1}^{n} X_{i} \begin{gathered}\text { Let } X_{i}=i \text { th trial is heads } \\ X_{i} \sim \operatorname{Ber}(p), E\left[X_{i}\right]=p\end{gathered}$

$Y \sim \operatorname{NegBin}(r, p) \quad E[Y]=\frac{r}{p}$

$$
Y=\sum_{i=1}^{r} Y_{i} \quad \begin{gathered}
\text { Let } Y_{i}=\# \text { trials to get } i \text { th } \\
\text { success (after } \\
(i-1) \text { th success) } \\
Y_{i} \sim \operatorname{Geo}(p), E\left[Y_{i}\right]=\frac{1}{p}
\end{gathered}
$$

$$
E[Y]=E\left[\sum_{i=1}^{r} Y_{i}\right]=\sum_{i=1}^{r} E\left[Y_{i}\right]=\sum_{i=1}^{r} \frac{1}{p}=\frac{r}{p}
$$

Break for jokes/ announcements

Announcements

Midterm study tips
Easy to do:
Harder to do:

No matter what:

> Charts/equations
> Glean common strategies from practice exams/section handouts/psets
(essential, but not hard)
(top priority:
reflect and
form links)

Concept checks
Week 5's: Wednesday 10/30 1pm Includes mid-quarter feedback

Today's plan

Sum of two Uniform independent RVs

Expectation of sum of two RVs

Discrete conditional distributions

Continuous conditional distributions

CSio9 roadmap

Multiple events:
intersection
$P(E \cap F)$
$=P(E F)$
conditional probability

$$
P(E \mid F)=\frac{P(E F)}{P(F)}
$$

Joint (Multivariate) distributions
Model ALL
joint PMF/PDF
$p_{X, Y}(x, y)$
$f_{X, Y}(x, y)$

Discrete conditional distributions

Recall the definition of the conditional probability of event E given event F :

$$
P(E \mid F)=\frac{P(E F)}{P(F)}
$$

For discrete random variables X and Y, the conditional PMF of X given Y is

$$
\begin{gathered}
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)} \\
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
\end{gathered}
$$

Quick check

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

Number or function?

1. $P(X=2 \mid Y=5)$

number

2. $P(X=x \mid Y=5)$

1-D function
3. $P(X=2 \mid Y=y)$

1-D function
4. $\quad P(X=x \mid Y=y)$ 2-D function

True or false?
5. $\sum_{x} P(X=x \mid Y=5)=1 \quad$ true
6. $\sum_{y} P(X=2 \mid Y=y)=1 \quad$ false
7. $\sum_{x}\left(\sum_{y} P(X=x \mid Y=y) P(Y=y)\right)=1$
true

Discrete probabilities of CSio9

Discrete probabilities of CSio9

Each student responds with (major X, year Y, bool pokemon master M):

		Joint PMF of X, Y, M					Undec.$X=6$
		$\begin{gathered} \mathrm{CS} \\ X=1 \end{gathered}$	SymSys/ MCS/EE $X=2$	Other Eng/Sci /Math $X=3$	Hum/ SocSci/ Ling $X=4$	Double major $X=5$	
	$Y=1$. 006	. 000	. 000	. 000	. 000	. 000
	$Y=2$. 155	. 069	. 034	. 006	. 023	. 029
	$Y=3$. 092	. 063	. 023	. 006	. 006	. 000
s	$Y=4$. 017	. 029	. 011	. 006	. 000	. 000
	$Y \geq 5$. 029	. 006	. 011	. 006	. 000	. 000
	$Y=1$. 000	. 000	. 000	. 000	. 000	. 000
	$Y=2$. 126	. 040	. 017	. 017	. 000	. 017
	$Y=3$. 046	. 040	. 006	. 011	. 000	. 006
\mathcal{F}	$Y=4$. 006	. 006	. 000	. 000	. 000	. 000
	$Y \geq 5$. 006	. 000	. 017	. 011	. 000	. 000
$P(Y \geq 5, X=1, M=1)$							

Joint PMF of X, M

	Other					
	SymSys/					
	CSg/Sci/	SocSci/	Double			
	$X=1$	MCS/EE	Math	Ling	major	Undec.
	M	$X=3$	$X=4$	$X=5$	$X=6$	
$M=0$.299	.167	.080	.023	.029	.029
$M=1$.184	.086	.040	.040	.000	.023

$$
P(X=1, M=1)=0.18
$$

Discrete probabilities of CSı9

$P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}$

The below tables are conditional probability tables for the conditional PMFs $P(M=m \mid X=x)$ and $P(X=x \mid M=m)$.

1. Which table is which?

Joint PMF of X, M

	Other					
	Hum/					
	CS	MCS/EE	Math	Ling	major	Undec.
	$X=1$	$X=2$	$X=3$	$X=4$	$X=5$	$X=6$
$M=0$.299	.167	.080	.023	.029	.029
$M=1$.184	.086	.040	.040	.000	.023

$$
P(X=1, M=1)=0.18
$$

2. Fill in the missing probability.

	CS	SymSys/	Hum/		Double	
		$\begin{gathered} \text { MCS/EE } \\ X=2 \end{gathered}$	$\begin{aligned} & \text { Math } \\ & X=3 \end{aligned}$	$\begin{aligned} & \text { Ling } \\ & X=4 \end{aligned}$	$\begin{aligned} & \text { major } \\ & X=5 \end{aligned}$	Undec $X=6$
$M=0$. 477	. 266	. 128	. 037	. 046	. 046
$M=1$. 231	. 108	. 108	. 000	. 062

Discrete probabilities of CSı9

$P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}$

The below tables are conditional probability tables for the conditional PMFs $P(M=m \mid X=x)$ and $P(X=x \mid M=m)$.

1. Which table is which?

Joint PMF of X, M

	Other					
	Hum/					
	CS	MCS/EE	Math	Ling	Double	
	$X=1$	$X=2$	$X=3$	$X=4$	$X=5$	$X=6$
$M=0$	0.30	0.17	0.08	0.02	0.03	0.03
$M=1$	0.18	0.09	0.04	0.04	0.00	0.02

2. Fill in the missing probability.

$$
P(X=1, M=1)=0.18
$$

Conditional PMF $P(M=m \mid X=x)$
Other Hum/
SymSys/ Eng/Sci/ SocSci/ Double
CS MCS/EE Math Ling major Undec

	$X=1$	$X=2$	$X=3$	$X=4$	$X=5$	$X=6$
$M=0$.619	.659	.667	.364	1.000	.556

$M=1 \left\lvert\, \begin{array}{llllll} & .381 & .341 & .333 & .636 & .000\end{array} .444\right.$

Conditional PMF $P(X=x \mid M=m)$

	Other					
	SymSy/					
	CS	MCS/EE	Math	Ling	major	Undec.
	$X=1$	$X=2$	$X=3$	$X=4$	$X=5$	$X=6$
$M=0$.477	.266	.128	.037	.046	.046
$M=1$.492	.231	.108	.108	.000	.062

Be clear about which probabilities should sum to one.

Extended to Amazon

Today's plan

Sum of two Uniform independent RVs

Expectation of sum of two RVs

Discrete conditional distributions

Ratio of probabilities interlude
Continuous conditional distributions

Relative probabilities of continuous random variables

Let $X=$ time to finish problem set 2 .
Suppose $X \sim \mathcal{N}(10,2)$.
How much more likely are you to complete in 10 hours than 5 hours?

$$
\frac{P(X=10)}{P(X=5)}=
$$

A. $0 / 0=$ undefined
B. $f(10)$
$f(5)$
C. stay healthy

Relative probabilities of continuous random variables

Let $X=$ time to finish problem set 2 .
Suppose $X \sim \mathcal{N}(10,2)$.
How much more likely are you to complete in 10 hours than 5 hours?

$$
\begin{array}{ll}
\frac{P(X=10)}{P(X=5)}= & \begin{array}{l}
\text { A. } 0 / 0=\text { undefined } \\
\text { B. } \frac{f(10)}{f(5)} \\
\text { C. stay healthy }
\end{array}
\end{array}
$$

Relative probabilities of continuous random variables

Let $X=$ time to finish problem set 2 . Suppose $X \sim \mathcal{N}(10,2)$.
How much more likely are you to complete in 10 hours than 5 hours?

$$
\frac{P(X=10)}{P(X=5)}=\frac{f(10)}{f(5)} \longrightarrow P(X=a)=P\left(a-\frac{\varepsilon}{2} \leq X \leq a+\frac{\varepsilon}{2}\right)=\int_{a-\frac{\varepsilon}{2}}^{a+\frac{\varepsilon}{2}} f(x) d x \approx \varepsilon f(a)
$$

$$
=\frac{\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(10-\mu)^{2}}{2 \sigma^{2}}}}{\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(5-\mu)^{2}}{2 \sigma^{2}}}}
$$

$$
=\frac{e^{-\frac{(10-10)^{2}}{2 \cdot 2}}}{e^{-\frac{(5-10)^{2}}{2 \cdot 2}}}=\frac{e^{0}}{e^{-\frac{25}{4}}}=518
$$

Today's plan

Sum of two Uniform independent RVs

Expectation of sum of two RVs

Discrete conditional distributions

Ratio of probabilities interlude
Continuous conditional distributions

Continuous conditional distributions

For continuous RVs X and Y, the conditional PDF of X given Y is

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

Intuition: $P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)} \Longleftrightarrow f_{X \mid Y}(x \mid y) \varepsilon_{X}=\frac{f_{X, Y}(x, y) \varepsilon_{x} \varepsilon_{y}}{f_{Y}(y) \varepsilon_{y}}$

Note that conditional PDF $f_{X \mid Y}$ is a true density:

$$
\int_{-\infty}^{\infty} f_{x}(x \mid y) d x=\int_{-\infty}^{\infty} \frac{f_{X, Y}(x, y)}{f_{Y}(y)} d x=\frac{f_{Y}(y)}{f_{Y}(y)}=1
$$

Bayes' Theorem with Continuous RVs

For continuous RVs X and Y,

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X \mid Y}(x \mid y) f_{Y}(y)}{f_{X}(x)}
$$

Intuition:

$$
\begin{aligned}
P(Y=y \mid X=x) & =\frac{P(X=x \mid Y=y) P(Y=y)}{P(X=x)} \\
f_{Y \mid X}(y \mid x) \varepsilon_{Y} & =\frac{\left(f_{X \mid Y}(x \mid y) \varepsilon_{X}\right)\left(f_{Y}(y) \varepsilon_{y}\right)}{f_{X}(x) \varepsilon_{X}}
\end{aligned}
$$

Tracking in 2-D space?

You want to know the 2-D location of an object.

Your satellite ping gives you a noisy 1-D measurement of the distance of the object from the satellite $(0,0)$.

Tracking in 2-D space

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, $D=4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Recall Bayes terminology:

likelihood	prior
(of evidence)	belief

$$
f_{X, Y \mid D}^{\text {belief }}(x, y \mid d)=\frac{f_{D \mid X, Y}(d \mid x, y) f_{X, Y}(x, y)}{f_{D}(d)}
$$

Tracking in 2-D space

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, $D=4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Let $(X, Y)=$ object's 2-D location. (your satellite is at $(0,0)$

Suppose the prior distribution is a symmetric bivariate normal distribution:

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi 2^{2}} e^{-\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{2\left(2^{2}\right)}}=K_{1} \cdot e^{-\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}}
$$

Tracking in 2-D space

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, $D=4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Let $D=$ distance from the satellite (radially).
Suppose you knew your actual position: (x, y).

- D is still noisy! Suppose noise is unit variance: $\sigma^{2}=1$
- On average, D is your actual position: $\mu=\sqrt{x^{2}+y^{2}}$

If you knew your actual location
(x, y), you could say how likely
a measurement $D=4$ is!!

Tracking in 2-D space

Distance measurement of a ping is normal with respect to the true location.

Tracking in 2-D space

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, $D=4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

If you knew your actual location (x, y), you could say how likely
a measurement $D=4$ is!!

If noise is normal: $\quad D \mid X, Y \sim N\left(\mu=\sqrt{x^{2}+y^{2}}, \sigma^{2}=1\right)$
Distance measurement of a ping is normal with respect to the true location.

Tracking in 2-D space

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, $D=4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

If you knew your actual location
(x, y), you could say how likely

$$
D \mid X, Y \sim \mathcal{N}\left(\mu=\sqrt{x^{2}+y^{2}}, \sigma^{2}=1\right)
$$

a measurement $D=4$ is!!

$$
f_{D \mid X, Y}(D=d \mid X=x, Y=y)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(d-\mu)^{2}}{2 \sigma^{2}}}
$$

$$
{ }_{\mu} \operatorname{sun}^{2 n g+i t u t} d \sigma^{2}
$$

Deep breath

Tracking in 2-D space

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, $D=4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Prior belief

$$
f_{X, Y}(x, y)=K_{1} \cdot e^{-\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}}
$$

Tracking in 2-D space

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, $D=4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Prior belief

$$
f_{X, Y}(x, y)=K_{1} \cdot e^{-\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}}
$$

Observation likelihood

$$
\mu=\sqrt{x^{2}+y^{2}}
$$

$$
\underbrace{\sigma^{2}=1}_{d}
$$

$$
f_{D \mid X, Y}(d \mid x, y)=K_{2} \cdot e^{\frac{-\left(d-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}}
$$

Tracking in 2-D space

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, $D=4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Prior belief

Observation likelihood

$$
\mu=\sqrt{x^{2}+y^{2}}
$$

$$
f_{X, Y}(x, y)=K_{1} \cdot e^{-\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}}
$$

$$
f_{D \mid X, Y}(d \mid x, y)=K_{2} \cdot e^{\frac{-\left(d-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}}
$$

Posterior belief

$$
f_{X, Y \mid D}(x, y \mid 4)=f_{X, Y \mid D}(X=x, Y=y \mid D=4)
$$

Tracking in 2-D space

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

$$
\begin{aligned}
f_{X, Y \mid D}(X=x, Y=y \mid D=4) & =\frac{\begin{array}{c}
\text { likelinood of } D=4
\end{array} \begin{array}{c}
f_{D \mid X, Y}(D=4 \mid X=x, Y=y) f_{X, Y}(x, y)
\end{array} \text { Brior belief }}{f(D=4)} \\
& =\frac{K_{2} \cdot e^{-\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}} \cdot K_{1} \cdot e^{-\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}}}{f(D=4)} \\
& =\frac{K_{3} \cdot e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}+\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right]}}{f(D=4)} \\
& =K_{4} \cdot e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}+\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right] \quad \text { For your notes... }}
\end{aligned}
$$

Tracking in 2-D space: Posterior belief

Posterior belief

3-D view

$f_{X, Y \mid D}(x, y \mid 4)=$
$K_{4} \cdot e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}+\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right]}$

$$
K_{4} \cdot e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2}+\frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right]}
$$

Good job today

