17: Beta

Lisa Yan October 30, 2019

Conditional expectation

The **conditional expectation** of *X* (discrete) given Y = y is

$$E[X|Y = y] = \sum_{x} xP(X = x|Y = y) = \sum_{x} xp_{X|Y}(x|y)$$

Let W, Y be two RVs for the outcomes of two independent dice rolls, respectively. Let X = W + Y.

$$E[X|Y = y] = E[W + Y|Y = y] = y + E[W|Y = y] \qquad W \qquad Y$$

= $y + \sum_{w} wP(W = w|Y = y) = y + \sum_{w} wP(W = w)$
= $y + E[W] = y + 3.5$

Review

Properties of conditional expectation

1. LOTUS:

$$E[g(X)|Y=y] = \sum_{x} g(x)p_{X|Y}(x|y) \quad \text{or} \quad \int_{-\infty}^{\infty} g(x)f_{X|Y}(x|y) \, dx$$

2. Linearity of conditional expectation:

$$E\left[\sum_{i=1}^{n} X_{i} \mid Y = y\right] = \sum_{i=1}^{n} E[X_{i} \mid Y = y]$$

3. Law of total expectation:

$$E[X] = E[E[X|Y]]$$

 $=\sum_{x}xP(X=x)$

= E[X]

$$E[X] = E[E[X|Y]]$$

$$E[E[X|Y]] = E[g(Y)] = \sum_{y} P(Y = y)E[X|Y = y] \qquad (g(Y) = E[X|Y])$$

$$= \sum_{y} P(Y = y) \sum_{x} xP(X = x | Y = y)$$
conditional
expectation)

$$=\sum_{y}\left(\sum_{x}xP(X=x|Y=y)P(Y=y)\right)=\sum_{y}\left(\sum_{x}xP(X=x,Y=y)\right)$$
 (chain rule)

$$= \sum_{x} \sum_{y} xP(X = x, Y = y) = \sum_{x} x \sum_{y} P(X = x, Y = y)$$
 (switch order of summations)

Stanford University 4

Lisa Yan, CS109, 2019

Properties

1. LOTUS:

$$E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y) \quad \text{or} \quad \int_{-\infty}^{\infty} g(x)f_{X|Y}(x|y) \, dx$$

2. Linearity of conditional expectation:

$$E\left[\sum_{i=1}^{n} X_{i} \mid Y = y\right] = \sum_{i=1}^{n} E[X_{i} \mid Y = y]$$

3. Law of total expectation:

E[X] = E[E[X|Y]]

For any RV *X* and **<u>discrete</u>** RV *Y*,

$$E[X] = \sum_{y} E[X|Y = y]P(Y = y)$$

Stanford University 5

Analyzing recursive code

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if (x == 1): return 3
 elif (x == 2): return (5 + recurse())
 else: return (7 + recurse())

Let Y =return value of recurse(). What is E[Y]?

$$E[Y] = \frac{E[Y|X = 1]}{P(X = 1)} + \frac{E[Y|X = 2]P(X = 2)}{F(X = 2)} + \frac{E[Y|X = 3]P(X = 3)}{R}$$

When X = 1, return 3.

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if (x == 1): return 3
 elif (x == 2): return (5 + recurse())
 else: return (7 + recurse())

Let Y =return value of recurse(). What is E[Y]?

 $E[Y] = E[Y|X = 1]P(X = 1) + \frac{E[Y|X = 2]}{P(X = 2)} + \frac{E[Y|X = 3]P(X = 3)}{P(X = 3)}$

When X = 2, return 5 + a future return value of recurse().

What is E[Y|X = 2]?

3

A.
$$E[5] + Y$$

B. E[5 + Y] = 5 + E[Y]

C.
$$E[5] + E[Y|X = 2]$$

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if (x == 1): return 3
 elif (x == 2): return (5 + recurse())
 else: return (7 + recurse())

Let Y =return value of recurse(). What is E[Y]?

 $E[Y] = E[Y|X = 1]P(X = 1) + \frac{E[Y|X = 2]}{P(X = 2)} + \frac{E[Y|X = 3]P(X = 3)}{P(X = 3)}$

When X = 2, return 5 + a future return value of recurse().

```
What is E[Y|X = 2]?

A. E[5] + Y

B. E[5 + Y] = 5 + E[Y]

C. E[5] + E[Y|X = 2]
```

3

Analyzing recursive code

 $E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if (x == 1): return 3
 elif (x == 2): return (5 + recurse())
 else: return (7 + recurse())

Let Y =return value of recurse(). What is E[Y]?

E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)3 5 + E[Y] When X = 3, return 7 + a future return value of recurse(). E[Y|X = 3] = 7 + E[Y]

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if (x == 1): return 3
 elif (x == 2): return (5 + recurse())
 else: return (7 + recurse())

Let Y =return value of recurse(). What is E[Y]?

E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3) 3 5 + E[Y] 7 + E[Y] E[Y] = 3(1/3) + (5 + E[Y])(1/3) + (7 + E[Y])(1/3)E[Y] = (1/3)(15 + 2E[Y]) = 5 + (2/3)E[Y]

E[Y] = 15

Conditional expectation of *X* given *Y*:

- E[X|Y] is a function of Y.
- To evaluate at Y = y, $E[X|Y = y] = \sum_{x} xP(X = x|Y = y)$

Law of total expectation:

$$E[X] = E[E[X|Y]]$$

- Helps us analyze recursive code.
- Pro tip: use this more in CS161

Law of Total Expectation

Mixing discrete and continuous random variables

Beta distribution

Bayes' on the waves

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Let's play a game

Roll a die twice:

- If either time you roll a 6, I win.
- Otherwise you win.

Let W = the event where you win. What is P(W)?

If the die is fair:

What if the probabilities of the die are unknown?

(demo)

$$P(W) = \left(\frac{5}{6}\right)^2$$

Today we are going to learn something unintuitive, beautiful, and useful!

We are going to think of probabilities as random variables.

Law of Total Expectation

Mixing discrete and continuous random variables

Beta distribution

For discrete RVs *X* and *Y*, the **conditional PMF** of *X* given *Y* is

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Bayes' Theorem:

$$p_{Y|X}(y|x) = \frac{p_{X|Y}(x|y)p_Y(y)}{p_X(x)}$$

For continuous RVs X and Y, the conditional PDF of X given Y is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Bayes' Theorem:

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_Y(y)}{f_X(x)}$$
Conditioning with a continuous RV feels
weird at first, but then it gets good

Lisa Yan, CS109, 2019

Let *X* be a **continuous** random variable, and *N* be a **discrete** random variable.

The conditional PDF of X given N is: The conditional PMF of N given X is:

 $f_{X|N}(x|n) \qquad \qquad p_{N|X}(n|x)$

Mixing discrete and continuous

Let *X* be a continuous random variable for person's height (inches), and *N* be a discrete random variable for person's age (10, 13, 15, or 20).

Matching: A. $f_{X|N}(x|n)$, conditional PDF of X given N B. $p_{N|X}(n|x)$, conditional PMF of N given X

Mixing discrete and continuous

Let *X* be a continuous random variable for person's height (inches), and *N* be a discrete random variable for person's age (10, 13, 15, or 20).

Matching: A. $f_{X|N}(x|n)$, conditional PDF of X given N B. $p_{N|X}(n|x)$, conditional PMF of N given X

Lisa Yan, CS109, 2019

Stanford University 21

Mixing discrete and continuous

Let *X* be a **continuous** random variable, and *N* be a **discrete** random variable.

The conditional PDF of X given N is: The conditional PMF of N given X is:

 $f_{X|N}(x|n) \qquad \qquad p_{N|X}(n|x)$

 $f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$

Bayes' Theorem:

$$P(X = x|N = n) = \frac{P(N = n|X = x)P(X = x)}{P(N = n)} \iff f_{X|N}(x|n)\varepsilon_X = \frac{p_{N|X}(n|x) \cdot f_X(x)\varepsilon_X}{p_N(n)}$$

All your Bayes are belong to us

Let *X*, *Y* be continuous and *M*, *N* be discrete random variables.

OG Bayes:
$$p_{M|N}(m|n) = \frac{p_{N|M}(n|m)p_M(m)}{p_N(n)}$$
Mix Bayes #1: $f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$ Mix Bayes #2: $p_{N|X}(n|x) = \frac{f_{X|N}(x|n)p_N(n)}{f_X(x)}$ All continuous: $f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$

Mixing discrete and continuous random variables, combined with Bayes' Theorem, allows us to reason about probabilities as random variables.

A new definition of probability

Flip a coin n + m times, comes up with n heads. We don't know the probability X that the coin comes up with heads.

The world's first coin

Bayesian

X is a random variable.

X's support: (0, 1)

Break for jokes/ announcements

Announcements

Late day reminder: No late days permitted past last day of the quarter, 12/7

Lisa Yan, CS109, 2019

Flip a coin n + m times, comes up with n heads.

- Before our experiment, X (the probability that the coin comes up heads) can be any probability.
- Let N = number of heads.
- Given X = x, coin flips are independent.

What is our updated belief of *X* after we observe N = n?

What are the distributions of the following?

- **1.** *X*
- **2.** *N*|*X*
- **3.** *X*|*N*

 $f_X(x)$

 $p_{N|X}(n|x)$

 $f_{X|N}(x|n)$

Bin(n + m, x)

Don't know

A. Uni(0,1)

C. Use Bayes'

Other

B.

Flip a coin n + m times, comes up with n heads.

- Before our experiment, X (the probability that the coin comes up heads) can be any probability.
- Let N = number of heads.
- Given X = x, coin flips are independent.

What is our updated belief of *X* after we observe N = n?

What are the distributions of the following?

- **1.** X Bayesian prior $X \sim \text{Uni}(0,1)$
- 2. N|X Likelihood $N|X \sim Bin(n + m, x)$
- **3.** XIN Bayesian posterior. Use Bayes'

 $p_{N|X}(n|x)$ $f_{X|N}(x|n)$

 $f_X(x)$

- A. Uni(0,1) B. Bin(n + m, x)
- C. Use Bayes'
- D. Other
- E. Don't know

Flip a coin n + m times, comes up with n heads.

- Before our experiment, X (the probability that the coin comes up heads) can be any probability.
- Let N = number of heads.
- Given X = x, coin flips are independent.

What is our updated belief of X after we observe N = n?

Prior:
$$X \sim Uni(0,1)$$

Likelihood: $N|X \sim Bin(n + m, x)$

Posterior: $f_{X|N}(x|n)$

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_{X}(x)}{p_{N}(n)} = \frac{\binom{n+m}{n}x^{n}(1-x)^{m} \cdot 1}{p_{N}(n)}$$

$$= \frac{\binom{n+m}{n}x^{n}(1-x)^{m}}{\frac{p_{N}(n)}{\frac{p_{N}(n)}{\frac{n}{1-x}}x^{n}(1-x)^{m}} = \frac{1}{c}x^{n}(1-x)^{m}, \text{ where } c = \int_{0}^{1}x^{n}(1-x)^{m}dx$$

$$= \frac{(n+m)}{p_{N}(n)}x^{n}(1-x)^{m} = \frac{1}{c}x^{n}(1-x)^{m}, \text{ where } c = \int_{0}^{1}x^{n}(1-x)^{m}dx$$

$$= \frac{(n+m)}{p_{N}(n)}x^{n}(1-x)^{m}dx$$

- Start with a X~Uni(0,1) over probability
- Observe n successes and m failures
- Your new belief about the probability of X is:

$$f_{X|N}(x|n) = \frac{1}{c} x^n (1-x)^m$$
, where $c = \int_0^1 x^n (1-x)^m dx$

Suppose our experiment is 8 flips of a coin. We observe:

n = 7 heads (successes)

• m = 1 tail (failure)

What is our posterior belief, X|N?

- Start with a X~Uni(0,1) over probability
- Observe n = 7 successes and m = 1 failures
- Your new belief about the probability of X is:

$$f_{X|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$
, where $c = \int_0^1 x^7 (1-x)^1 dx$

Law of Total Expectation

Mixing discrete and continuous random variables

Lisa Yan, CS109, 2019

Beta random variable

<u>def</u> An **Beta** random variable *X* is defined as follows:

$$X \sim \text{Beta}(a, b)$$

$$a > 0, b > 0$$
Support of X: (0, 1)
$$PDF \quad f(x) = \frac{1}{B(a, b)} x^{a-1} (1-x)^{b-1}$$

where $B(a, b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$, normalizing constant

$$Variance \quad Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

Beta is a distribution for probabilities.

Beta is a distribution of probabilities

$$X \sim \text{Beta}(a, b) \qquad \text{PDF} \quad f(x) = \frac{1}{B(a, b)} x^{a-1} (1-x)^{b-1}$$

$$a > 0, b > 0$$

Support of X: (0, 1)
$$\text{where } B(a, b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx, \text{ normalizing constant}$$

Lisa Yan, CS109, 2019

CS109 focus: Beta where a, b both positive integers $X \sim Beta(a, b)$

CS109 focus: Beta where a, b both positive integers $X \sim Beta(a, b)$

Lisa Yan, CS109, 2019

CS109 focus: Beta where a, b both positive integers $X \sim Beta(a, b)$

Match PDF to distribution:

Beta parameters *a*, *b* could come from an experiment:

a = "successes" + 1 b = "failures" + 1

Back to flipping coins

- Start with a X~Uni(0,1) over probability
- Observe n = 7 successes and m = 1 failures
- Your new belief about the probability of X is:

$$f_{X|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$
, where $c = \int_0^1 x^7 (1-x)^1 dx$

Understanding Beta

- Start with a *X*~Uni(0,1) over probability
- Observe n successes and m failures
- Your new belief about the probability of *X* is:

$$X|N \sim \text{Beta}(a = n + 1, b = m + 1)$$

Understanding Beta

- Start with a X~Uni(0,1) over probability
- Observe *n* successes and *m* failures
- Your new belief about the probability of *X* is:

$$X|N \sim \text{Beta}(a = n + 1, b = m + 1)$$

Check this out:

Beta
$$(a = 1, b = 1)$$
 has PDF:

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} = \frac{1}{B(a,b)} x^0 (1-x)^0 = \frac{1}{\int_0^1 1 dx}$$
So our prior X~Beta $(a = 1, b = 1)!$ where $0 < x < 1$

Let *X* be our random variable for probability of success and *N*

- If our **prior belief** about X is beta: $X \sim \text{Beta}(a, b)$ integinod...and if we observe n successes and m failures: $N|X \sim \text{Bin}(n + m, x)$
 - ...then our posterior belief about X is also beta.

 $X|N \sim \text{Beta}(a + n, b + m)$

Stanford University 41

Let *X* be our random variable for probability of success and *N*

- If our **prior belief** about *X* is beta:
- ...and if we observe *n* successes and *m* failures: $N|X \sim Bin(n + m, x)$
- ...then our posterior belief about X is also beta.
- $X|N \sim \text{Beta}(a + n, b + m)$

Proof:

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)} = \frac{\binom{n+m}{m}x^n(1-x)^m \cdot \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}}{p_N(n)}$$

constants that don't depend on *x*

$$= C \cdot x^{n} (1-x)^{m} \cdot x^{a-1} (1-x)^{b-2}$$
$$= C \cdot x^{n+a-1} (1-x)^{m+b-1}$$

Stanford University 42

 $X \sim \text{Beta}(a, b)$

Lisa Yan, CS109, 2019

Let *X* be our random variable for probability of success and *N*

• If our **prior belief** about *X* is beta:

 $X \sim \text{Beta}(a, b)$

einone and if we observe *n* successes and *m* failures: $N|X \sim Bin(n + m, x)|$

 ...then our posterior belief about X is also beta.

 $X|N \sim \text{Beta}(a + n, b + m)$

Beta is a <u>conjugate</u> distribution.

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update: Add number of "heads" and "tails" seen to Beta parameter.

Let *X* be our random variable for probability of success and *N*

• If our **prior belief** about X is beta: $X \sim \text{Beta}(a, b)$

Nikelinout and if we observe *n* successes and *m* failures: $N|X \sim Bin(n + m, x)$

• ...then our **posterior belief** about *X* is also beta.

 $X|N \sim \text{Beta}(a + n, b + m)$

You can set the prior to reflect how biased you think the coin is apriori.

- This is a subjective probability!
- $X \sim \text{Beta}(a, b)$: have seen (a + b 2) imaginary trials, where (a 1) are heads, (b 1) tails
- Then Beta(1, 1) = Uni(0, 1) means we haven't seen any imaginary trials

Prior

Let X be our random variable for probability of success and N

- $X \sim \text{Beta}(a, b)$ • If our **prior belief** about X is beta: likelihood ...and if we observe n successes and m failures: $N|X \sim Bin(n + m, x)|$
 - ...then our **posterior belief** about X is also beta.

$$X|N \sim \text{Beta}(a + n, b + m)$$

Prior Beta
$$(a = n_{imag} + 1, b = m_{imag} + 1)$$

Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

This is the main takeaway of Beta.

Lisa Yan. CS109. 2019

The enchanted die

Let *X* be the probability of rolling a 6 on Lisa's die.

- Prior: Imagine 5 die rolls where only 6 showed up
- Observation: roll it a few times...

What is the updated distribution of *X* after our observation?

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

A frequentist view will not incorporate prior/expert belief about probability.

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let *p* be the probability your drug works.

$$p \approx \frac{14}{20} = 0.7$$

Let *X* be the probability your drug works.

X is a random variable.

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

(Bayesian interpretation)

What is the prior distribution of *X*? (select all that apply)

- A. $X \sim \text{Beta}(1, 1) = \text{Uni}(0, 1)$
- B. *X*~Beta(81, 101)
- **C.** *X*~Beta(80, 20)
- D. *X*~Beta(81, 21)
- E. *X*~Beta(5, 2)

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

(Bayesian interpretation)

What is the prior distribution of *X*? (select all that apply)

(vou can choose either; we choose E on next slide)

A.
$$X \sim \text{Beta}(1, 1) = \text{Uni}(0, 1)$$

- B. *X*~Beta(81, 101)
- **C.** *X*~Beta(80, 20)

X~Beta(5, 2)

 $X \sim \text{Beta}(81, 21)$ Interpretation: 80 successes / 100 imaginary trials

Interpretation: 4 successes / 5 imaginary trials

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Prior:
$$X \sim \text{Beta}(a = 5, b = 2)$$

Posterior:
$$X \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$$

~Beta($a = 19, b = 8$)

(Bayesian interpretation)

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Prior:
$$X \sim \text{Beta}(a = 5, b = 2)$$

Posterior: $X \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$ ~Beta(a = 19, b = 8)

What do you report to pharmacists?

- A. Expectation of posterior
- B. Mode of posterior
- C. Distribution of posterior
- D. Nothing

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

(Bayesian interpretation)

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Food for thought

In this lecture:

 $Y \sim \text{Ber}(p)$

If we don't know the parameter p, Bayesian statisticians will:

- Treat the parameter as a random variable X with a Beta distribution
- Perform an experiment
- Based on experiment outcomes, update the distribution of *X*

Food for thought:

Any parameter for a "parameterized" random variable can be thought of as a random variable.

 $Y \sim \mathcal{N}(\mu, \sigma^2)$