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Conditional expectation
The conditional expectation of 𝑋 (discrete) given 𝑌 = 𝑦 is

𝐸 𝑋|𝑌 = 𝑦 ='
!

𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦 ='
!

𝑥𝑝"|$ 𝑥|𝑦

Let 𝑊, 𝑌 be two RVs for the outcomes of two
independent dice rolls, respectively. Let 𝑋 = 𝑊 + 𝑌.

𝐸 𝑋|𝑌 = 𝑦 = 𝐸 𝑊 + 𝑌|𝑌 = 𝑦 = 𝑦 + 𝐸 𝑊|𝑌 = 𝑦
= 𝑦 + ∑%𝑤𝑃 𝑊 = 𝑤|𝑌 = 𝑦 = 𝑦 + ∑%𝑤𝑃(𝑊 = 𝑤)
= 𝑦 + 𝐸 𝑊 = 𝑦 + 3.5

2

𝑊 𝑌

Review

𝐸[𝑋|𝑌] is a random variable.
It is a function of 𝑌.👉
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Properties of conditional expectation
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1. LOTUS:

𝐸 𝑔 𝑋 |𝑌 = 𝑦 ='
5

𝑔 𝑥 𝑝6|7(𝑥|𝑦) or 8
9:

:
𝑔 𝑥 𝑓6|7 𝑥|𝑦 𝑑𝑥

2. Linearity of conditional expectation:

𝐸 '
=>?

@

𝑋= | 𝑌 = 𝑦 ='
=>?

@

𝐸 𝑋=|𝑌 = 𝑦

3. Law of total expectation:

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 👈
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Proof of Law of Total Expectation
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𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌

𝐸 𝐸 𝑋|𝑌 = 𝐸 𝑔 𝑌 ='
A

𝑃 𝑌 = 𝑦 𝐸 𝑋|𝑌 = 𝑦 (𝑔 𝑌 = 𝐸 𝑋|𝑌 )

='
A

𝑃 𝑌 = 𝑦 '
5

𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦
(def of 

conditional 
expectation)

='
A

'
5

𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦 𝑃 𝑌 = 𝑦 ='
A

'
5

𝑥𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 (chain rule)

='
5

'
A

𝑥𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 ='
5

𝑥'
A

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 (switch order of 
summations)

='
5

𝑥𝑃 𝑋 = 𝑥 (marginalization)

= 𝐸 𝑋
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Properties
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1. LOTUS:

𝐸 𝑔 𝑋 |𝑌 = 𝑦 ='
5

𝑔 𝑥 𝑝6|7(𝑥|𝑦) or 8
9:

:
𝑔 𝑥 𝑓6|7 𝑥|𝑦 𝑑𝑥

2. Linearity of conditional expectation:

𝐸 '
=>?

@

𝑋= | 𝑌 = 𝑦 ='
=>?

@

𝐸 𝑋=|𝑌 = 𝑦

3. Law of total expectation:

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌
For any RV 𝑋 and discrete RV 𝑌, 

𝐸 𝑋 =+
A

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦👉
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Analyzing recursive code
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def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 ='
A

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
If 𝑌 discrete

When 𝑋 = 1, return 3.

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 + 𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 + 𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3

3
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🤔
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Analyzing recursive code

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 ='
A

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
If 𝑌 discrete

When 𝑋 = 2, return 5 +
a future return value of recurse().

What is 𝐸 𝑌|𝑋 = 2 ?
A. 𝐸 5 + 𝑌
B. 𝐸 5 + 𝑌 = 5 + 𝐸 𝑌
C. 𝐸 5 + 𝐸 𝑌|𝑋 = 2

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 + 𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 + 𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3

3
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🤔
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Analyzing recursive code

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 ='
A

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
If 𝑌 discrete

When 𝑋 = 2, return 5 +
a future return value of recurse().

What is 𝐸 𝑌|𝑋 = 2 ?
A. 𝐸 5 + 𝑌
B. 𝐸 5 + 𝑌 = 5 + 𝐸 𝑌
C. 𝐸 5 + 𝐸 𝑌|𝑋 = 2

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 + 𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 + 𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3

3
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🤔
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Analyzing recursive code

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 ='
A

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
If 𝑌 discrete

5 + 𝐸 𝑌 When 𝑋 = 3, return 
7 + a future return value 
of recurse().

𝐸 𝑌|𝑋 = 3 = 7 + 𝐸 𝑌

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 + 𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 + 𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3

3
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Analyzing recursive code
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def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 ='
A

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
If 𝑌 discrete

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 + 𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 + 𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3

𝐸 𝑌 = 3 1/3 + 5 + 𝐸 𝑌 1/3 + 7 + 𝐸 𝑌 1/3

𝐸 𝑌 = 1/3 15 + 2𝐸 𝑌 = 5 + 2/3 𝐸 𝑌

𝐸 𝑌 = 15

3 7 + 𝐸 𝑌5 + 𝐸 𝑌
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Law of Total Expectation, a summary

Conditional expectation of 𝑋 given 𝑌:
• 𝐸 𝑋|𝑌 is a function of 𝑌.
• To evaluate at 𝑌 = 𝑦,  𝐸 𝑋|𝑌 = 𝑦 = ∑! 𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦

Law of total expectation:
𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌

• Helps us analyze recursive code.
• Pro tip: use this more in CS161

11
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Today’s plan

Law of Total Expectation

Mixing discrete and continuous random variables

Beta distribution

12
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Bayes’ on the waves

13
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Let’s play a game
Roll a die twice:
• If either time you roll a 6, I win.
• Otherwise you win.

Let 𝑊 = the event where you win. What is 𝑃 𝑊 ?

14

𝑃 𝑊 =
5
6

H

If the die is fair: What if the probabilities of the 
die are unknown?

(demo)
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Today’s plan

Today we are going to learn something unintuitive,
beautiful, and useful!

15

We are going to think of probabilities as
random variables.
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Today’s plan

Law of Total Expectation

Mixing discrete and continuous random variables

Beta distribution

16
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For discrete RVs 𝑋 and 𝑌, the 
conditional PMF of 𝑋 given 𝑌 is

𝑝"|$ 𝑥|𝑦 =
𝑝",$ 𝑥, 𝑦
𝑝$ 𝑦

Bayes’ Theorem:

𝑝$|" 𝑦|𝑥 =
𝑝"|$ 𝑥|𝑦 𝑝$ 𝑦

𝑝" 𝑥

Conditional distributions
For continuous RVs 𝑋 and 𝑌, the 
conditional PDF of 𝑋 given 𝑌 is

𝑓"|$ 𝑥|𝑦 =
𝑓",$ 𝑥, 𝑦
𝑓$ 𝑦

Bayes’ Theorem:

𝑓$|" 𝑦|𝑥 =
𝑓"|$ 𝑥|𝑦 𝑓$ 𝑦

𝑓" 𝑥

17

Review

Conditioning with a continuous RV feels 
weird at first, but then it gets good
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Mixing discrete and continuous
Let 𝑋 be a continuous random variable, and

𝑁 be a discrete random variable.

18

The conditional PDF of 𝑋 given 𝑁 is:

𝑓"|/ 𝑥|𝑛

The conditional PMF of 𝑁 given 𝑋 is:

𝑝/|" 𝑛|𝑥
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🤔
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Mixing discrete and continuous
Let 𝑋 be a continuous random variable for person’s height (inches), and

𝑁 be a discrete random variable for person’s age (10, 13, 15, or 20).
Matching: A. 𝑓"|/ 𝑥|𝑛 , conditional PDF of 𝑋 given 𝑁

B. 𝑝/|" 𝑛|𝑥 , conditional PMF of 𝑁 given 𝑋

0

0.2

0.4

0.6

0.8

1

! = 48 ! = 60 ! = 72

" = 10 " = 13 " = 15 " = 20

0
0.02
0.04
0.06
0.08

0.1
0.12

40 50 60 70 80 90!, inches

" = 10
" = 13
" = 15
" = 20
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🤔
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Mixing discrete and continuous

0
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0.6

0.8
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𝑓 6
|K
𝑥|
𝑛

𝑝 K
|6

𝑛|
𝑥

A. conditional PDF of 𝑋 given 𝑁 B. conditional PMF of 𝑁 given 𝑋

Let 𝑋 be a continuous random variable for person’s height (inches), and
𝑁 be a discrete random variable for person’s age (10, 13, 15, or 20).

Matching: A. 𝑓"|/ 𝑥|𝑛 , conditional PDF of 𝑋 given 𝑁
B. 𝑝/|" 𝑛|𝑥 , conditional PMF of 𝑁 given 𝑋



Lisa Yan, CS109, 2019

Mixing discrete and continuous
Let 𝑋 be a continuous random variable, and

𝑁 be a discrete random variable.

21

The conditional PDF of 𝑋 given 𝑁 is:

𝑓"|/ 𝑥|𝑛

The conditional PMF of 𝑁 given 𝑋 is:

𝑝/|" 𝑛|𝑥

𝑓"|/ 𝑥|𝑛 =
𝑝/|" 𝑛|𝑥 𝑓" 𝑥

𝑝/ 𝑛

Intuition:

Bayes’ 
Theorem:

𝑃 𝑋 = 𝑥 𝑁 = 𝑛 =
𝑃 𝑁 = 𝑛|𝑋 = 𝑥 𝑃 𝑋 = 𝑥

𝑃 𝑁 = 𝑛 𝑓6|K 𝑥 𝑛 𝜀6 =
𝑝K|6 𝑛|𝑥 ⋅ 𝑓6 𝑥 𝜀5

𝑝K 𝑛
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All your Bayes are belong to us
Let 𝑋, 𝑌 be continuous

OG Bayes: 𝑝4|/ 𝑚|𝑛 = 5O|P 6|7 5P 7
5O 6

Mix Bayes #1: 𝑓"|/ 𝑥 𝑛 = 5O|Q 6|! 8Q !
5O 6

Mix Bayes #2: 𝑝/|" 𝑛|𝑥 = 8Q|O !|6 5O 6
8Q !

All continuous: 𝑓"|$ 𝑥 𝑦 = 8R|Q 9|! 8Q !
8R 9

22

Bayes

and𝑀,𝑁 be discrete random variables.
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Today’s plan

Mixing discrete and continuous random variables, 
combined with Bayes’ Theorem, allows us to reason about 

probabilities as random variables.

23
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A new definition of probability
Flip a coin 𝑛 +𝑚 times, comes up with 𝑛 heads.
We don’t know the probability 𝑋 that the coin
comes up with heads.

24

The world’s first coin

Frequentist

𝑋 is a single value.

𝑋 = lim
6:7→<

𝑛
𝑛 +𝑚

≈
𝑛

𝑛 +𝑚

Bayesian

𝑋 is a random variable.

𝑋’s support: (0, 1)



Break for jokes/ 
announcements

25
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Midterm exam

It’s done! (refrain from posting to Piazza until Thursday)
Grades: Friday 11/1
Solutions: Friday 11/1

Announcements

26

Problem Set 4

Due: Wednesday 11/6
Covers: Up to Law of Total Expectation

Concept checks

Week 5’s: Today (10/31) 11:59pm

Late day reminder: No late days permitted past last day of the quarter, 12/7
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🤔
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Flip a coin with unknown probability
Flip a coin 𝑛 +𝑚 times, comes up with 𝑛 heads.
• Before our experiment, 𝑋 (the probability that the coin

comes up heads) can be any probability.
• Let 𝑁 = number of heads.
• Given 𝑋 = 𝑥, coin flips are independent.

What is our updated belief of 𝑋 after we observe 𝑁 = 𝑛?

What are the distributions of the following?
1. 𝑋
2. 𝑁|𝑋
3. 𝑋|𝑁

A. Uni 0,1
B. Bin(𝑛 +𝑚, 𝑥)
C. Use Bayes’
D. Other
E. Don’t know

𝑝K|6 𝑛|𝑥

𝑓6 𝑥

𝑓6|K 𝑥 𝑛
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Flip a coin with unknown probability
Flip a coin 𝑛 +𝑚 times, comes up with 𝑛 heads.
• Before our experiment, 𝑋 (the probability that the coin

comes up heads) can be any probability.
• Let 𝑁 = number of heads.
• Given 𝑋 = 𝑥, coin flips are independent.

What is our updated belief of 𝑋 after we observe 𝑁 = 𝑛?

What are the distributions of the following?
1. 𝑋
2. 𝑁|𝑋
3. 𝑋|𝑁

Bayesian prior 𝑋~Uni 0,1
A. Uni 0,1
B. Bin(𝑛 +𝑚, 𝑥)
C. Use Bayes’
D. Other
E. Don’t know

Likelihood 𝑁|𝑋~Bin(𝑛 +𝑚, 𝑥)

Bayesian posterior. Use Bayes’

𝑝K|6 𝑛|𝑥

𝑓6 𝑥

𝑓6|K 𝑥 𝑛
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Flip a coin with unknown probability
Flip a coin 𝑛 +𝑚 times, comes up with 𝑛 heads.
• Before our experiment, 𝑋 (the probability that the coin

comes up heads) can be any probability.
• Let 𝑁 = number of heads.
• Given 𝑋 = 𝑥, coin flips are independent.

What is our updated belief of 𝑋 after we observe 𝑁 = 𝑛?

29

Posterior: 𝑓6|K 𝑥 𝑛

Likelihood:
𝑁|𝑋~Bin(𝑛 +𝑚, 𝑥)

Prior:
𝑋~Uni 0,1

𝑓"|/ 𝑥 𝑛 =
𝑝/|" 𝑛|𝑥 𝑓" 𝑥

𝑝/ 𝑛 =
𝑛 +𝑚
𝑛 𝑥@ 1 − 𝑥 \ ⋅ 1

𝑝K 𝑛

=
𝑛 +𝑚
𝑛

𝑝K 𝑛 𝑥@ 1 − 𝑥 \

constant,
doesn’t depend on 𝑥

=
1
𝑐
𝑥@ 1 − 𝑥 \, where 𝑐 = 8

^

?
𝑥@ 1 − 𝑥 \𝑑𝑥
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0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Flip a coin with unknown probability
• Start with a 𝑋~Uni 0,1 over probability
• Observe 𝑛 successes and 𝑚 failures
• Your new belief about the probability of 𝑋 is:

𝑓"|/ 𝑥 𝑛 =
1
𝑐
𝑥6 1 − 𝑥 7 ,where 𝑐 = 8

=

>
𝑥6 1 − 𝑥 7𝑑𝑥

30

𝑓 6
𝑥

Prior belief, 𝑋

𝑥

Suppose our experiment
is 8 flips of a coin. We observe:
• 𝑛 = 7 heads (successes)
• 𝑚 = 1 tail (failure)
What is our posterior belief, 𝑋|𝑁?
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0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Flip a coin with unknown probability
• Start with a 𝑋~Uni 0,1 over probability
• Observe 𝑛 = 7 successes and 𝑚 = 1 failures
• Your new belief about the probability of 𝑋 is:

𝑓"|/ 𝑥 𝑛 =
1
𝑐
𝑥? 1 − 𝑥 >,where 𝑐 = 8

=

>
𝑥? 1 − 𝑥 >𝑑𝑥

31

𝑓 6
𝑥

Prior belief, 𝑋

𝑥
𝑓 6
|K
𝑥|
𝑛

Posterior belief, 𝑋|𝑁

𝑥
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Today’s plan

Law of Total Expectation

Mixing discrete and continuous random variables

Beta distribution

32
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Beta random variable
def An Beta random variable 𝑋 is defined as follows:

33

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A> 1 − 𝑥 BA>𝑋~Beta(𝑎, 𝑏)

VarianceExpectation

PDF

𝐸 𝑋 =
𝑎

𝑎 + 𝑏 Var 𝑋 =
𝑎𝑏

𝑎 + 𝑏 H 𝑎 + 𝑏 + 1

Support of 𝑋: 0, 1

𝑎 > 0, 𝑏 > 0

Beta is a distribution for probabilities.

where 𝐵 𝑎, 𝑏 = ∫̂?𝑥c9? 1 − 𝑥 d9?𝑑𝑥, normalizing constant
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Beta is a distribution of probabilities

34

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A> 1 − 𝑥 BA>𝑋~Beta(𝑎, 𝑏) PDF

Support of 𝑋: 0, 1 where 𝐵 𝑎, 𝑏 = ∫̂?𝑥c9? 1 − 𝑥 d9?𝑑𝑥, normalizing constant
𝑎 > 0, 𝑏 > 0
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5.0
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Beta(1,1)=Uni 0,1
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CS109 focus: Beta where 𝑎, 𝑏 both positive integers
Match PDF to distribution:

A. Beta(5,5)
B. Beta(2,8)
C. Beta(8,2)
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3.0
4.0
5.0
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Beta(0.2,0.8) Beta(0.8. 0.2)

Beta(0.8,0.8)
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1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(1,2)

Beta
(2,1)

Beta(1,1)0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

𝑋~Beta(𝑎, 𝑏)
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CS109 focus: Beta where 𝑎, 𝑏 both positive integers
Match PDF to distribution:

A. Beta(5,5)
B. Beta(2,8)
C. Beta(8,2)
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1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(0.2,0.8) Beta(0.8. 0.2)

Beta(0.8,0.8)
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0.0 0.2 0.4 0.6 0.8 1.0

Beta(1,2)

Beta
(2,1)

Beta(1,1)

A. Beta(5,5)

B. Beta(2,8) C. Beta(8,2)

𝑋~Beta(𝑎, 𝑏)
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CS109 focus: Beta where 𝑎, 𝑏 both positive integers
Match PDF to distribution:

A. Beta(5,5)
B. Beta(2,8)
C. Beta(8,2)

Beta parameters 𝑎, 𝑏 could
come from an experiment:

𝑎 = “successes” + 1
𝑏 = “failures” + 1

𝑋~Beta(𝑎, 𝑏)

A. Beta(5,5)

B. Beta(2,8) C. Beta(8,2)
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0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Back to flipping coins
• Start with a 𝑋~Uni 0,1 over probability
• Observe 𝑛 = 7 successes and 𝑚 = 1 failures
• Your new belief about the probability of 𝑋 is:

𝑓"|/ 𝑥 𝑛 =
1
𝑐
𝑥? 1 − 𝑥 >,where 𝑐 = 8

=

>
𝑥? 1 − 𝑥 >𝑑𝑥

38
𝑓 6
|K
𝑥|
𝑛

Posterior belief, 𝑋|𝑁

𝑥

Posterior belief, 𝑋|𝑁:
Beta(𝑎 = 8, 𝑏 = 2)

Beta(𝑎 = 𝑛 + 1, 𝑏 = 𝑚 + 1)

𝑓"|/ 𝑥 𝑛 =
1
𝑐
𝑥MA> 1 − 𝑥 NA>
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Understanding Beta
• Start with a 𝑋~Uni 0,1 over probability
• Observe 𝑛 successes and 𝑚 failures
• Your new belief about the probability of 𝑋 is:

𝑋|𝑁~Beta(𝑎 = 𝑛 + 1, 𝑏 = 𝑚 + 1)

39
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Understanding Beta
• Start with a 𝑋~Uni 0,1 over probability
• Observe 𝑛 successes and 𝑚 failures
• Your new belief about the probability of 𝑋 is:

𝑋|𝑁~Beta(𝑎 = 𝑛 + 1, 𝑏 = 𝑚 + 1)
Check this out:

Beta 𝑎 = 1, 𝑏 = 1 has PDF:

So our prior 𝑋~Beta 𝑎 = 1, 𝑏 = 1 !

40

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥c9? 1 − 𝑥 d9?

where 0 < 𝑥 < 1

=
1

𝐵 𝑎, 𝑏
𝑥^ 1 − 𝑥 ^ =

1

∫̂? 1𝑑𝑥
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If the prior is a Beta…
Let 𝑋 be our random variable for probability of success and 𝑁
• If our prior belief about 𝑋 is beta:

• …and if we observe 𝑛 successes and 𝑚 failures:

• …then our posterior belief about 𝑋
is also beta.

41

𝑋~Beta(𝑎, 𝑏)

𝑁|𝑋~Bin(𝑛 + 𝑚, 𝑥)

𝑋|𝑁~Beta(𝑎 + 𝑛, 𝑏 + 𝑚)

This is the main takeaway of today.👉

likelihood
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If the prior is a Beta…
Let 𝑋 be our random variable for probability of success and 𝑁
• If our prior belief about 𝑋 is beta:

• …and if we observe 𝑛 successes and 𝑚 failures:

• …then our posterior belief about 𝑋
is also beta.

42

𝑋~Beta(𝑎, 𝑏)

Proof:

𝑓"|/ 𝑥 𝑛 =
𝑝/|" 𝑛|𝑥 𝑓" 𝑥

𝑝/ 𝑛 =

𝑛 +𝑚
𝑚 𝑥@ 1 − 𝑥 \ ⋅ 1

𝐵 𝑎, 𝑏 𝑥c9? 1 − 𝑥 d9?

𝑝K 𝑛

= 𝐶 ⋅ 𝑥6 1 − 𝑥 7 ⋅ 𝑥@A> 1 − 𝑥 BA>constants that 
don’t depend on 𝑥

= 𝐶 ⋅ 𝑥6:@A> 1 − 𝑥 7:BA>

𝑋|𝑁~Beta(𝑎 + 𝑛, 𝑏 + 𝑚)

𝑁|𝑋~Bin(𝑛 + 𝑚, 𝑥)likelihood
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If the prior is a Beta…
Let 𝑋 be our random variable for probability of success and 𝑁
• If our prior belief about 𝑋 is beta:

• …and if we observe 𝑛 successes and 𝑚 failures:

• …then our posterior belief about 𝑋
is also beta.

43

𝑋~Beta(𝑎, 𝑏)

𝑋|𝑁~Beta(𝑎 + 𝑛, 𝑏 + 𝑚)

Beta is a conjugate distribution.
• Prior and posterior parametric forms are the same
• Practically, conjugate means easy update:

Add number of “heads” and “tails” seen
to Beta parameter.

𝑁|𝑋~Bin(𝑛 + 𝑚, 𝑥)likelihood
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If the prior is a Beta…
Let 𝑋 be our random variable for probability of success and 𝑁
• If our prior belief about 𝑋 is beta:

• …and if we observe 𝑛 successes and 𝑚 failures:

• …then our posterior belief about 𝑋
is also beta.

44

𝑋~Beta(𝑎, 𝑏)

𝑋|𝑁~Beta(𝑎 + 𝑛, 𝑏 + 𝑚)

You can set the prior to reflect how biased you think the coin is apriori.
• This is a subjective probability!
• 𝑋~Beta(𝑎, 𝑏): have seen 𝑎 + 𝑏 − 2 imaginary trials, where

𝑎 − 1 are heads, 𝑏 − 1 tails
• Then Beta 1, 1 = Uni(0, 1) means we haven’t seen any imaginary trials 

𝑁|𝑋~Bin(𝑛 + 𝑚, 𝑥)likelihood
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If the prior is a Beta…
Let 𝑋 be our random variable for probability of success and 𝑁
• If our prior belief about 𝑋 is beta:

• …and if we observe 𝑛 successes and 𝑚 failures:

• …then our posterior belief about 𝑋
is also beta.

45

𝑋~Beta(𝑎, 𝑏)

𝑁|𝑋~Bin(𝑛 + 𝑚, 𝑥)

𝑋|𝑁~Beta(𝑎 + 𝑛, 𝑏 + 𝑚)

This is the main takeaway of Beta.👉

likelihood

Beta(𝑎 = 𝑛O7@P + 1, 𝑏 = 𝑚O7@P + 1)Prior

Beta 𝑎 = 𝑛O7@P + 𝑛 + 1, 𝑏 = 𝑚O7@P +𝑚 + 1Posterior
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The enchanted die
Let 𝑋 be the probability of rolling a 6 on Lisa’s die.
• Prior: Imagine 5 die rolls where only 6 showed up
• Observation: roll it a few times…

What is the updated distribution of 𝑋 after our observation?

Check out the demo!

46

Beta(𝑎 = 𝑛=\ci + 1, 𝑏 = 𝑚=\ci + 1)Prior

Beta(𝑎 = 𝑛=\ci + 𝑛 + 1, 𝑏 = 𝑚=\ci +𝑚 + 1)Posterior

http://web.stanford.edu/class/cs109/demos/beta.html
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

47

Frequentist

Let 𝑝 be the probability
your drug works.

𝑝 ≈
14
20

= 0.7

Bayesian

A frequentist view will not incorporate
prior/expert belief about probability.👉
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

48

Frequentist

Let 𝑝 be the probability
your drug works.

𝑝 ≈
14
20

= 0.7

Bayesian

Let 𝑋 be the probability
your drug works.

𝑋 is a random variable.
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

What is the prior distribution of 𝑋? (select all that apply)

A. 𝑋~Beta 1, 1 = Uni 0, 1
B. 𝑋~Beta 81, 101
C. 𝑋~Beta 80, 20
D. 𝑋~Beta 81, 21
E. 𝑋~Beta 5, 2

Beta(𝑎 = 𝑛=\ci + 1, 𝑏 = 𝑚=\ci + 1)Prior

Beta(𝑎 = 𝑛=\ci + 𝑛 + 1, 𝑏 = 𝑚=\ci +𝑚 + 1)Posterior

(Bayesian interpretation)
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

What is the prior distribution of 𝑋? (select all that apply)

A. 𝑋~Beta 1, 1 = Uni 0, 1
B. 𝑋~Beta 81, 101
C. 𝑋~Beta 80, 20
D. 𝑋~Beta 81, 21
E. 𝑋~Beta 5, 2

Beta(𝑎 = 𝑛=\ci + 1, 𝑏 = 𝑚=\ci + 1)Prior

Beta(𝑎 = 𝑛=\ci + 𝑛 + 1, 𝑏 = 𝑚=\ci +𝑚 + 1)Posterior

Interpretation: 80 successes / 100 imaginary trials

Interpretation: 4 successes / 5 imaginary trials

(Bayesian interpretation)

(you can choose either; we choose E on next slide)
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Prior: 𝑋~Beta 𝑎 = 5, 𝑏 = 2
Posterior: 𝑋~Beta 𝑎 = 5 + 14, 𝑏 = 2 + 6

~Beta 𝑎 = 19, 𝑏 = 8

Beta(𝑎 = 𝑛=\ci + 1, 𝑏 = 𝑚=\ci + 1)Prior

Beta(𝑎 = 𝑛=\ci + 𝑛 + 1, 𝑏 = 𝑚=\ci +𝑚 + 1)Posterior

(Bayesian interpretation)

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Posterior

Prio
r

𝑥
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Prior: 𝑋~Beta 𝑎 = 5, 𝑏 = 2
Posterior: 𝑋~Beta 𝑎 = 5 + 14, 𝑏 = 2 + 6

~Beta 𝑎 = 19, 𝑏 = 8

Beta(𝑎 = 𝑛=\ci + 1, 𝑏 = 𝑚=\ci + 1)Prior

Beta(𝑎 = 𝑛=\ci + 𝑛 + 1, 𝑏 = 𝑚=\ci +𝑚 + 1)Posterior

(Bayesian interpretation)

What do you report to pharmacists?
A. Expectation of posterior
B. Mode of posterior
C. Distribution of posterior
D. Nothing

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Posterior

Prio
r

𝑥

mode



Lisa Yan, CS109, 2019

🤔
53

Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Prior: 𝑋~Beta 𝑎 = 5, 𝑏 = 2
Posterior: 𝑋~Beta 𝑎 = 5 + 14, 𝑏 = 2 + 6

~Beta 𝑎 = 19, 𝑏 = 8

Beta(𝑎 = 𝑛=\ci + 1, 𝑏 = 𝑚=\ci + 1)Prior

Beta(𝑎 = 𝑛=\ci + 𝑛 + 1, 𝑏 = 𝑚=\ci +𝑚 + 1)Posterior

(Bayesian interpretation)

What do you report to pharmacists?
A. Expectation of posterior
B. Mode of posterior
C. Distribution of posterior
D. Nothing

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Posterior

Prio
r

𝑥

𝐸 𝑋 =
𝑎

𝑎 + 𝑏
=

19
19 + 8

≈ 0.70

mode 𝑋 =
𝑎 − 1

𝑎 + 𝑏 − 2
=

18
18 + 7

≈ 0.72

mode
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Food for thought

54

𝑌~Ber 𝑝

In this lecture: If we don’t know the parameter 𝑝,
Bayesian statisticians will:
• Treat the parameter as a random variable 𝑋

with a Beta distribution
• Perform an experiment
• Based on experiment outcomes, update the 

distribution of 𝑋
Food for thought:

Any parameter for a “parameterized” 
random variable can be thought of as 

a random variable.
𝑌~𝒩 𝜇, 𝜎H

🤔

👉


