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Our current trajectory for this course
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Our current trajectory for this course
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Today’s plan

Finishing CLT

Sampling definitions

Unbiased estimates of population statistics

Bootstrapping
• For a statistic
• For a p-value

4
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Working with the CLT

5

⚠
If 𝑋" is discrete:

Use the continuity 
correction on 𝑌!

$
"%&

'

𝑋" ~𝒩(𝑛𝜇, 𝑛𝜎/)

1
𝑛
$
"%&

'

𝑋" ~𝒩(𝜇,
𝜎/

𝑛
)

Sum of i.i.d. RVs

Average of i.i.d. RVs
(sample mean)

Let 𝑋&, 𝑋/, … , 𝑋' i.i.d., where 𝐸 𝑋" = 𝜇, Var 𝑋" = 𝜎/. As 𝑛 → ∞:

Demo: http://onlinestatbook.com/stat_sim/sampling_dist/

Review

http://onlinestatbook.com/stat_sim/sampling_dist/
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🤔
6

Dice game
You will roll 10 6-sided dice 𝑋&, 𝑋/, … , 𝑋&7 .
• Let 𝑋 = 𝑋& + 𝑋/ +⋯+ 𝑋&7, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

And now the truth (according to the CLT)…

$
"%&

'

𝑋" ~𝒩(𝑛𝜇, 𝑛𝜎/)As 𝑛 → ∞:

1. Define RVs and
state goal.

2. Solve.

𝐸 𝑋" = 3.5,
Var 𝑋" = 35/12
𝑋 ≈ 𝑌~𝒩(10 3.5 , 10 35/12 )

Want:
𝑃 𝑋 ≤ 25 or 𝑋 ≥ 45

A. 𝑃 25 ≤ 𝑌 ≤ 45
B. 𝑃 𝑌 ≤ 25.5 + 𝑃 𝑌 ≥ 44.5
C. 1 − 𝑃 25 ≤ 𝑌 ≤ 45
D. 1 − 𝑃 25.5 ≤ 𝑌 ≤ 44.5
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🤔
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Dice game
You will roll 10 6-sided dice 𝑋&, 𝑋/, … , 𝑋&7 .
• Let 𝑋 = 𝑋& + 𝑋/ +⋯+ 𝑋&7, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

And now the truth (according to the CLT)…

$
"%&

'

𝑋" ~𝒩(𝑛𝜇, 𝑛𝜎/)As 𝑛 → ∞:

1. Define RVs and
state goal.

2. Solve.

𝐸 𝑋" = 3.5,
Var 𝑋" = 35/12
𝑋 ≈ 𝑌~𝒩(10 3.5 , 10 35/12 )

Want:
𝑃 𝑋 ≤ 25 or 𝑋 ≥ 45
≈ 𝑃 𝑌 ≤ 25.5 + 𝑃 𝑌 ≥ 44.5

𝑃 𝑌 ≤ 25.5 + 𝑃 𝑌 ≥ 44.5

= Φ
25.5 − 35
10 35/12

+ 1 − Φ
44.5 − 35
10 35/12

≈ Φ −1.76 + 1 − Φ 1.76
≈ 1 − 0.9608 + 1 − 0.9608
= 0.0784
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Dice game
You will roll 10 6-sided dice 𝑋&, 𝑋/, … , 𝑋&7 .
• Let 𝑋 = 𝑋& + 𝑋/ +⋯+ 𝑋&7, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

$
"%&

'

𝑋" ~𝒩(𝑛𝜇, 𝑛𝜎/)As 𝑛 → ∞:

0

0.02

0.04

0.06

0.08

10 20 30 40 50 60

𝑃 𝑋 ≤ 25 or 𝑋 ≥ 45 ≈
𝑃 𝑌 ≤ 25.5 + 𝑃 𝑌 ≥ 44.5

≈ 0.0784

𝑃 𝑋 ≤ 25 or 𝑋 ≥ 45 ≈ 0.0780
(by computer)

(by CLT)
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As 𝑛 → ∞:Clock running time

9

K𝑋~𝒩 𝑡,
4
𝑛

𝑃 𝑡 − 0.5 ≤ K𝑋 ≤ 𝑡 + 0.5 = 0.95Want:

𝑃 −0.5 ≤ K𝑋 − 𝑡 ≤ 0.5 = 0.95K𝑋 − 𝑡~𝒩 0,
4
𝑛

(linear 
transform of 

a normal)

(CLT)

Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎/ = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?

Run algorithm repeatedly (i.i.d. trials):
• 𝑋" = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, K𝑋

1. Define RVs and
state goal.

2. Solve.

1
𝑛$
"%&

'

𝑋" ~𝒩(𝜇,
𝜎/

𝑛 )
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Clock running time
Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎/ = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?

10

Run algorithm repeatedly (i.i.d. trials):
• 𝑋" = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, K𝑋

1. Define RVs and
state goal.

0.95 =
𝑃 −0.5 ≤ K𝑋 − 𝑡 ≤ 0.5

K𝑋 − 𝑡~𝒩 0,
4
𝑛

2. Solve.

0.95 = 𝐹 KPQR 0.5 − 𝐹 KPQR −0.5

= Φ
0.5 − 0
4/𝑛

− Φ
−0.5 − 0

4/𝑛
= 2Φ

𝑛
4

− 1

As 𝑛 → ∞:
1
𝑛$
"%&

'

𝑋" ~𝒩(𝜇,
𝜎/

𝑛 )
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Clock running time
Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎/ = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?

11

Run algorithm repeatedly (i.i.d. trials):
• 𝑋" = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, K𝑋

1. Define RVs and
state goal.

0.95 =
𝑃 0.5 ≤ K𝑋 − 𝑡 ≤ 0.5

K𝑋 − 𝑡~𝒩 0,
4
𝑛

2. Solve.

0.95 = 𝐹 KPQR 0.5 − 𝐹 KPQR −0.5

= Φ
0.5 − 0
4/𝑛

− Φ
−0.5 − 0

4/𝑛
= 2Φ

𝑛
4

− 1

0.975 = Φ 𝑛/4
𝑛/4 = ΦQ& 0.975 ≈ 1.96 𝑛 ≈ 62

As 𝑛 → ∞:
1
𝑛$
"%&

'

𝑋" ~𝒩(𝜇,
𝜎/

𝑛 )
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The Central Limit Theorem

12

$
"%&

'

𝑋" ~𝒩(𝑛𝜇, 𝑛𝜎/)

1
𝑛
$
"%&

'

𝑋" ~𝒩(𝜇,
𝜎/

𝑛
)

Let 𝑋&, 𝑋/, … , 𝑋' i.i.d., where 𝐸 𝑋" = 𝜇, Var 𝑋" = 𝜎/. As 𝑛 → ∞:

The Central Limit Theorem allows you
to calculate probabilities on sums and
means of i.i.d. random variables.

What if we don’t know 𝜇 or 𝜎/?

How do we estimate 𝜇 and 𝜎/ from data?
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Today’s plan

Finishing CLT

Sampling definitions
• Population mean/variance, sample mean/variance
• Standard error

Bootstrapping
• For a statistic
• For a p-value (next time)

13
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Motivating example
You want to know the true mean and 
variance of happiness in Bhutan.
• But you can’t ask everyone.
• You poll 200 random people.
• Your data looks like this:

Happiness = {72, 85, 79, 91, 68, …, 71}

• The mean of all these numbers is 83.
Is this the true mean happiness of 
Bhutanese people?

14
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Population

15

This is a population.
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Sample

16

A sample is selected from a population.
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Sample

17

A sample is selected from a population.
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A sample, mathematically
Consider 𝑛 random variables 𝑋&, 𝑋/, … , 𝑋'.
The sequence 𝑋&, 𝑋/, … , 𝑋' is a sample from distribution 𝐹 if:
• 𝑋" are all independent and identically distributed (i.i.d.)
• 𝑋" all have same distribution function 𝐹 (the underlying distribution), 

where 𝐸 𝑋" = 𝜇, Var 𝑋" = 𝜎/

18

𝜇

𝜎
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A sample of sample size 8:
𝑋&, 𝑋/, 𝑋S, 𝑋T, 𝑋U, 𝑋V, 𝑋W, 𝑋X

A realization of a sample of size 8:
𝑋&, 𝑋/, 𝑋S, 𝑋T, 𝑋U, 𝑋V, 𝑋W, 𝑋X

A sample, mathematically

19

59 87 94 99 87 78 69 91

2x
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Population statistics

The underlying distribution 𝐹 has 
unknown statistics:
• 𝜇, the population mean
• 𝜎/, the population variance

20

A happy
Bhutanese person
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Estimating the population mean

What if you only have a sample, 𝑋&, 𝑋/, … , 𝑋' ?

The best estimate of 𝜇 is the sample mean:

Intuition: By the CLT, 

21

K𝑋 =
1
𝑛
$
"%&

'

𝑋"

1. What is 𝜇, the mean happiness of 
Bhutanese people?

K𝑋 ~𝒩(𝜇,
𝜎/

𝑛
)

1. Take multiple samples of size 𝑛
2. For each sample, compute sample means
3. On average, we would get the population mean
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🤔
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Quick check

1. 𝜇, the population mean 

2. 𝑋&, 𝑋/, 𝑋S, 𝑋T, 𝑋U, 𝑋V, 𝑋W, 𝑋X , a sample

3. 𝜎/, the population variance

4. K𝑋, the sample mean

5. K𝑋 = 83

6. (𝑋& = 59, 𝑋/ = 87, 𝑋S = 94, 𝑋T = 99,
𝑋U = 87, 𝑋V = 78, 𝑋W = 69, 𝑋X = 91)

A. Random variable(s)
B. Value (frequentist interpretation)
C. Event
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🤔
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Quick check

1. 𝜇, the population mean 

2. 𝑋&, 𝑋/, 𝑋S, 𝑋T, 𝑋U, 𝑋V, 𝑋W, 𝑋X , a sample

3. 𝜎/, the population variance

4. K𝑋, the sample mean

5. K𝑋 = 83

6. (𝑋& = 59, 𝑋/ = 87, 𝑋S = 94, 𝑋T = 99,
𝑋U = 87, 𝑋V = 78, 𝑋W = 69, 𝑋X = 91)

(A)

(B)

(B)

(A)

(C)

(C)

These are outcomes 
from your collected 
data.👉

A. Random variable(s)
B. Value (frequentist interpretation)
C. Event
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Estimating the population mean

What if you only have a sample, 𝑋&, 𝑋/, … , 𝑋' ?

The best estimate of 𝜇 is the sample mean:

K𝑋 is an unbiased estimate of the population mean, 𝜇:

Proof 1: By CLT, K𝑋 ~𝒩(𝜇, Y
Z

'
)

Proof 2: By linearity of expectation (see board)
24

1. What is 𝜇, the mean happiness of 
Bhutanese people?

K𝑋 =
1
𝑛
$
"%&

'

𝑋"

def 𝐸 estimate = actual



Break for jokes/
announcements

25
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Announcements

26

Problem Set 4

Due: Wednesday 11/6
Covers: Up to Law of Total Expectation

Late day reminder: No late days permitted past last day of the quarter, 12/7
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Announcements: CS109 contest

27

Do something cool and creative
with probability

Genuinely optional extra credit

Due Monday 12/2, 11:59pm
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Estimating the population variance

If we knew the entire population 𝑥&, 𝑥/, … , 𝑥\ :

𝜎/ =
1
𝑁
$
"%&

\

𝑥" − 𝜇 /

But what if you only have a sample, 𝑋&, 𝑋/, … , 𝑋' ?

28

2. What is 𝜎/, the variance of happiness of 
Bhutanese people?

Population size, 𝑁population
variance

population mean
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Estimating the population variance

What if you only have a sample, 𝑋&, 𝑋/, … , 𝑋' ?

The best estimate of 𝜎/ is the sample variance:

𝑆/ is an unbiased estimate of the population variance, 𝜎/:

29

𝑆/ =
1

𝑛 − 1
$
"%&

'

𝑋" − K𝑋 /

𝐸 𝑆/ = σ/

2. What is 𝜎/, the variance of happiness of 
Bhutanese people?

If you only have a sample, you can only compute 
estimates of population statistics.
You can only believe what you see.

👉
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0
Happiness

𝜇

Intuition about the sample variance, 𝑆/

30

𝜎/ =
1
𝑁
$
"%&

\

𝑥" − 𝜇 /population
variance

population mean

𝑥" − 𝜇

Actual, 𝜎/

150

Calculating population statistics exactly 
requires us knowing all 𝑁 datapoints.👉

Population size, 𝑁



Lisa Yan, CS109, 2019

Intuition about the sample variance, 𝑆/

31

𝑆/ =
1

𝑛 − 1
$
"%&

'

𝑋" − K𝑋 /sample
variance

sample mean
Estimate, 𝑆/

𝜎/ =
1
𝑁
$
"%&

\

𝑥" − 𝜇 /population
variance

population mean
Actual, 𝜎/

0
Happiness

𝜇
Population size, 𝑁

150
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Intuition about the sample variance, 𝑆/

32

𝑆/ =
1

𝑛 − 1
$
"%&

'

𝑋" − K𝑋 /𝜎/ =
1
𝑁
$
"%&

\

𝑥" − 𝜇 /population
variance

sample
variance

population mean sample mean
Actual, 𝜎/ Estimate, 𝑆/

0
Happiness

𝜇
Population size, 𝑁

K𝑋
150



Lisa Yan, CS109, 2019

Intuition about the sample variance, 𝑆/

33

𝑆/ =
1

𝑛 − 1
$
"%&

'

𝑋" − K𝑋 /

1500
Happiness

𝜇

𝜎/ =
1
𝑁
$
"%&

\

𝑥" − 𝜇 /population
variance

sample
variance

population mean sample mean

Population size, 𝑁
K𝑋

𝑋& − K𝑋

Actual, 𝜎/ Estimate, 𝑆/

Sample variance is an estimate using an 
estimate, so it needs additional scaling.👉
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Proof that 𝑆/ is unbiased

34

𝐸 𝑆/ = 𝜎/(just for reference)

𝐸 𝑆/ = 𝐸
1

𝑛 − 1
$
"%&

'

𝑋" − K𝑋 / ⇒ 𝑛 − 1 𝐸 𝑆/ = 𝐸 $
"%&

'

𝑋" − K𝑋 /

𝑛 − 1 𝐸 𝑆/ = 𝐸 $
"%&

'

𝑋" − 𝜇 + 𝜇 − K𝑋 /

= 𝐸 $
"%&

'

𝑋" − 𝜇 / +$
"%&

'

𝜇 − K𝑋 / + 2$
"%&

'

𝑋" − 𝜇 𝜇 − K𝑋

(introduce 𝜇 − 𝜇)

= 𝐸 $
"%&

'

𝑋" − 𝜇 / + 𝑛 𝜇 − K𝑋 / − 2𝑛 𝜇 − K𝑋 /

2 𝜇 − K𝑋 $
"%&

'

𝑋" − 𝜇

2 𝜇 − K𝑋 $
"%&

'

𝑋" − 𝑛𝜇

2 𝜇 − K𝑋 𝑛 K𝑋 − 𝜇

−2𝑛 𝜇 − K𝑋 /

= 𝐸 $
"%&

'

𝑋" − 𝜇 / − 𝑛 𝜇 − K𝑋 / =$
"%&

'

𝐸 𝑋" − 𝜇 / − 𝑛𝐸 K𝑋 − 𝜇 /

= 𝑛𝜎/ − 𝑛Var K𝑋 = 𝑛𝜎/ − 𝑛
𝜎/

𝑛
= 𝑛𝜎/ − 𝑛𝜎/ = 𝑛 − 1 𝜎/ Therefore 𝐸 𝑆/ = 𝜎/
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Today’s plan

Finishing CLT

Sampling definitions
• Population mean/variance, sample mean/variance
• Standard error

Bootstrapping
• For a statistic
• For a p-value (next time)

35
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Estimating population statistics

36

1. Collect a sample, 𝑋&, 𝑋/, … , 𝑋'.

2. Compute sample mean, K𝑋 = &
'
∑"%&' 𝑋".

3. Compute sample deviation, 𝑋" − K𝑋.

4. Compute sample variance, 𝑆/ = &
'Q&

∑"%&' 𝑋" − K𝑋 /.

How “close” are our estimates K𝑋 and 𝑆/?

𝑆/ = 793

−11, 2, −4,−4,8, −15,… ,−12

K𝑋 = 83

72, 85,79,79,91,68, … , 71
𝑛 = 200
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🤔
37

How “close” is our estimate K𝑋 to 𝜇?
We know that the sample mean K𝑋
is an unbiased estimate of 𝜇:

Just knowing the average value of K𝑋 does not inform
what the spread (e.g., standard deviation) of K𝑋 is.

What is Var b𝑋 ?
A. 𝜎/, population variance
B. 𝑆/, sample variance
C. 𝜎//𝑛, population variance divided by sample size
D. Don’t know

⚠

𝐸 K𝑋 = 𝜇
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How “close” is our estimate K𝑋 to 𝜇?
We know that the sample mean K𝑋
is an unbiased estimate of 𝜇:

Just knowing the average value of K𝑋 does not inform
what the spread (e.g., standard deviation) of K𝑋 is.

What is Var b𝑋 ?
A. 𝜎/, population variance
B. 𝑆/, sample variance
C. 𝜎//𝑛, population variance divided by sample size
D. Don’t know

⚠

𝐸 K𝑋 = 𝜇
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Sample mean

39

K𝑋 ~𝒩(𝜇,
𝜎/

𝑛
)

• Var K𝑋 is a measure of how 
“close” K𝑋 is to 𝜇.

• How do we estimate Var b𝑿 ?
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How “close” is our estimate K𝑋 to 𝜇?

def The standard error of the mean is an unbiased
estimate of the standard deviation of K𝑋.

40

Var K𝑋 =
𝜎/

𝑛
𝐸 K𝑋 = 𝜇

𝑆𝐸 =
𝑆/

𝑛
Intuition:
• 𝑆/ is an unbiased estimate of 𝜎/
• 𝑆//𝑛 is an unbiased estimate of 𝜎//𝑛 = Var K𝑋
• 𝑆//𝑛 is an unbiased estimate of Var K𝑋

We want to
estimate this
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Standard error

41

Claim: The average happiness of Bhutan is 83,
with a standard error of 1.99.

1. Mean happiness:

83

Bhutan

Av
er

ag
e 

H
ap

pi
ne

ss

0

𝑆𝐸

Closed 
form:

𝑆𝐸 =
𝑆/

𝑛
✅this is how close

we are

this is our best
estimate of 𝜇 error bars
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Standard error

42

Claim: The average happiness of Bhutan is 83, 
with a standard error of 1.99.

1. Mean happiness:

83

Bhutan

Av
er

ag
e 

H
ap

pi
ne

ss

0

𝑆𝐸

Closed 
form:

𝑆𝐸 =
𝑆/

𝑛

2. Variance of happiness:

Claim: The variance of happiness of Bhutan is 793.

But how close
are we?

this is our best
estimate of 𝜎/

Closed 
form:

Not covered
in CS109

⚠

error bars

Up next: Compute
Statistics with code!
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Today’s plan

Finishing CLT

Sampling definitions
• Population mean/variance, sample mean/variance
• Standard error

Bootstrapping
• For a statistic
• For a p-value (next time)

43
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Bootstrap

The Bootstrap:

Probability for Computer Scientists

Allows you to do the following:
• Calculate distributions over statistics
• Calculate p values

44
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Bootstrap

Hypothetical questions:
• What is the probability that a Bhutanese 

peep is just straight up loving life?
• What is the probability that the mean of 

a subsample of 200 people is within the 
range 81 to 85?

• What is the variance of the sample 
variance of subsamples of 200 people?

45
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Key insight
You can estimate the PMF of the underlying distribution, using your sample.*

46

*This is just a histogram of your data!

72
85
79
79
91
68
…
71

i.i.d. samples Sample distribution


