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Today's plan

=) Finishing CLT
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Working with the CLT Review

Let X, X5, ..., X, i.i.d., where E[X;] = u,Var(X;) = 2. Asn - oo:

n
ZXi ~N (nu, no*) Sum of i.i.d. RVs |
i=1 i
If X; is discrete:
1w o2 N Use the continuity
_2 Xi ~N(u,—) Average of I.L.d. RVs correction on Y!
i =1 1 (sample mean)

Demo: http://onlinestatbook.com/stat sim/sampling dist/
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http://onlinestatbook.com/stat_sim/sampling_dist/

Dice game

You will roll 10 6-sided dice(Xy, X5, ..., X19)-
* LetX =X; + X, + -+ Xy, the total value of all 10 rolls.
* Youwinif X < 250r X = 45.

And now the truth (according to the CLT)...
1. Define RVs and

state goal. — A. P(25 <Y < 45)
E[X,] = 35, P(Y < 25.5) + P(Y > 44.5)
Var(X;) = 35/12 C. 1—P(25<Y <45)
X ~ Y~N(10(3.5),10(35/12)) 1—P(25.5 <Y < 44.5)
Want:

| S

P(X < 250r X = 45) )
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Dice game

You will roll 10 6-sided dice(Xy, X5, ..., X19)- g
© LetX = X; + X, + - + Xy, the total value of all 10 rolls. & &
* Youwinif X < 25o0rX = 45.

And now the truth (according to the CLT)...

Define RVs and 2. Solve.

state goal. P(Y < 255) + P(Y > 44.5)
(25.5—35) ( (44.5—35))
= +l1-d
V10(35/12) J10(35/12)
~ ®(—1.76) + (1 — ®(1.76))

~ (1 —0.9608) + (1 — 0.9608) c?i)
~ P(Y < 25.5) + P(Y > 44.5) — 0.0784
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Dice game Asm = <o ZX =EHET)

You will roll 10 6-sided dice(Xy, X5, ..., X19)-
° LletX =X, + X, + -+ X4, the total value of all 10 rolls. u v

* Youwinif X < 25o0r X > 45.

0.08 (by CLT)
P(X <250rX =45) =
o P(Y < 25.5) + P(Y > 44.5)
0.04 ~ 0.0784
0.02 (by computer)
.|||” ‘llh. P(X <250rX >=45) = 0.0780

10 20 30 40 50 60 Cj)
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Asn — 1Enx N &

. — ; ~ ,

sn nls i (u n)
L=

Clock running time
Want to find the mean (clock) Run algorithm repeatedly (i.i.d. trials):
runtime of an algorithm, u = t sec. * X; =runtime of i-th run (for 1 < i < n)
Suppose variance of « Estimate runtime to be
runtime is 0% = 4 sec?. average of n trials, X

How many trials do we need s.t. estimated time = t + 0.5 with 95% certainty?

Define RVs and
state goal.

_ 4 _
CLT) X~N (t, —) Want: P(t—05<X<t+0.5) =0.95
n

(linear _ 4 —
transformof X — t~N\ (O, —) P(—O.S < X—-t< 0.5) = (0.95
n

a normal)
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Asn — 1Enx N &

. — ; ~ ,

sn nls i (u n)
L=

Clock running time
Want to find the mean (clock) Run algorithm repeatedly (i.i.d. trials):
runtime of an algorithm, u = t sec. * X; =runtime of i-th run (for 1 < i < n)
Suppose variance of « Estimate runtime to be
runtime is 0% = 4 sec?. average of n trials, X

How many trials do we need s.t. estimated time = t + 0.5 with 95% certainty?

Solve

- ()~ ) == (%)
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A 1 nX N 7

00: —E ; ~ —

sn-— n.l i (.u Tl)
1=

Clock running time
Want to find the mean (clock) Run algorithm repeatedly (i.i.d. trials):
runtime of an algorithm, u = t sec. * X; = runtime of i-th run (for 1 <i < n)
Suppose variance of « Estimate runtime to be
runtime is 0% = 4 sec?. average of n trials, X

How many trials do we need s.t. estimated time = t + 0.5 with 95% certainty?

Solve

0.95

0.975 = ®(\/n/4)
Jyn/4 = ®71(0.975) =~ 1.96 n=~ 62
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The Central Limit Theorem

Let X, X5, ..., X, i.i.d., where E[X;] = u,Var(X;) = 2. Asn - oo:

The Central Limit Theorem allows you

n
z X; ~N (nu,no?) to calculate probabilities on sums and
i=1 means of i.i.d. random variables.

What if we don’t know u or g%?

n
1 g’
gz: Xi ~N (W, 7)
im1 How do we estimate u and o4 from data?
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Today's plan

Sampling definitions
=)> + Population mean/variance, sample mean/variance
* Standard error

Bootstrapping
* For a statistic

* For a p-value (next time)
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Motivating example

You want to know the true mean and
variance of happiness in Bhutan.

* But you can’t ask everyone.
* You poll 200 random people.
* Your data looks like this:

Happiness = {72, 85, 79, 91, 68, ..., 71}

* The mean of all these numbers is 83.

Is this the true mean happiness of
Bhutanese people?

Lisa Yan, CS109, 2019
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Sample
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A sample is selected from a population.
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Sample
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A sample is selected from a population.
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A sample, mathematically

Consider n random variables X;, X5, ..., X,,.

The sequence X4, X5, ..., X,, is a sample from distribution F if:
* X; are all independent and identically distributed (i.i.d.)

« X; all have same distribution function F (the underlying distribution),
where E[Xl] = U, Var(Xi) — 0'2 Population Happiness (N = 10000)

0.016 A

0.014 A

0.012 -

0.010 A

PMF

0.008 A

0.006 -

0.004 A

0.002 A

0.000 -
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A sample, mathematically

A sample of sample size 8:
(Xl’ XZ' X3, X4' XS' X6' X7! X8)

A realization of a sample of size 8:

(59,87,94,99,87,78,69,91)

PMF

0.016 A

0.014 A

0.012 -

0.010 A

0.008 A

0.006 -

0.004 A

0.002 A

0.000 -
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Population statistics

v -

The underlying distribution F has
unknown statistics:

‘H ‘ * u, the population mean
» g2, the population variance

A happy
Bhutanese person
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Estimating the population mean

W% 1. Whatis y, the mean happiness of
‘H ‘ Bhutanese people?

What if you only have a sample, (X1, X5, ..., X,;)?

=

_ 1
The best estimate of u is the sample mean: X = - X;

l

Il
—

2
Intuition: By the CLT, X ~ N (y, 0_)
n

L 1. Take multiple samples of size n
2. For each sample, compute sample means
3. On average, we would get the population mean

Lisa Yan, C$109, 2019 Stanford University 21




Quick check

i, the population mean
(X1JX2;X31X4) X51X6JX7)X8)7 d Sample

a?, the population variance

X, the sample mean

X =83

(Xl — 59,X2 — 87,X3 — 94‘,X4 — 99,
X. = 87,X; = 78,X, = 69, X, = 91)

Lisa Yan, CS109, 2019

Random variable(s)
Value (frequentist interpretation)
Event

2
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Quick check

1.

2.

_ A. Random variable(s)
i, the population mean (B) 5. Value (frequentist interpretation)
C. Event

(X1»X2»X3»X4:X5»X6»X7;X8), a sample (A)

a?, the population variance (B)

X, the sample mean (A)
X =83 (C)
5  These are outcomes
— w/ from your collected
(Xl — 59,X2 — 87,X3 — 94‘,X4 — 99, C data.
X =87,X; = 78,X, = 69,Xg =91) “ )

Lisa Yan, C$109, 2019 Stanford University 23



Estimating the population mean

=)

The best estimate’of uis the sample mean: X = % X;
Y i

X is an unbiased estimate of the population mean, u:
def E]|estimate]| = actual

Proof 1: ByCLT, X ~ N (4, %2)

Proof 2: By linearity of expectation (see board)

Lisa Yan, C$109, 2019 Stanford University 24
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Break for jokes/
announcements




Announcements

4 )
Problem Set 4
Due: Wednesday 11/6
Covers: Up to Law of Total Expectation
N /

Late day reminder: No late days permitted past last day of the quarter, 12/7
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Announcements: CS5109 contest

Do something cool and creative
with probability

Genuinely optional extra credit

Due Monday 12/2, 11:59pm
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Estimating the population variance

'"ﬁ 2. What is g2, the variance of happiness of
‘H ‘ Bhutanese people?

If we knew the entire population (x{, x5, ..., Xy ):

population mean

N &
oopulation 5, 1 z ) b .
— — . — opulation size, N
variance © N (i = p) P
=1

But what if you only have a sample, (X4, X5, ..., X,,)?
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Estimating the population variance

—ﬂ 2. What is g2, the variance of happiness of
‘H ‘ Bhutanese people?

What if you only have a sample, (X4, X5, ..., X;,)?

The best estimate of g2 is the sample variance: §2 = .
— 1
S? is an unbiased estimate of the population variance, o*:
E[S?] = o°

(X; — X)?

n

1

, If you only have a sample, you can only compute
"~ estimates of population statistics.

-
You can only believe what you see.

Lisa Yan, C$109, 2019 Stanford University 29



Intuition about the sample variance, S*

Actual, o2

population mean

A v
population 2 l ( B )2
variance ¢ T i H
=1

<

O

M M M
O—O0 O—O0O O
O 150
Happiness
U

“=» (alculating population statistics exactly

—  requires us knowing all N datapoints.
Lisa Yan, C$109, 2019 Stanford University 30
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Intuition about the sample variance, S*

Estimate, S*
sample mean

n
sample _, 1 )
variance ° n — 1Z(Xi - X)
=1

O—O00 O—O0 O—0O
0 150
u

Happiness

Population size, N

Lisa Yan, C$109, 2019 Stanford University 31



Intuition about the sample variance, S*

Estimate, S*
sample mean

n
sample _, 1 )
variance ° n — 1Z(Xi - X)
=1

O—0O-0 O—0O0 O—=0O
0 150
X U

Happiness

Population size, N
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Intuition about the sample variance, S*

Estimate, S*
X, — X
\ J
|
< l I
M M
O—O0 O—O0O O—=0O
O | 150
Happiness .
X U

Population size, N
{—4 Sample variance is an estimate using an

¥ estimate, so it needs additional scaling.
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Proof that SZ is unbiased (ust for reference) E[S?] = o2

(n—1)E[S?] =E

_ g2 i(x )2
T ln=-1 !

Z«x W+ (- B))

2.0

= (n—-1E[S?] =

Z(X X)?

(introduce u — u)

#)2+Z(M—X)2 +ZZ(X1'_M)(.U_X)} 2(p—X) ;(Xi_ﬂ)

'I 2(u—X) (ZXi—nu)
i=1

=E Z(X —w?+n(u—X)?-2n(u—X)>? o
= J 204 — (X — )
Rk —2n(u — X)?
=F z —w)?—n(u— X)Z]Z Z E[(X; — w]* —nE[(X — pn)?]
=no? —nVar(X) = no? — nl = no? —no? = = (n—1)c? Therefore E[S?] = ¢?

n
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Today's plan

E> * Standard error

Bootstrapping
* For a statistic

* For a p-value (next time)
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Estimating population statistics

(72,85,79,79,91,68, ...,71)

1. Collect a sample, X1, X5, ..., X,,.
n =200

2. Compute sample mean, X =% X X =83

3. Compute sample deviation, X; — X. (-11,2,—4,—4,8, —15,...,—12)

/. Compute sample variance, S? = ﬁ n(X; — X)2. S2 =793

How “close” are our estimates X and S2?
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How “close” is our estimate X to u?

We know that the sample mean X
IS an unbiased estimate of u:

(. Just knowing the average value of X does not inform
what the spread (e.g., standard deviation) of X is.

What is Var(X)?
g, population variance
S?, sample variance
o2 /n, population variance divided by sample size
Don’t know %)

@/
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How “close” is our estimate X to u?

We know that the sample mean X
IS an unbiased estimate of u:

(. Just knowing the average value of X does not inform
what the spread (e.g., standard deviation) of X is.

What is Var(X)?
g, population variance
S?, sample variance
o2 /n, population variance divided by sample size
Don’t know %)

@/
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Sample mean

Population Happiness (N = 10000) Distribution of sample means
0.016 - ‘Tt — pop mean, u
0.200 - H
0.014 - i === our mean, 83.03
0.175 A =
0.012 A )
0.150 A I
0.010 A |
N 0.125 - :
= 0.008 - < -
- = 0.100 - i
0.006 - I
0.075 A - :
0.004 - I
0.050 A :
0.002 A -
0.025 1 |_ ! h
0.000 - -
0 20 40 60 80 100 120 140 0.000 ' ' ' ' '
i 70 75 80 85 90
Happiness
Sample mean of happiness (n =200)
« Var(X) is a measure of how 0.2

“close” X is to p. X ~ N(ﬂ _
)
n

- How do we estimate Var(X)?
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How “close” is our estimate X to u?

2

vl — =y _ 9 Wewantto
ElX] = u var(X) = n | estimate this

def The standard error of the mean is an unbiased ,
estimate of the standard deviation of X. SE S

Intuition:
S2 is an unbiased estimate of g2
S?/n is an unbiased estimate of 6% /n = Var(X)

\J/S?/n is an unbiased estimate of \/Var()?)
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Standard error

this is our best

1. Mean happiness:

. error bars
estimate of u

Claim: The average happiness of Bhutan is 83, 4 o rI-SE
. (D)
with a standard error of 1.99. 3
g
G2 this is how close O
Closed g =\/; we are %0
form: g

0
Bhutan

Lisa Yan, C$109, 2019 Stanford University 41




Standard error

error bars
o SE
3 83| =+
(-
o
o
©
I
(D)
o0
©
3
<C

0

Bhutan

this is our best

Variance of happiness: estimate of o2

Claim: The variance of happiness of Bhutan is 793.
OOO

But how close Up next: Compute

Statistics with code!

Lisa Yan, C$109, 2019 Stanford University 42

Closed Not covered
form: in CS109



Today's plan

) Bootstrapping
* For a statistic

* For a p-value (next time)

Lisa Yan, CS109, 2019 Stanford University 43




Bootstrap

The Bootstrap:
Probability for Computer Scientists

Allows you to do the following:
Calculate distributions over statistics
Calculate p values
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Bootstrap

PMF

0.016 A1

0.014 -

0.012 4

0.010 A

0.008 -

0.006 -

0.004 -

0.002 1

0.000 -

Population Happiness (N = 10000)

Happiness

Hypothetical questions:
* What is the probability that a Bhutanese
peep is just straight up loving life?

* What is the probability that the mean of
a subsample of 200 people is within the
range 81 to 857

* What is the variance of the sample
variance of subsamples of 200 people?
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Key insight

You can estimate the PMF of the underlying distribution, using your sample.*

*This is just a histogram of your data!

gé 20 Sample Happiness (n = 200) Sample Happiness (n = 200)
79 16} =] 08 =[]
79 p12 S L 06 IHH Y
- |
91 S 8- m 5_04. [ ] |
68
41 N 02 - —
0L . ' . . ' ' (m 0 | | | | | | | Im
71 0 20 40 H60 _80 100 120 140 - 0 20 40 60 80 100 120 140
appiness Happiness
.i.d. samples Sample distribution
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