19: Sampling

Lisa Yan November 4, 2019

Our current trajectory for this course

Our current trajectory for this course

Today's plan

Finishing CLT

Sampling definitions

Unbiased estimates of population statistics

Bootstrapping

- For a statistic
- For a p-value

Review

Let
$$X_1, X_2, \dots, X_n$$
 i.i.d., where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

Sum of i.i.d. RVs

$$\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

Average of i.i.d. RVs (sample mean)

If X_i is discrete: Use the continuity correction on Y!

Demo: <u>http://onlinestatbook.com/stat_sim/sampling_dist/</u>

Dice game

As $n \to \infty$: $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.

• Let $X = X_1 + X_2 + \dots + X_{10}$, the total value of all 10 rolls.

2. Solve.

• You win if $X \le 25$ or $X \ge 45$.

And now the truth (according to the CLT)...

1. Define RVs and state goal.

 $E[X_i] = 3.5,$ Var $(X_i) = 35/12$ $X \approx Y \sim \mathcal{N}(10(3.5), 10(35/12))$

Want:

 $P(X \le 25 \text{ or } X \ge 45)$

A. $P(25 \le Y \le 45)$ B. $P(Y \le 25.5) + P(Y \ge 44.5)$ C. $1 - P(25 \le Y \le 45)$ D. $1 - P(25.5 \le Y \le 44.5)$

Dice game

As $n \to \infty$: $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

You will roll 10 6-sided dice $(X_1, X_2, ..., X_{10})$.

• Let $X = X_1 + X_2 + \dots + X_{10}$, the total value of all 10 rolls.

2. Solve.

• You win if $X \le 25$ or $X \ge 45$.

And now the truth (according to the CLT)...

1. Define RVs and state goal.

 $E[X_i] = 3.5,$ Var $(X_i) = 35/12$ $X \approx Y \sim \mathcal{N}(10(3.5), 10(35/12))$

Want:

$$P(X \le 25 \text{ or } X \ge 45)$$

 $\approx P(Y \le 25.5) + P(Y \ge 44.5)$

 $P(Y \le 25.5) + P(Y \ge 44.5)$ $=\Phi\left(\frac{25.5-35}{\sqrt{10(35/12)}}\right)+\left(1-\Phi\left(\frac{44.5-35}{\sqrt{10(35/12)}}\right)\right)$

 $\approx \Phi(-1.76) + (1 - \Phi(1.76))$ $\approx (1 - 0.9608) + (1 - 0.9608)$ = 0.0784

Dice game

As $n \to \infty$: $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

You will roll 10 6-sided dice($X_1, X_2, ..., X_{10}$).

- Let $X = X_1 + X_2 + \dots + X_{10}$, the total value of all 10 rolls.
- You win if $X \le 25$ or $X \ge 45$.

Clock running time

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

• Suppose variance of runtime is $\sigma^2 = 4 \sec^2$.

Run algorithm repeatedly (i.i.d. trials):

- X_i = runtime of *i*-th run (for $1 \le i \le n$)
- Estimate runtime to be average of n trials, \overline{X}

 $P(-0.5 \le \overline{X} - t \le 0.5) = 0.95$

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

1. Define RVs and
state goal.2. Solve.

 $\overline{X} - t \sim \mathcal{N}\left(0, \frac{\tau}{n}\right)$

(CLT)
$$\overline{X} \sim \mathcal{N}\left(t, \frac{4}{n}\right)$$
 Want: $P(t - 0.5 \le \overline{X} \le t + 0.5) = 0.95$
(linear (4)

transform of a normal)

Clock running time

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

• Suppose variance of runtime is $\sigma^2 = 4 \sec^2$.

 $P(-0.5 \le \overline{X} - t \le 0.5)$

Run algorithm repeatedly (i.i.d. trials):

- X_i = runtime of *i*-th run (for $1 \le i \le n$)
- Estimate runtime to be average of n trials, \overline{X}

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.

 $\overline{X} - t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$

0.95 =

2. Solve.

$$0.95 = F_{\bar{X}-t}(0.5) - F_{\bar{X}-t}(-0.5)$$
$$= \Phi\left(\frac{0.5-0}{\sqrt{4/n}}\right) - \Phi\left(\frac{-0.5-0}{\sqrt{4/n}}\right) = 2\Phi\left(\frac{\sqrt{n}}{4}\right) - 1$$

Clock running time

As
$$n \to \infty$$
: $\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

• Suppose variance of runtime is $\sigma^2 = 4 \sec^2$.

Run algorithm repeatedly (i.i.d. trials):

- X_i = runtime of *i*-th run (for $1 \le i \le n$)
- Estimate runtime to be average of n trials, \overline{X}

How many trials do we need s.t. estimated time = $t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.

 $\overline{X} - t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$

 $0.95 = P(0.5 \le \overline{X} - t \le 0.5)$

2. Solve.

()

$$.95 = F_{\bar{X}-t}(0.5) - F_{\bar{X}-t}(-0.5)$$
$$= \Phi\left(\frac{0.5-0}{\sqrt{4/n}}\right) - \Phi\left(\frac{-0.5-0}{\sqrt{4/n}}\right) = 2\Phi\left(\frac{\sqrt{n}}{4}\right) - 1$$

 $0.975 = \Phi(\sqrt{n/4})$ $\sqrt{n/4} = \Phi^{-1}(0.975) \approx 1.96 \implies n \approx 62$

Let X_1, X_2, \dots, X_n i.i.d., where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_{i} \sim \mathcal{N}(n\mu, n\sigma^{2})$$

The Central Limit Theorem allows you to calculate **probabilities** on sums and means of i.i.d. random variables.

$$\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

What if we don't know μ or σ^2 ?

How do we estimate μ and σ^2 from data?

Finishing CLT

Sampling definitions

- Population mean/variance, sample mean/variance
- Standard error

Bootstrapping

- For a statistic
- For a p-value (next time)

Motivating example

You want to know the true mean and variance of happiness in Bhutan.

- But you can't ask everyone.
- You poll 200 random people.
- Your data looks like this:

Happiness = {72, 85, 79, 91, 68, ..., 71}

 The mean of all these numbers is 83.
 Is this the true mean happiness of Bhutanese people?

Population

This is a **population**.

Sample

A sample is selected from a population.

Sample

A **sample** is selected from a population.

A sample, mathematically

Consider *n* random variables $X_1, X_2, ..., X_n$.

The sequence $X_1, X_2, ..., X_n$ is a sample from distribution *F* if:

- X_i are all independent and identically distributed (i.i.d.)
- X_i all have same distribution function F (the underlying distribution), where $E[X_i] = \mu$, $Var(X_i) = \sigma^2$ Population Happiness (N = 10000)

A sample, mathematically

A sample of sample size 8: $(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$

A realization of a sample of size 8: (59, 87, 94, 99, 87, 78, 69, 91)

Population statistics

The underlying distribution F has <u>unknown</u> statistics:

- μ , the **population mean**
- σ^2 , the population variance

A happy Bhutanese person

Estimating the population mean

1. What is μ , the mean happiness of Bhutanese people?

What if you only have a sample, (X_1, X_2, \dots, X_n) ?

Lisa Yan, CS109, 2019

The best estimate of μ is the sample mean: $\overline{X} = \frac{1}{n} \sum X_i$

Intuition: By the CLT, $\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ 1. Take multiple samples of size *n* 2. For each sample, compute sample means

On average, we would get the population mean Stanford University 21

Quick check

1. μ , the population mean

- 2. $(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$, a sample
- 3. σ^2 , the population variance
- 4. \overline{X} , the sample mean

5. $\bar{X} = 83$

6.
$$(X_1 = 59, X_2 = 87, X_3 = 94, X_4 = 99, X_5 = 87, X_6 = 78, X_7 = 69, X_8 = 91)$$

- A. Random variable(s)
- B. Value (frequentist interpretation)
- C. Event

Quick check

1. μ , the population mean (B)

- 2. $(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$, a sample (A)
- 3. σ^2 , the population variance (B)
- 4. \overline{X} , the sample mean (A)
- 5. $\bar{X} = 83$ (C)

6.
$$(X_1 = 59, X_2 = 87, X_3 = 94, X_4 = 99, X_5 = 87, X_6 = 78, X_7 = 69, X_8 = 91)$$

- A. Random variable(s)
- B. Value (frequentist interpretation)
- C. Event

These are outcomes

from your collected

data.

Estimating the population mean

1. What is μ , the **mean happiness** of Bhutanese people?

What if you only have a sample, $(X_1, X_2, ..., X_n)$?

The best estimate of μ is the **sample mean**:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 \overline{X} is an **unbiased estimate** of the population mean, μ :

- <u>def</u> E[estimate] = actual
- Proof 1: By CLT, $\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Proof 2: By linearity of expectation (see board)

Break for jokes/ announcements

Problem Set 4

Due:Wednesday 11/6Covers:Up to Law of Total Expectation

Late day reminder: No late days permitted past last day of the quarter, 12/7

Announcements: CS109 contest

Do something cool and creative with probability

Genuinely optional extra credit

Due Monday 12/2, 11:59pm

Estimating the population variance

2. What is σ^2 , the variance of happiness of Bhutanese people?

If we knew the entire population $(x_1, x_2, ..., x_N)$:

population mean

population
variance
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Population size, N

But what if you only have a sample, $(X_1, X_2, ..., X_n)$?

Estimating the population variance

2. What is σ^2 , the variance of happiness of Bhutanese people?

What if you only have a sample, $(X_1, X_2, ..., X_n)$?

The best estimate of σ^2 is the sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

 S^2 is an **unbiased estimate** of the population variance, σ^2 : $E[S^2] = \sigma^2$

If you only have a sample, you can only compute <u>estimates</u> of population statistics.

You can only believe what you see.

Actual, σ^2

Proof that S^2 is unbiased (just for reference)

$$\begin{split} E[S^2] &= E\left[\frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2\right] \implies (n-1)E[S^2] = E\left[\sum_{i=1}^n (X_i - \bar{X})^2\right] \\ (n-1)E[S^2] &= E\left[\sum_{i=1}^n ((X_i - \mu) + (\mu - \bar{X}))^2\right] \qquad (introduce \ \mu - \mu) \\ &= E\left[\sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n (\mu - \bar{X})^2 + 2\sum_{i=1}^n (X_i - \mu)(\mu - \bar{X})\right] \qquad 2(\mu - \bar{X})\sum_{i=1}^n (X_i - \mu) \\ &= E\left[\sum_{i=1}^n (X_i - \mu)^2 + n(\mu - \bar{X})^2 - 2n(\mu - \bar{X})^2\right] \qquad 2(\mu - \bar{X})\left(\sum_{i=1}^n X_i - n\mu\right) \\ &= E\left[\sum_{i=1}^n (X_i - \mu)^2 - n(\mu - \bar{X})^2\right] = \sum_{i=1}^n E[(X_i - \mu)]^2 - nE[(\bar{X} - \mu)^2] \qquad -2n(\mu - \bar{X})^2 \\ &= n\sigma^2 - n\operatorname{Var}(\bar{X}) = n\sigma^2 - n\frac{\sigma^2}{n} = n\sigma^2 - n\sigma^2 = (n-1)\sigma^2 \qquad \operatorname{Therefore} E[S^2] = \sigma^2 \end{split}$$

Lisa Yan, CS109, 2019

Stanford University 34

 $E[S^2] = \sigma^2$

Finishing CLT

Sampling definitions

- Population mean/variance, sample mean/variance
- Standard error

Bootstrapping

- For a statistic
- For a p-value (next time)

Estimating population statistics

- **1.** Collect a sample, $X_1, X_2, ..., X_n$. (72, 85, 79, 79, 91, 68, ..., 71) n = 200
- 2. Compute sample mean, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. $\overline{X} = 83$
- 3. Compute sample deviation, $X_i \overline{X}$. (-11, 2, -4, -4, 8, -15, ..., -12)
- 4. Compute sample variance, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$. $S^2 = 793$

How "close" are our estimates \overline{X} and S^2 ?

How "close" is our estimate \overline{X} to μ ?

We know that the sample mean \overline{X} is an unbiased estimate of μ :

 $E[\overline{X}] = \mu$

Just knowing the average value of \overline{X} does not inform what the **spread** (e.g., standard deviation) of \overline{X} is.

What is $Var(\overline{X})$?

- A. σ^2 , population variance
- **B.** S^2 , sample variance
- C. σ^2/n , population variance divided by sample size
- D. Don't know

How "close" is our estimate \overline{X} to μ ?

We know that the sample mean \overline{X} is an unbiased estimate of μ :

 $E[\overline{X}] = \mu$

Just knowing the average value of \overline{X} does not inform what the **spread** (e.g., standard deviation) of \overline{X} is.

What is $Var(\overline{X})$?

- A. σ^2 , population variance
- B. S^2 , sample variance
 - σ^2/n , population variance divided by sample size
- D. Don't know

Sample mean

How "close" is our estimate \overline{X} to μ ?

$$E[\overline{X}] = \mu$$
 $\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n} \operatorname{Var}(\overline{X})$

We want to estimate this

2

<u>def</u> The standard error of the mean is an unbiased estimate of the standard deviation of \overline{X} .

Intuition:

- S^2 is an unbiased estimate of σ^2
- S^2/n is an unbiased estimate of $\sigma^2/n = Var(\overline{X})$
- $\sqrt{S^2/n}$ is an unbiased estimate of $\sqrt{Var(\overline{X})}$

Standard error

Standard error

1. Mean happiness:

Finishing CLT

Sampling definitions

- Population mean/variance, sample mean/variance
- Standard error

Bootstrapping

- For a statistic
- For a p-value (next time)

The Bootstrap:

Probability for Computer Scientists

Allows you to do the following:

- Calculate distributions over statistics
- Calculate p values

Bootstrap

Hypothetical questions:

- What is the probability that a Bhutanese peep is just straight up loving life?
- What is the probability that the mean of a subsample of 200 people is within the range 81 to 85?
- What is the variance of the sample variance of subsamples of 200 people?

Key insight

You can estimate the PMF of the underlying distribution, using your sample.*

*This is just a histogram of your data!

