20: Sampling + Inference

Lisa Yan November 6, 2019

Review

Motivating example

You want to know the true mean and variance of happiness in Bhutan.

- But you can't ask everyone.
- You poll 200 random people, a sample.

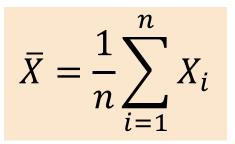
The underlying distribution F has <u>unknown</u> statistics:

- μ , the **population mean**
- σ^2 , the population variance

A happy Bhutanese person

Review

Sample mean



estimates μ

Sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \quad \text{estimates} \\ \sigma^{2}$$

(both random variables that depend on your sample)

Standard error of the mean

$$SE = \sqrt{\frac{S^2}{n}}$$

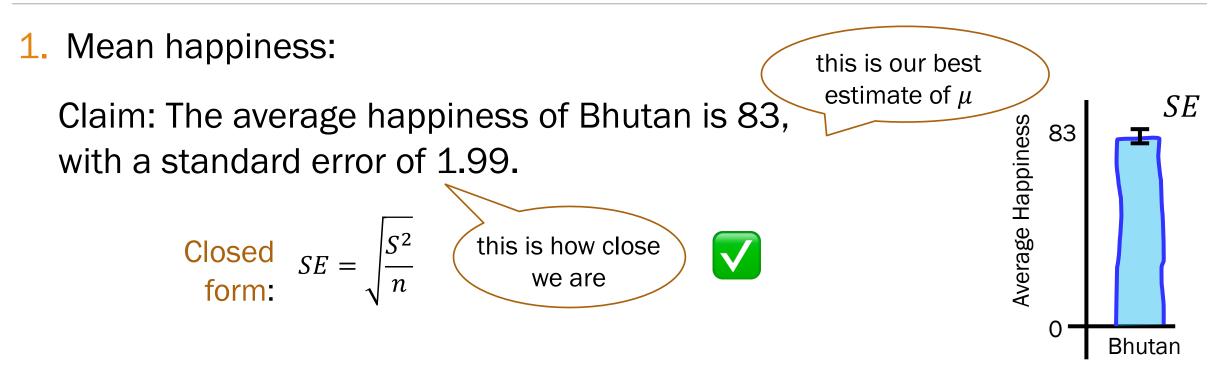
Estimates variance of sample mean, $Var(\overline{X}) = \frac{\sigma^2}{m}$

Standard error of the variance

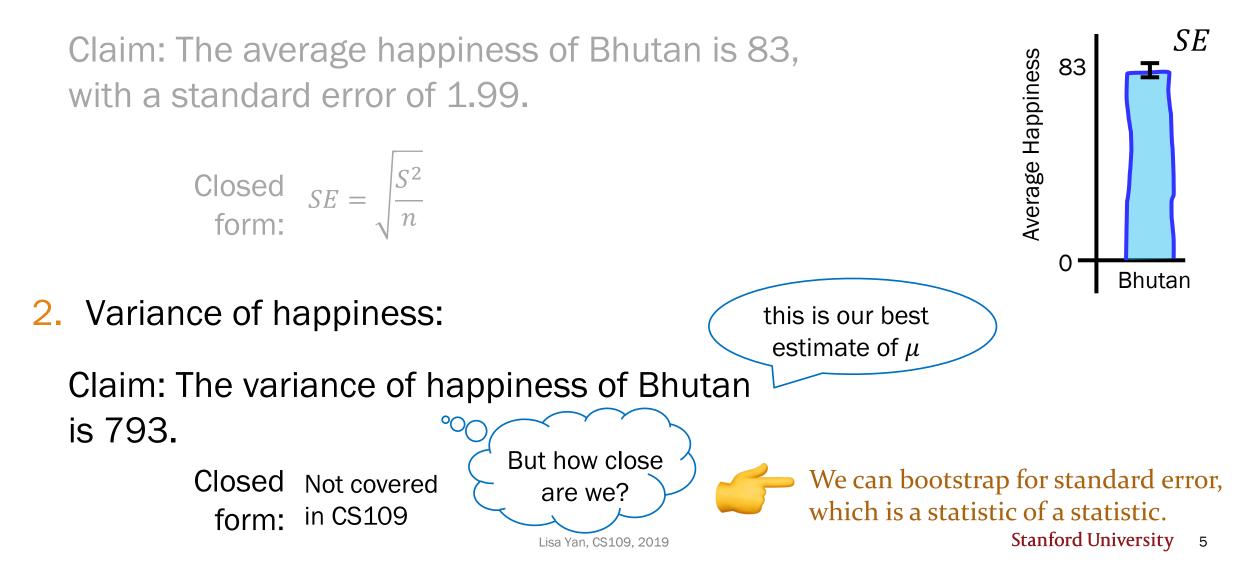
can estimate via bootstrapping

Standard error

Review



1. Mean happiness:



Review

The Bootstrap:

Probability for Computer Scientists

Today's plan

Bootstrapping

- For a statistic
- For a p-value

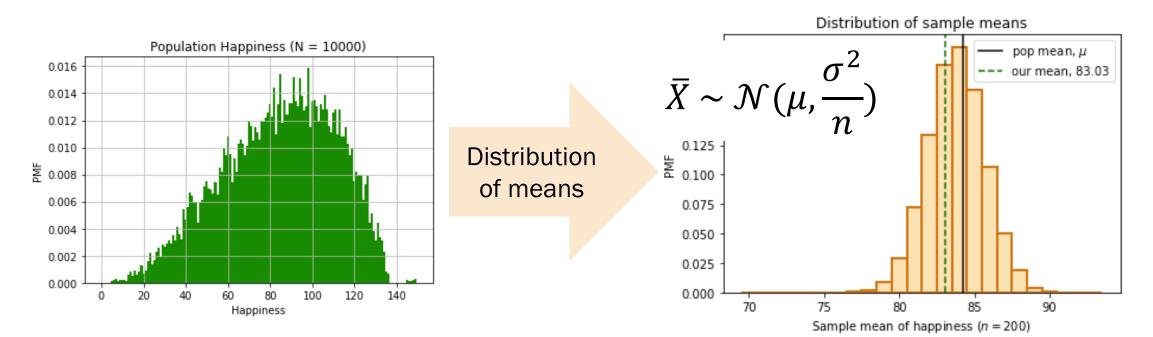
Definition: Bayesian Networks

Inference:

- 1. Math
- 2. Rejection sampling ("joint" sampling)
- 3. Optional: Gibbs sampling (MCMC algorithm)

Bootstrap insight

Review



If we had the underlying distribution...

...we could generate a distribution over any statistic and report anything (for example, report $Var(\overline{X}) = \sigma^2/n$).

If we don't have the underlying distribution, what's our best estimate of the distribution?

Lisa Yan, CS109, 2019

Bootstrap insight

You can estimate the PMF of the underlying distribution, using your sample.

Sample Happiness (n = 200)Population Happiness (N = 10000) 0.016 .08 0.014 0.012 .06 0.010 PMF ₩ 0.008 .04 0.006 0.004 .02 0.002 0.000 .0 140 20 40 60 80 100 120 20 40 60 80 100 120 140 0 Happiness Happiness $F \approx F$ The underlying the sample distribution distribution (aka the histogram of your data)

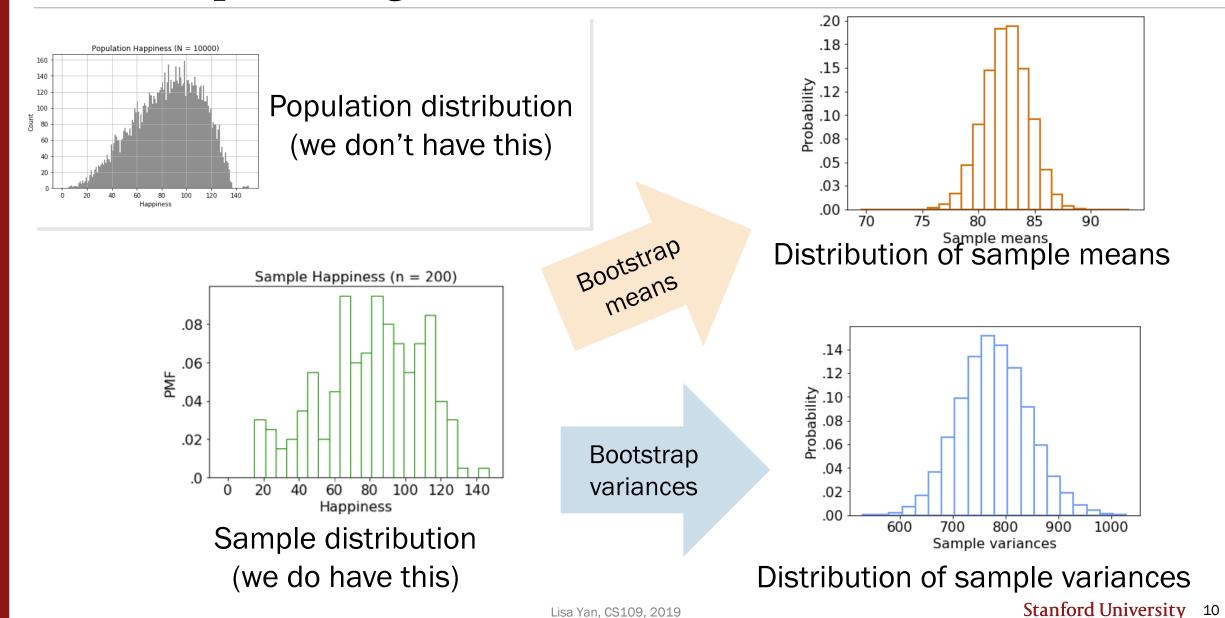
*This is just a histogram of your data!

9

Lisa Yan, CS109, 2019

Review

Bootstrap is an algorithm



Bootstrap Algorithm (sample):

- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **statistic** on the resample
- 3. You now have a distribution of your statistic

What is the distribution of your statistic?

Bootstrap Algorithm (sample):

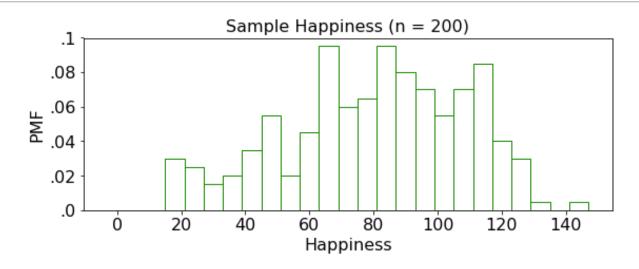
- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the mean on the resample
- 3. You now have a distribution of your mean

What is the distribution of your mean?



1. Estimate the **PMF** using the sample

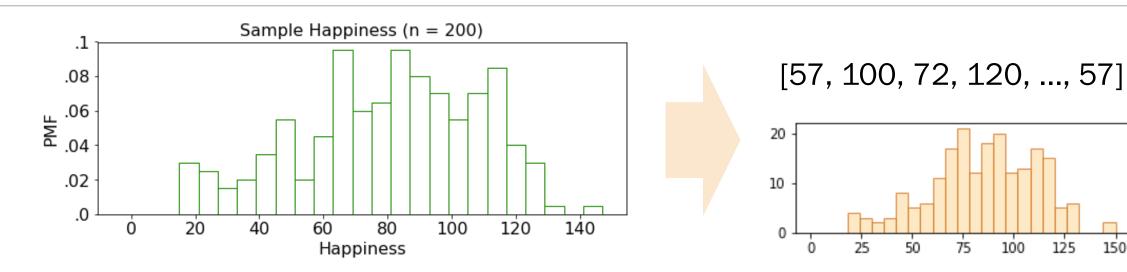
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the mean on the resample
- 3. You now have a distribution of your mean



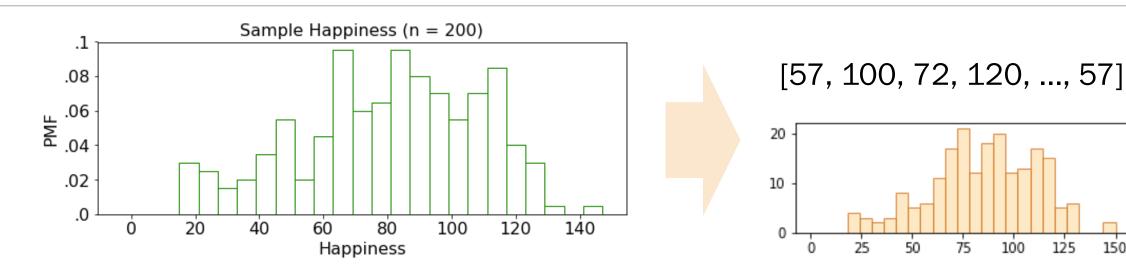
1. Estimate the PMF using the sample

- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the mean on the resample

3. You now have a distribution of your mean

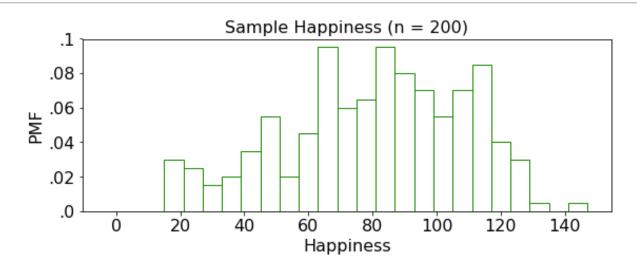


- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - >a. Resample sample.size() from PMF
 - b. Recalculate the mean on the resample
- 3. You now have a distribution of your mean



- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the mean on the resample
- 3. You now have a distribution of your mean

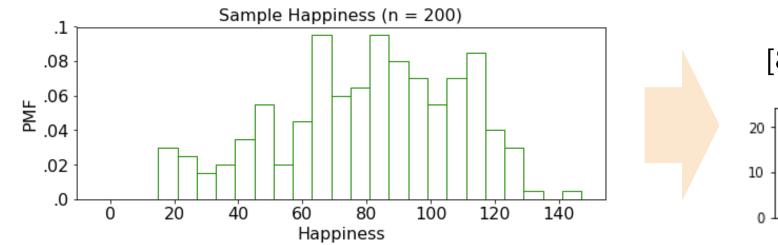
means = [84.7]

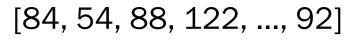


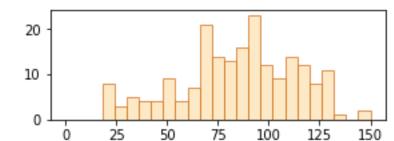
1. Estimate the PMF using the sample

- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the mean on the resample
- 3. You now have a distribution of your mean

```
means = [84.7]
```

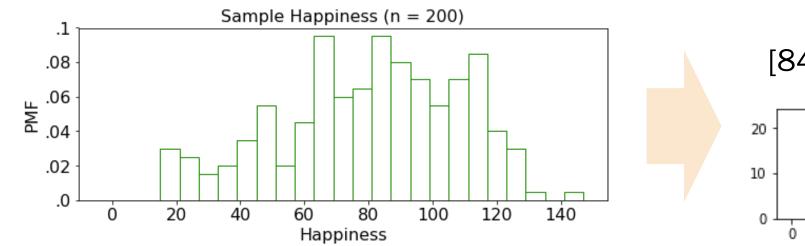


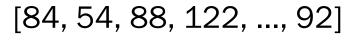


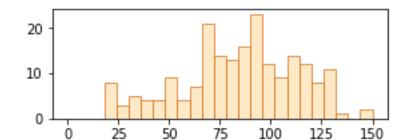


- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - >a. Resample sample.size() from PMF
 - b. Recalculate the mean on the resample
- 3. You now have a distribution of your mean

means = [84.7]







- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the mean on the resample
- 3. You now have a distribution of your mean

```
means = [84.7, 83.9]
```

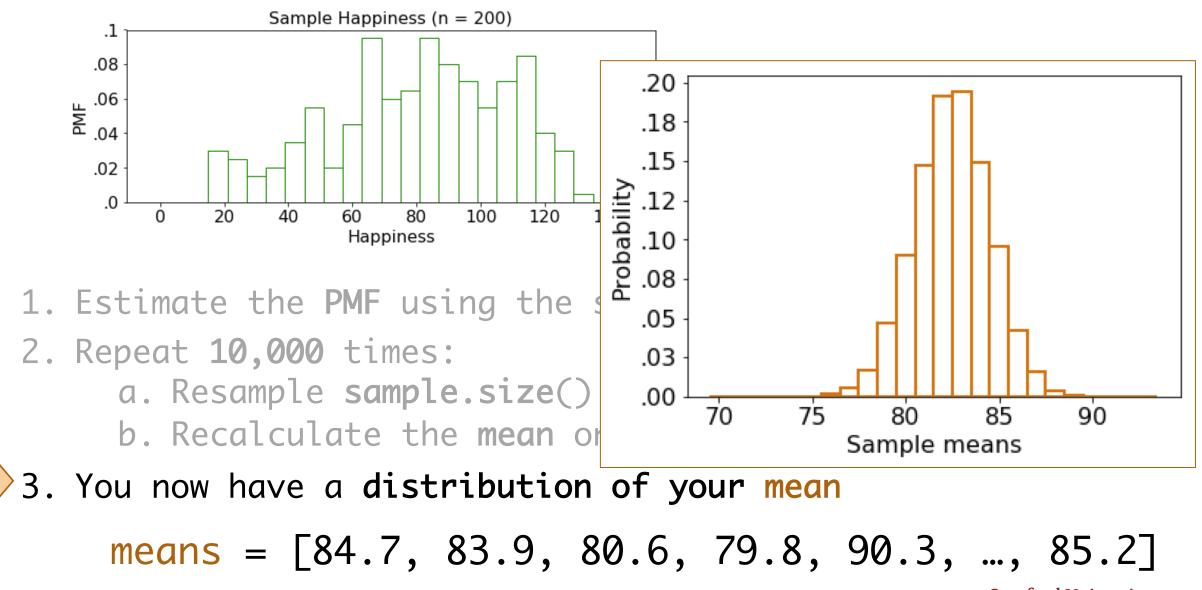


1. Estimate the PMF using the sample

- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the mean on the resample

3. You now have a distribution of your mean

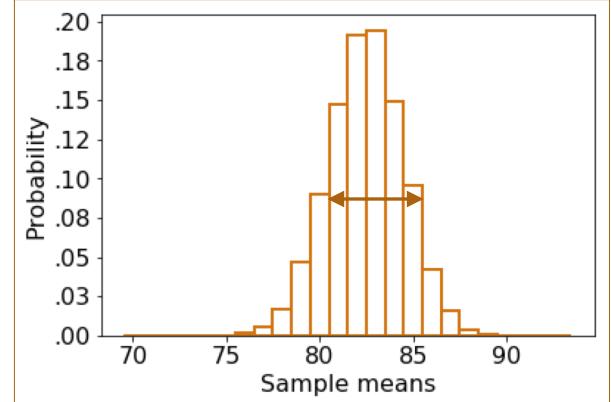
means = [84.7, 83.9]

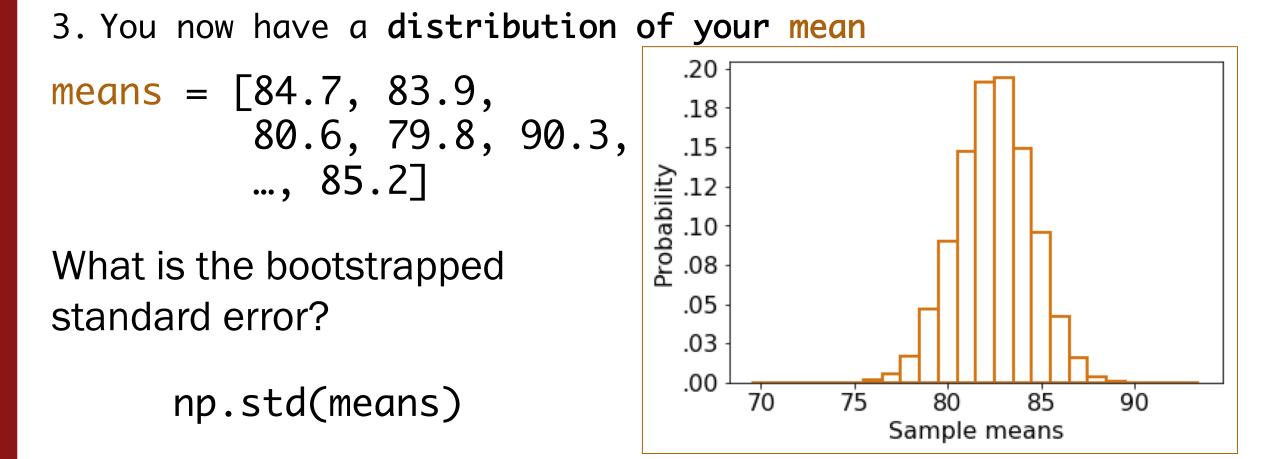


Lisa Yan, CS109, 2019

3. You now have a distribution of your mean

What is the probability that the mean of a subsample of 200 people is within the range 81 to 85?

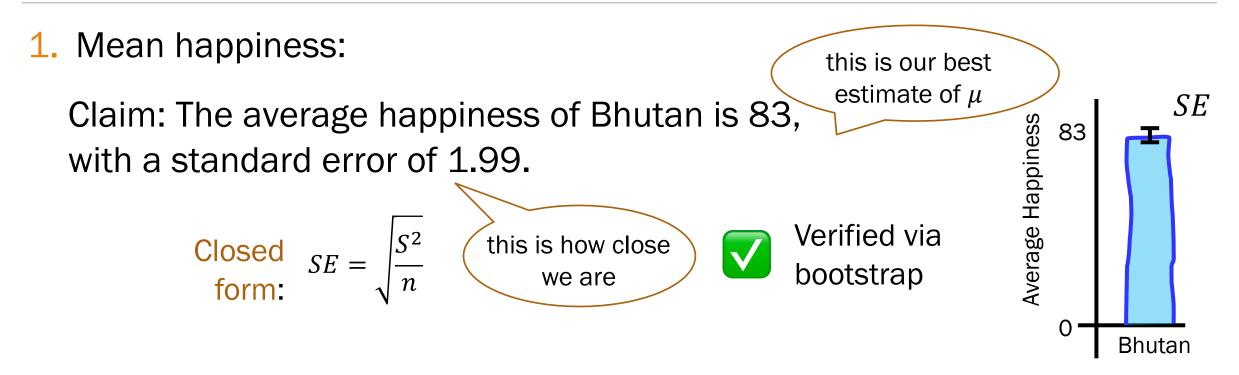




Bootstrapped standard error: 1.99 Standard error via formula: $SE = \sqrt{S^2/n} = 1.99$

Lisa Yan, CS109, 2019

Standard error



Standard error

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed
$$SE = \sqrt{\frac{S^2}{n}}$$

2. Variance of happiness:

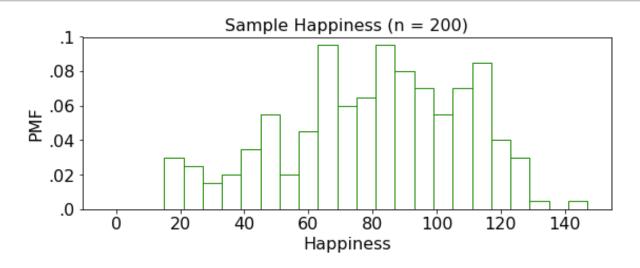
this is our best estimate of σ^2

Claim: The variance of happiness of Bhutan is 793.

Bootstrap Algorithm (sample):

- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - **b.** Recalculate the variance on the resample
- 3. You now have a distribution of your variance

What is the distribution of your variance?

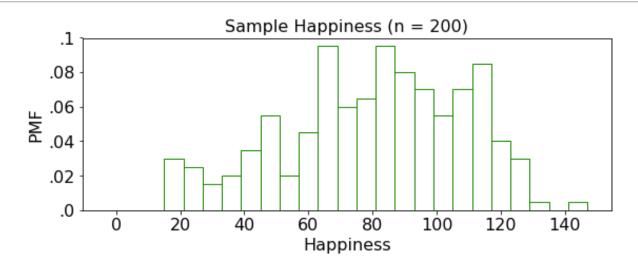


1. Estimate the **PMF** using the sample

2. Repeat **10,000** times:

a. Resample sample.size() from PMF

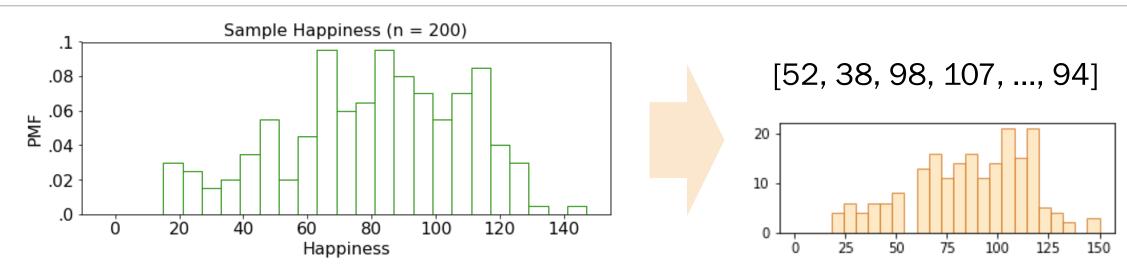
- b. Recalculate the variance on the resample
- 3. You now have a distribution of your variance



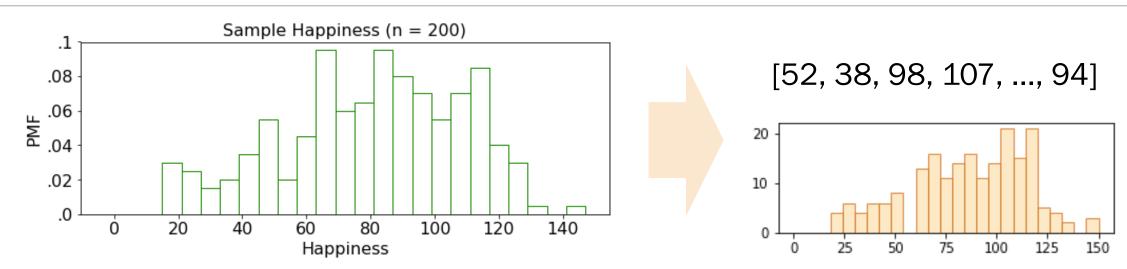
1. Estimate the PMF using the sample

- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the variance on the resample

3. You now have a distribution of your variance

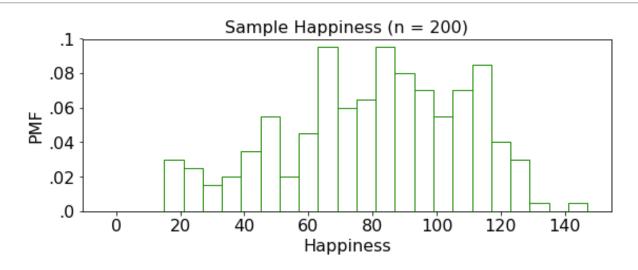


- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - > a. Resample sample.size() from PMF
 - b. Recalculate the variance on the resample
- 3. You now have a distribution of your variance



- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the variance on the resample
- 3. You now have a distribution of your variance

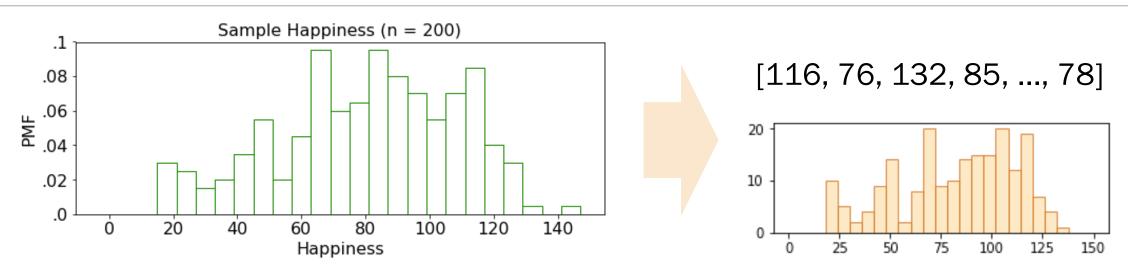
```
variances = [827.4]
```



1. Estimate the PMF using the sample

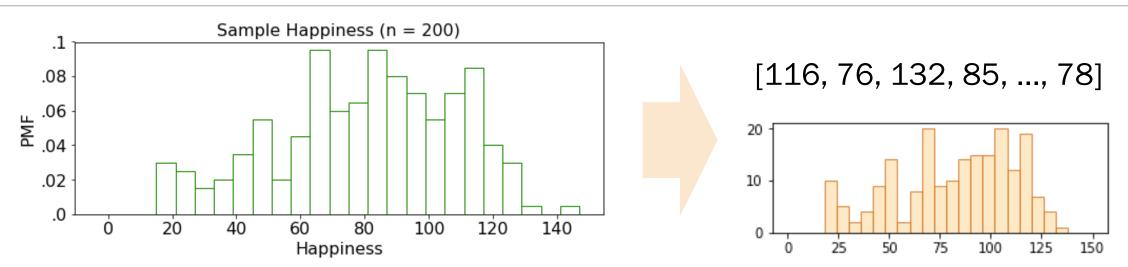
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the variance on the resample
- 3. You now have a distribution of your variance

```
variances = [827.4]
```



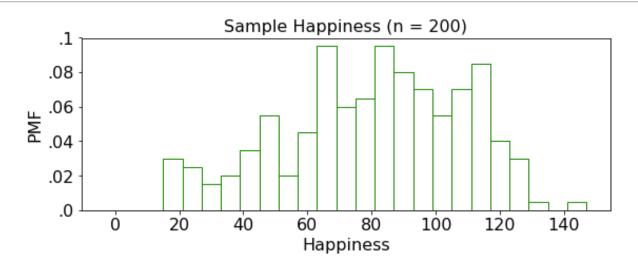
- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - >a. Resample sample.size() from PMF
 - b. Recalculate the variance on the resample
- 3. You now have a distribution of your variance

```
variances = [827.4]
```



- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the variance on the resample
- 3. You now have a distribution of your variance

```
variances = [827.4, 846.1]
```



1. Estimate the PMF using the sample

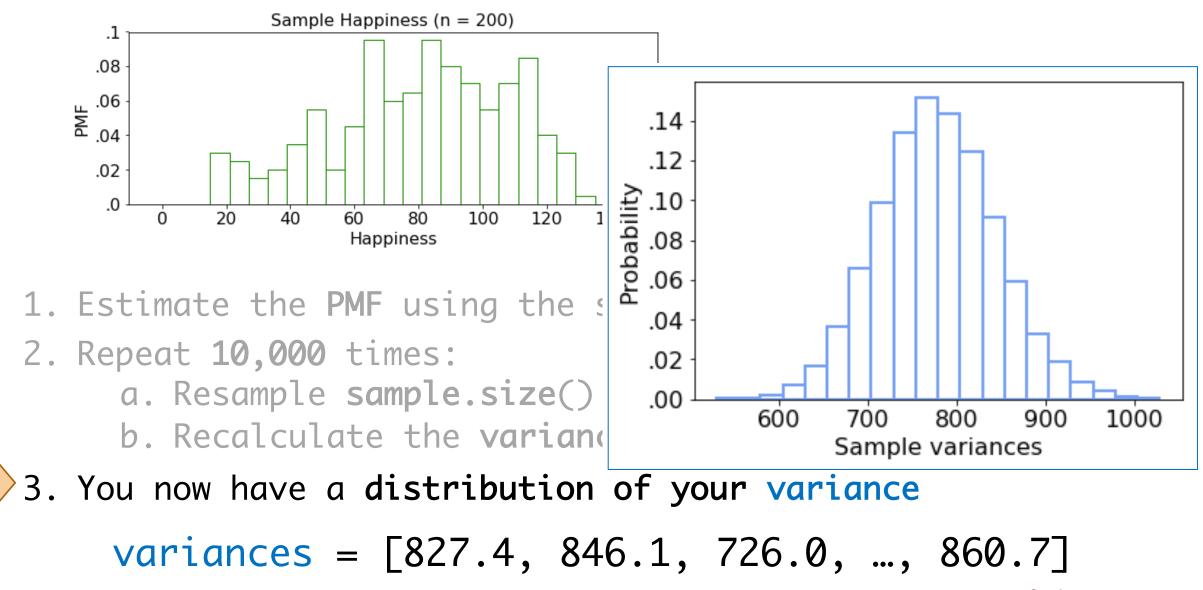
2. Repeat **10,000** times:

a. Resample sample.size() from PMF

b. Recalculate the variance on the resample

3. You now have a distribution of your variance

variances = [827.4, 846.1]

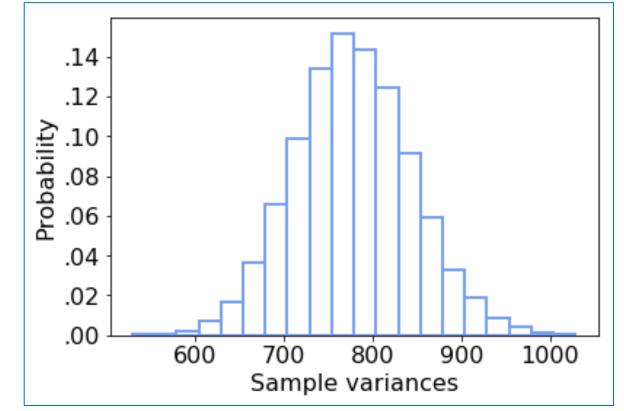


Lisa Yan, CS109, 2019

3. You now have a distribution of your variance

What is the bootstrapped standard error?

np.std(variances)

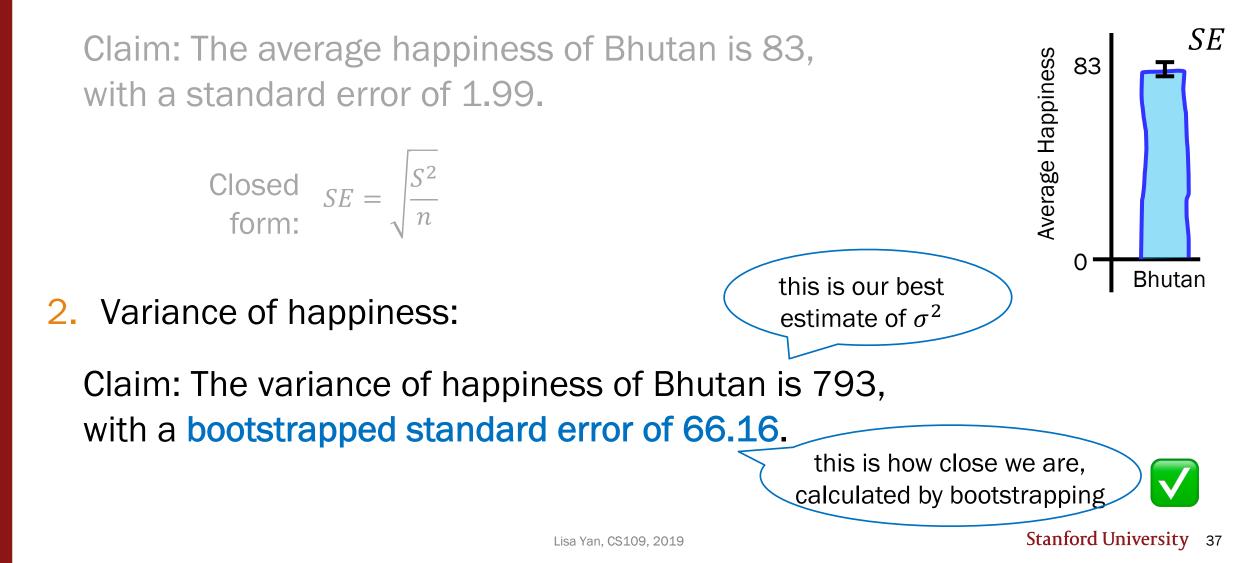


Bootstrapped standard error: 66.16

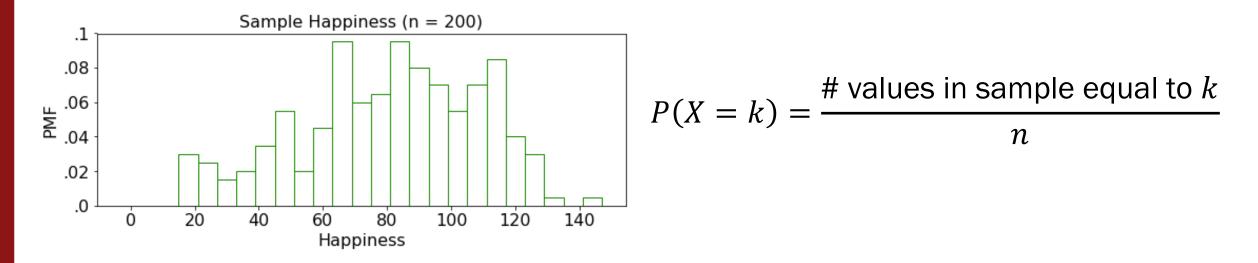
Lisa Yan, CS109, 2019

Standard error

1. Mean happiness:



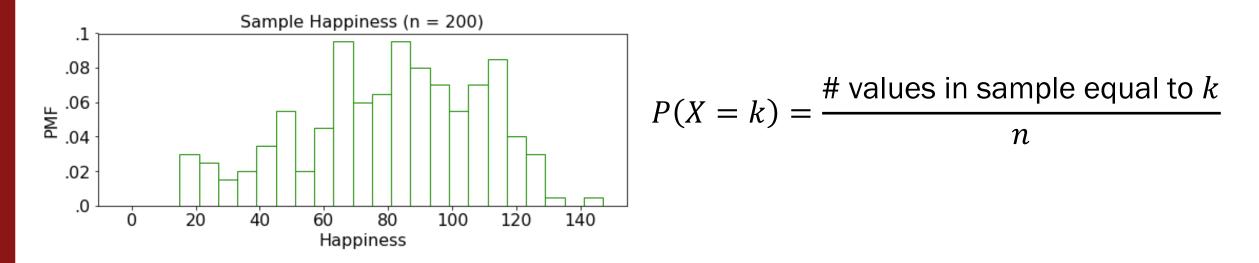
- 1. Estimate the **PMF** using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the **statistic** on the resample
- 3. You now have a distribution of your statistic



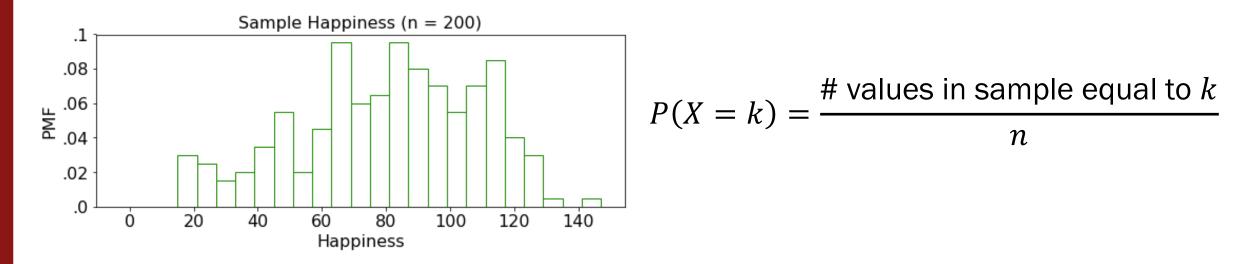
?

1. Estimate the PMF using the sample

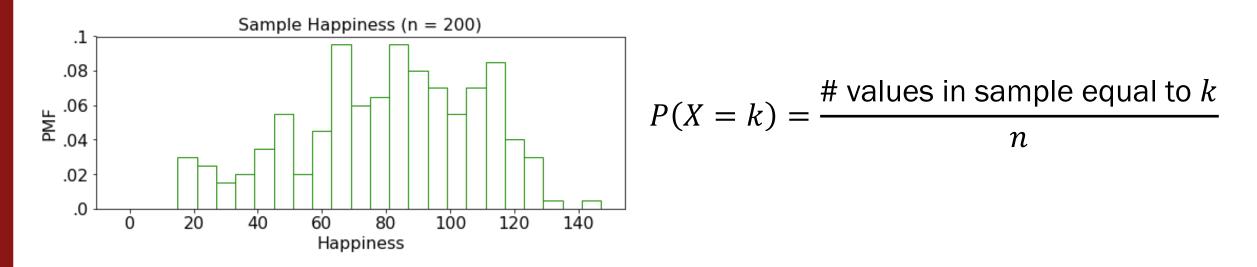
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF
 - b. Recalculate the statistic on the resample
- 3. You now have a distribution of your statistic



2



- 1. Estimate the PMF using the sample
- 2. Repeat **10,000** times:
 - a. Resample sample.size() from PMF,
 with replacement
 - b. Recalculate the **statistic** on the resample
- 3. You now have a distribution of your statistic

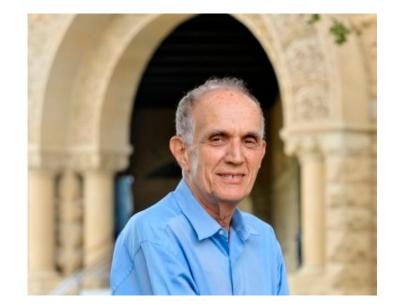


Questions?

To the code!

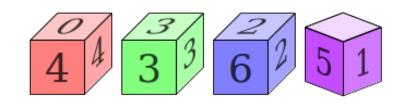
Bootstrap provides a way to calculate probabilities of statistics using code.

- Invented bootstrapping in 1979
- Still a professor at Stanford
- Won a National Science Medal



Efron's dice: 4 dice A, B, C, D such that

 $P(A > B) = P(B > C) = P(C > D) = P(D > A) = \frac{2}{3}$



Bootstrap provides a way to calculate probabilities of statistics using code. Bootstrapping works for any statistic*

*as long as your sample is i.i.d. and the underlying distribution does not have a long tail

Today's plan

Bootstrapping

- For a statistic
- For a p-value

Definition: Bayesian Networks

Inference:

- 1. Math
- 2. Rejection sampling ("joint" sampling)
- 3. Optional: Gibbs sampling (MCMC algorithm)

Null hypothesis test

Population 1	Population 2		
4.44	4.44		
3.36	3.36		
5.87	5.87		
2.31	2.31		
•••			
3.70	3.70		
$\mu_1 = 3.1$	$\mu_2 = 2.4$		

Claim: Population 1 and Population 2 have a 0.7 difference of means.

Null hypothesis test

Nepal Happiness	Bhutan Happiness			
4.44	4.44			
3.36	3.36			
5.87	5.87			
2.31	2.31			
	••••			
3.70	3.70			
$\mu_1 = 3.1$	$\mu_2 = 2.4$			

Claim: The difference in mean happiness between Nepal and Bhutan is 0.7 happiness points.

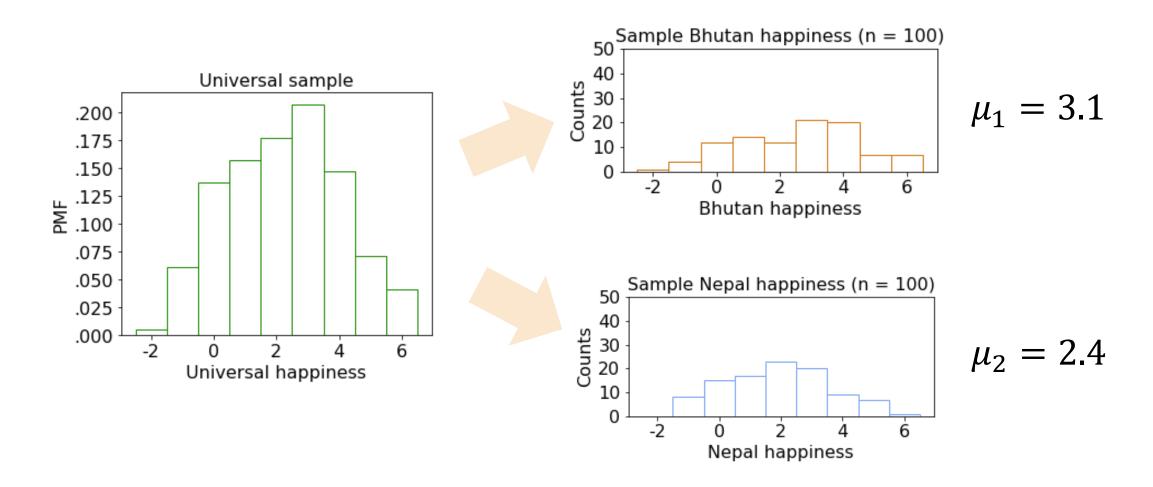
<u>def</u> null hypothesis – Even if there is no pattern (i.e., the two samples are from identical distributions), your claim might have arisen by chance.

<u>def</u> **p-value** – What is the probability that, under the null hypothesis, the observed difference occurs?

Claim: The difference in mean happiness between Nepal and Bhutan is 0.7 happiness points.

Universal sample

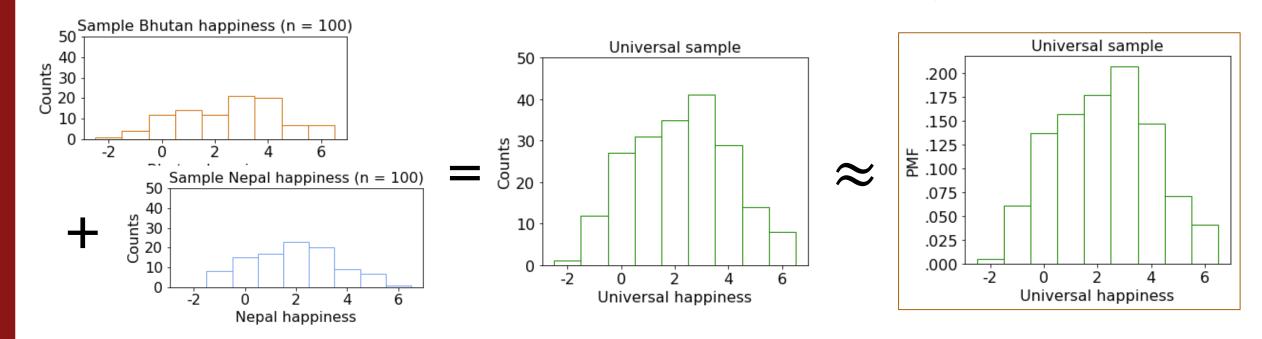
(this is what the null hypothesis assumes)



Want p-value: probability $|\mu_1 - \mu_2| = |3.1 - 2.4|$ happens under null hypothesis

1. Create a universal sample using your two samples

Recreate the null hypothesis



1. Create a universal sample using your two samples

- 2. Repeat **10,000** times:
 - a. Resample **both samples**
 - b. Recalculate the mean difference between the resamples

3. p-value = # (mean diffs >= observed diff)
n

Probability that observed difference arose by chance

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = Imean of bhutan_sample - mean of nepal_sample
```

```
uni_sample = combine bhutan_sample and nepal_sample
count = 0
```

```
repeat 10,000 times:
```

```
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = ImuNepal - muBhutanI
if diff >= observed_diff:
    count += 1
```

1. Create a universal
 sample using
 your two samples

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = Imean of bhutan_sample - mean of nepal_sampleI
    uni_sample = combine bhutan_sample and nepal_sample
    count = 0
```

```
repeat 10,000 times:
    bhutan_resample = draw N resamples from the uni_sample
    nepal_resample = draw M resamples from the uni_sample
    muBhutan = sample mean of the bhutan_resample
    muNepal = sample mean of the nepal_resample
    diff = ImuNepal - muBhutanI
    if diff >= observed_diff:
        count += 1
```

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = Imean of bhutan_sample - mean of nepal_sample
```

uni_sample = combine bhutan_sample and nepal_sample
count = 0

repeat 10,000 times:

bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = ImuNepal - muBhutanI
if diff >= observed_diff:
 count += 1

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = Imean of bhutan_sample - mean of nepal_sampleI
```

```
uni_sample = combine bhutan_sample and nepal_sample
count = 0
```

```
repeat 10,000 times:
    bhutan_resample = draw N resamples from the uni_sample
    nepal_resample = draw M resamples from the uni_sample
    muBhutan = sample mean of the bhutan_resample
    muNepal = sample mean of the nepal_resample
    diff = ImuNepal - muBhutanI
    if diff >= observed_diff:
        count += 1
```

```
3. p-value =
```

(mean diffs > observed diff)

```
def pvalue_boot(bhutan_sample, nepal_sample, ..., n
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = Imean of bhutan_sample - mean of nepal_sample
```

```
uni_sample = combine bhutan_sample and nepal_sample
count = 0
```

```
repeat 10,000 times:
```

bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = ImuNepal - muBhutanl
if diff >= observed_diff:
 count += 1

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = Imean of bhutan_sample - mean of nepal_sample
```

uni_sample = combine bhutan_sample and nepal_sample
count = 0

```
with replacement!
```

repeat 10,000 times:

```
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = ImuNepal - muBhutanI
if diff >= observed_diff:
    count += 1
```

Bootstrap

Let's try it!

Null hypothesis test

Nepal Happiness	Bhutan Happiness			
4.44	4.44			
3.36	3.36			
5.87	5.87			
2.31	2.31			
3.70	3.70			
$\mu_1 = 3.1$	$\mu_2 = 2.4$			

Claim: The happiness of Nepal and Bhutan are from different distributions with a 0.7 difference of means (p < 0.01).

Questions?

Break for jokes/ announcements

Weekly concept checks

Due:every Tuesday, 1pmSelected answers:now on website!

later today
Friday 11/15
Up to Lecture Notes #20

Late day reminder: No late days permitted past last day of the quarter, 12/7

Lisa Yan, CS109, 2019

Bootstrapping – Use code to compute statistics when you only have data, not the underlying distribution.

What if you have the underlying distribution of **joint random variables** (via an expert), but finding closed forms of joint probabilities is intractable?

Today's plan

Bootstrapping

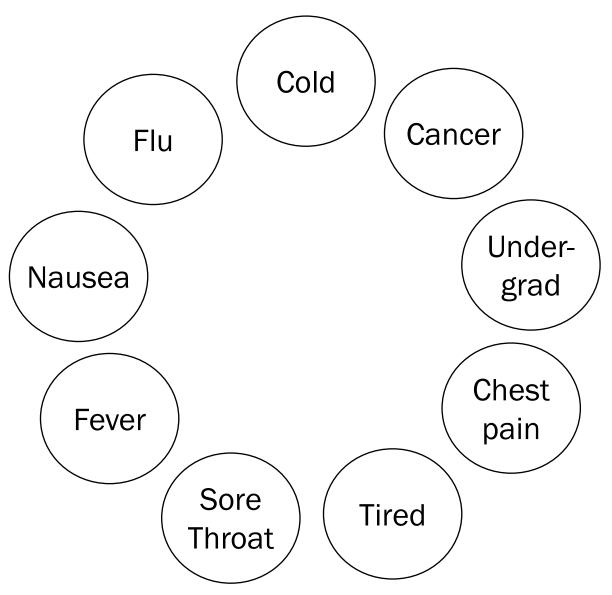
- For a statistic
- For a p-value

Definition: Bayesian Networks

Inference:

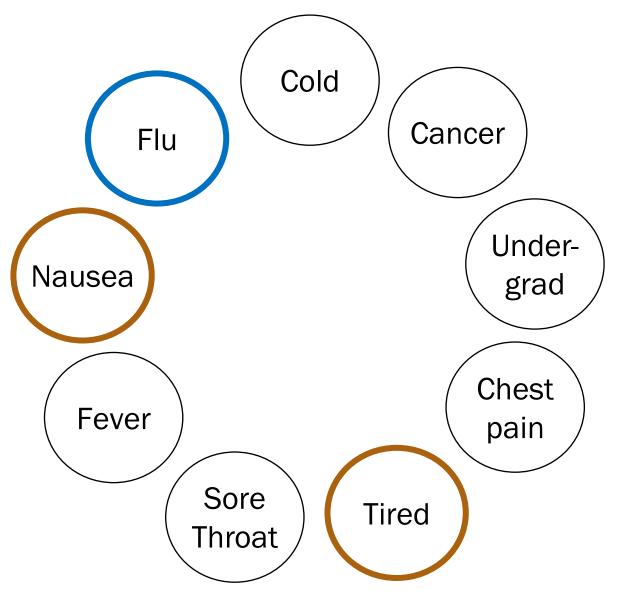
- 1. Math
- 2. Rejection sampling ("joint" sampling)
- 3. Optional: Gibbs sampling (MCMC algorithm)

MD Sy	mptom	n Check	CET BETA			
INFO	SYMPT	омѕ	QUESTIONS	CONDITIONS	DETAILS	TREATMENT
What is y	vour ma	in symp	tom?		AGE 28	GENDER Female
	r main symp					
or Choose common symptoms			×			
bloating fever	cough headache	diarrhea muscle cra	dizziness mp nausea	fatigue	No symptoms added	
throat irrita	ation					
throat irrita						
throat irrita						



General inference question:

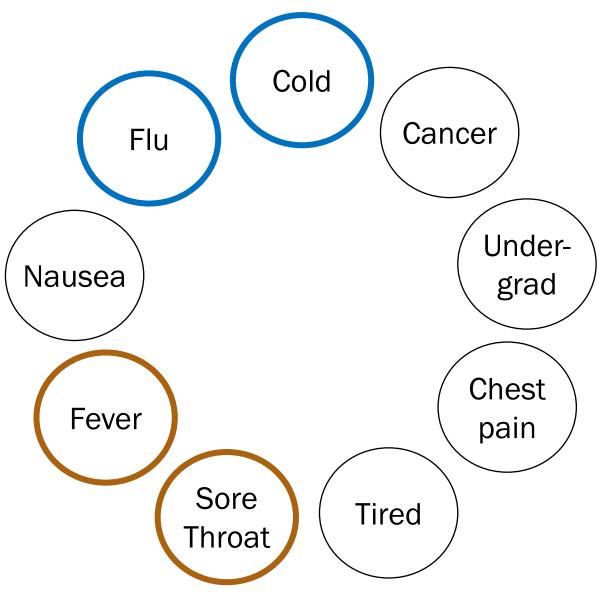
Given the values of some random variables, what is the conditional distribution of some other random variables?



One inference question:

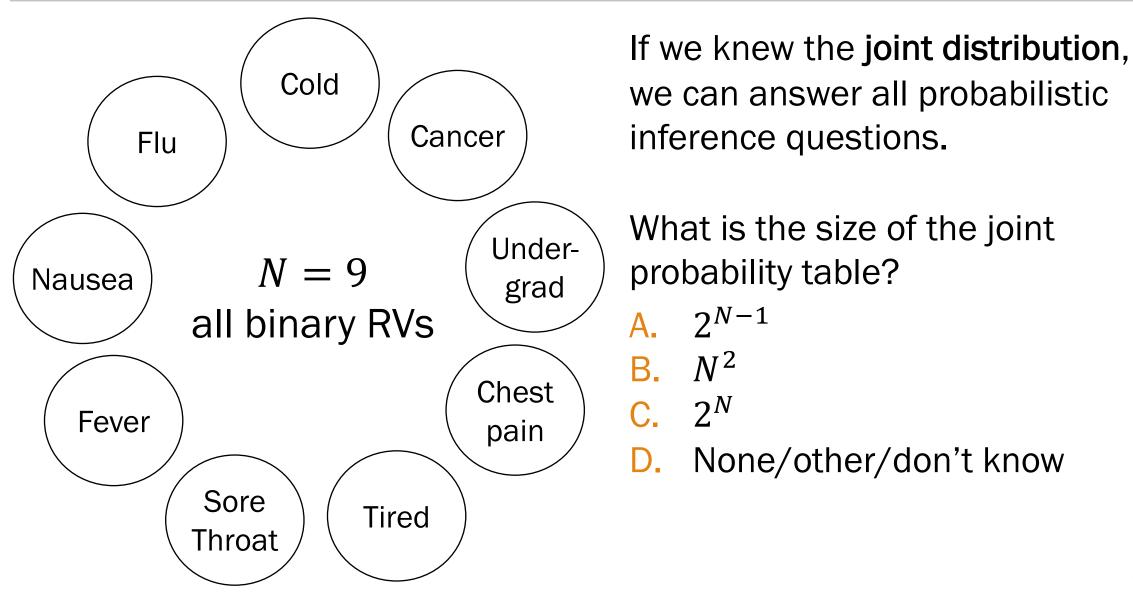
$$P(F = 1 | N = 1, T = 1)$$

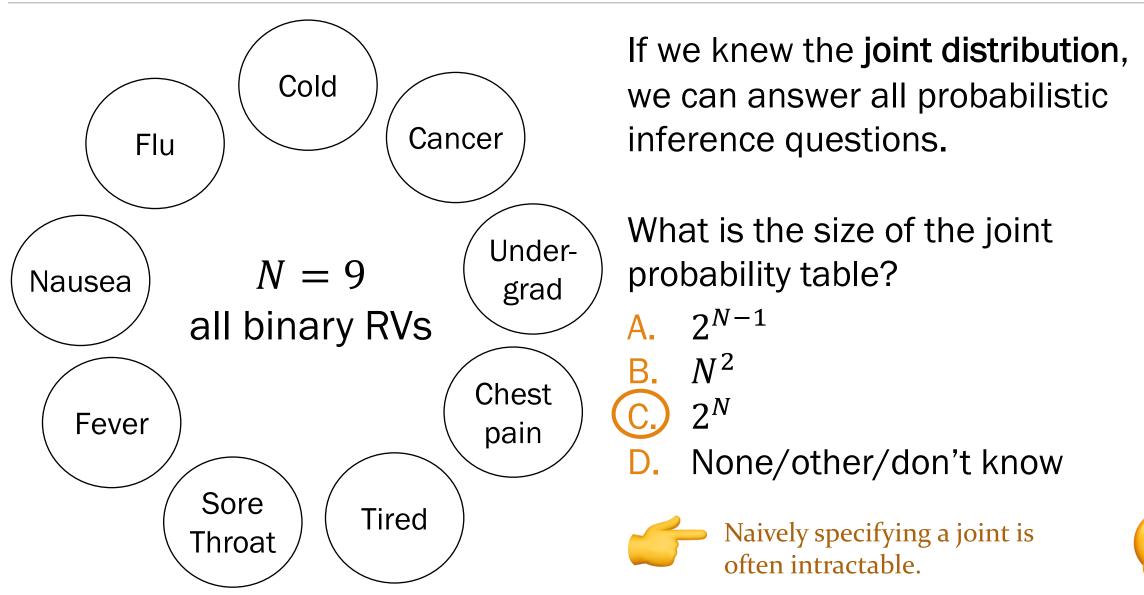
$$=\frac{P(F=1, N=1, T=1)}{P(N=1, T=1)}$$



Another inference question:

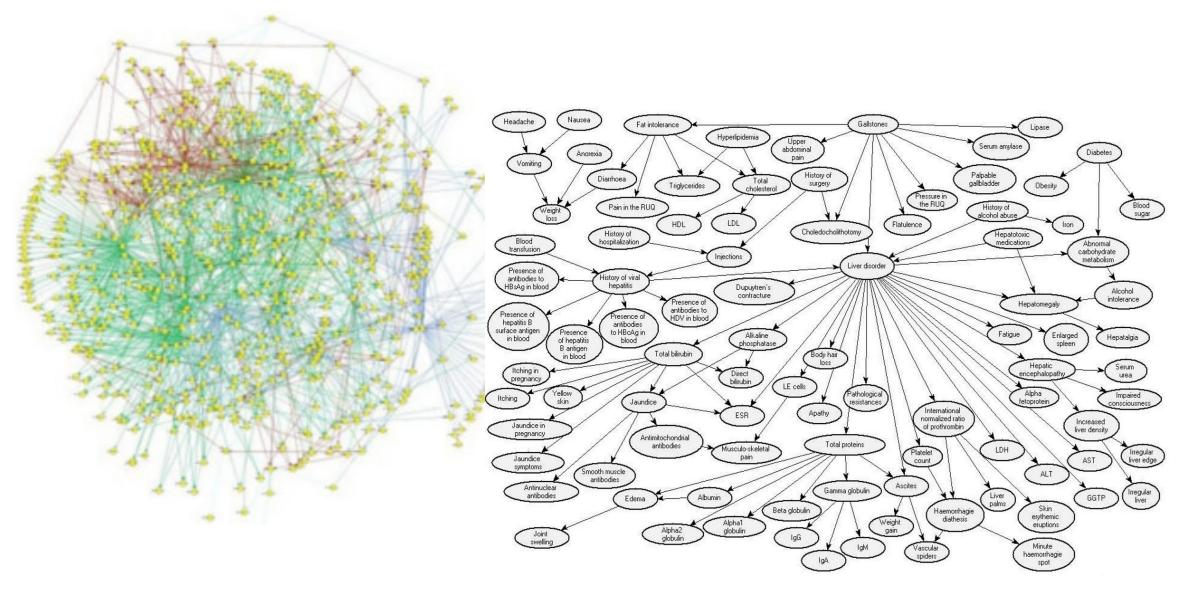
$$P(C_o = 1, F_{lu} = 1 | S = 0, F_e = 0)$$
$$= \frac{P(C_o = 1, F_{lu} = 1, S = 0, F_e = 0)}{P(S = 0, F_e = 0)}$$

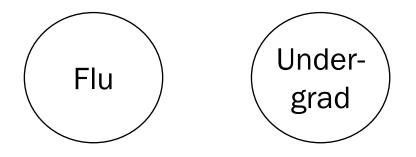




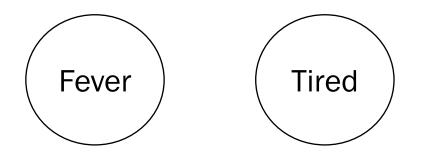
Lisa Yan, CS109, 2019

N can be large...



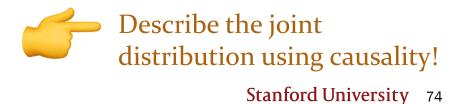


Great! Just specify $2^4 = 16$ joint probabilities...?

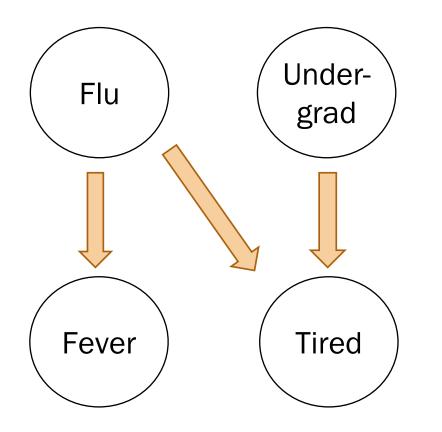


$$P(F_{lu} = a, F_{ev} = b, U = c, T = d)$$

What would a Stanford flu expert do?

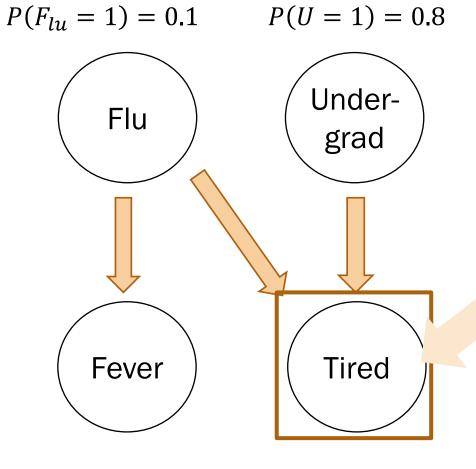


Lisa Yan, CS109, 2019



What would a Stanford flu expert do?

1. Describe the joint distribution using causality



 $P(F_{ev} = 1 | F_{lu} = 1) = 0.9$ $P(F_{ev} = 1 | F_{lu} = 0) = 0.05$

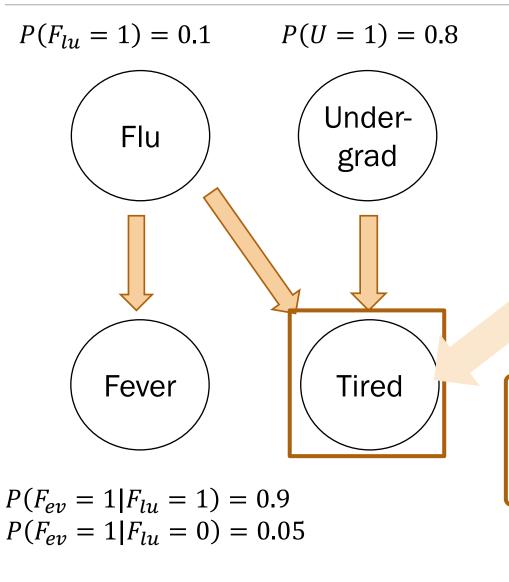
$P(F_{lu} = a, F_{ev} = b, U = c, T = d)$

What would a Stanford flu expert do?

- 1. Describe the joint distribution using causality
- 2. Provide *P*(values|parents) for each random variable

What conditional probabilities (select all that apply) that our expert specify?

A. $P(T = 1 | F_{lu} = 0, U = 0)$ G. $P(T = 0 | F_{lu} = 0, U = 0)$ B. $P(T = 1 | F_{lu} = 0, U = 1)$ H. $P(T = 0 | F_{lu} = 0, U = 1)$ C. $P(T = 1 | F_{lu} = 1, U = 0)$ I. $P(T = 0 | F_{lu} = 1, U = 0)$ D. $P(T = 1 | F_{lu} = 1, U = 1)$ J. $P(T = 0 | F_{lu} = 1, U = 1)$ E. $P(T = 1 | F_{lu} = 0)$ K.P(T = 1 | U = 0)F. $P(T = 1 | F_{lu} = 1)$ L.P(T = 1 | U = 1)



$P(F_{lu} = a, F_{ev} = b, U = c, T = d)$

What would a Stanford flu expert do?

- 1. Describe the joint distribution using causality
- 2. Provide *P*(values|parents) for each random variable

What conditional probabilities should our expert specify?

(select all that apply)

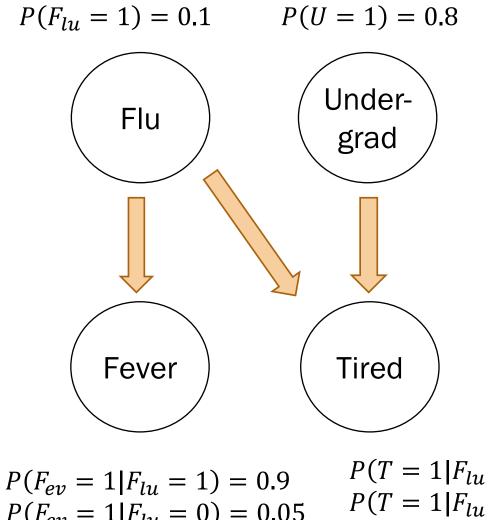
 A.
 $P(T = 1 | F_{lu} = 0, U = 0)$ G.
 $P(T = 0 | F_{lu} = 0, U = 0)$

 B.
 $P(T = 1 | F_{lu} = 0, U = 1)$ H.
 $P(T = 0 | F_{lu} = 0, U = 1)$

 C.
 $P(T = 1 | F_{lu} = 1, U = 0)$ I.
 $P(T = 0 | F_{lu} = 1, U = 0)$

 D.
 $P(T = 1 | F_{lu} = 1, U = 1)$ J.
 $P(T = 0 | F_{lu} = 1, U = 0)$

 E.
 P In a Bayesian Network, specify cond probs with respect to all parents.



What would a CS109 student do?

1. Populate a Bayesian network by asking a Stanford flu expert by using reasonable assumptions

2. Answer inference questions

 $P(F_{en} = 1 | F_{ln} = 0) = 0.05$

 $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(T = 1 | F_{ly} = 1, U = 0) = 0.9$ $P(T = 1 | F_{ly} = 1, U = 1) = 1.0$ Lisa Yan. CS109. 2019

Today's plan

Bootstrapping

- For a statistic
- For a p-value

Definition: Bayesian Networks

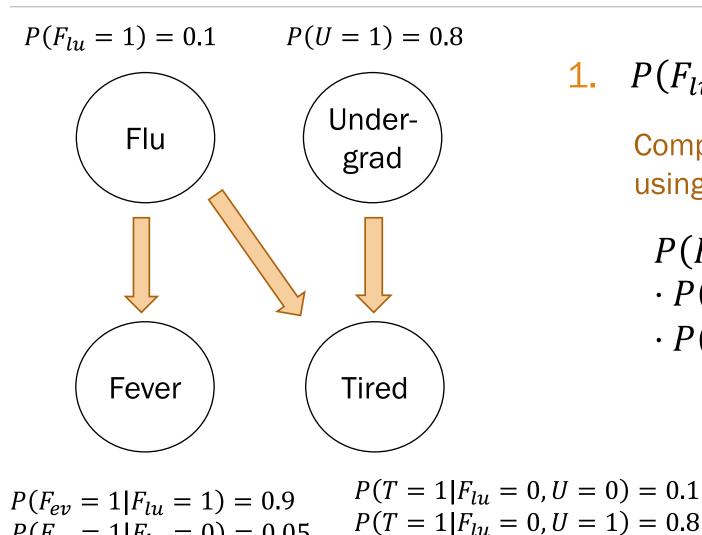
Inference:

- 1. Math
- 2. Rejection sampling ("joint" sampling)
- 3. Optional: Gibbs sampling (MCMC algorithm)

 $P(F_{lu} = 1) = 0.1$ P(U = 1) = 0.8Under-Flu grad Fever Tired $P(F_{ev} = 1 | F_{lu} = 1) = 0.9$ $P(F_{en} = 1 | F_{ln} = 0) = 0.05$

In a Bayesian Network, each random variable is conditionally independent of its non-descendants, given its parents.

 $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(T = 1 | F_{lu} = 1, U = 0) = 0.9$ $P(T = 1 | F_{lu} = 1, U = 1) = 1.0$ Lisa Yan, CS109, 2019



 $P(T = 1 | F_{lu} = 1, U = 0) = 0.9$

 $P(T = 1 | F_{ly} = 1, U = 1) = 1.0$

Lisa Yan, CS109, 2019

 $P(F_{ev} = 1 | F_{lu} = 0) = 0.05$

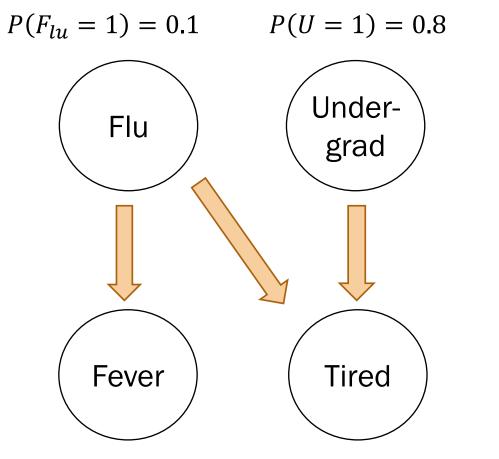
1. $P(F_{ly} = 0, U = 1, F_{ey} = 0, T = 1)$?

Compute joint probabilities using chain rule.

$$P(F_{lu} = 0) \cdot P(U = 1)$$

 $\cdot P(F_{ev} = 0 | F_{lu} = 0)$
 $\cdot P(T = 1 | U = 1, F_{lu} = 0)$

= 0.5472



$$\begin{split} P(F_{ev} &= 1 | F_{lu} = 1) = 0.9 \\ P(F_{ev} &= 1 | F_{lu} = 0) = 0.05 \end{split}$$

 $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(T = 1 | F_{lu} = 1, U = 0) = 0.9$ $P(T = 1 | F_{lu} = 1, U = 1) = 1.0$ Lisa Yan, CS109, 2019

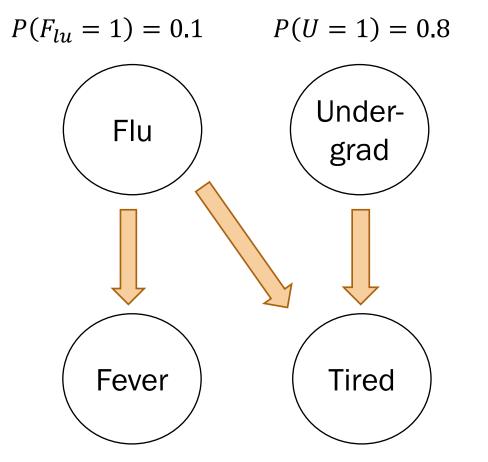
2.
$$P(F_{lu} = 1 | F_{ev} = 0, U = 0, T = 1)$$
?

1. Compute joint probabilities $P(F_{lu} = 1, F_{ev} = 0, U = 0, T = 1)$ $P(F_{lu} = 0, F_{ev} = 0, U = 0, T = 1)$

2. Definition of conditional probability

$$\frac{P(F_{lu} = 1, F_{ev} = 0, U = 0, T = 1)}{\sum_{x} P(F_{lu} = x, F_{ev} = 0, U = 0, T = 1)}$$

= 0.095



 $P(F_{ev} = 1 | F_{lu} = 1) = 0.9 \qquad P(T = P(F_{ev} = 1 | F_{lu} = 0) = 0.05 \qquad P(T = P(T =$

$$P(T = 1 | F_{lu} = 0, U = 0) = 0.1$$

$$P(T = 1 | F_{lu} = 0, U = 1) = 0.8$$

$$P(T = 1 | F_{lu} = 1, U = 0) = 0.9$$

$$P(T = 1 | F_{lu} = 1, U = 1) = 1.0$$

Lisa Yan, CS109, 2019

3.
$$P(F_{lu} = 1 | U = 1, T = 1)$$
?

1. Compute joint probabilities

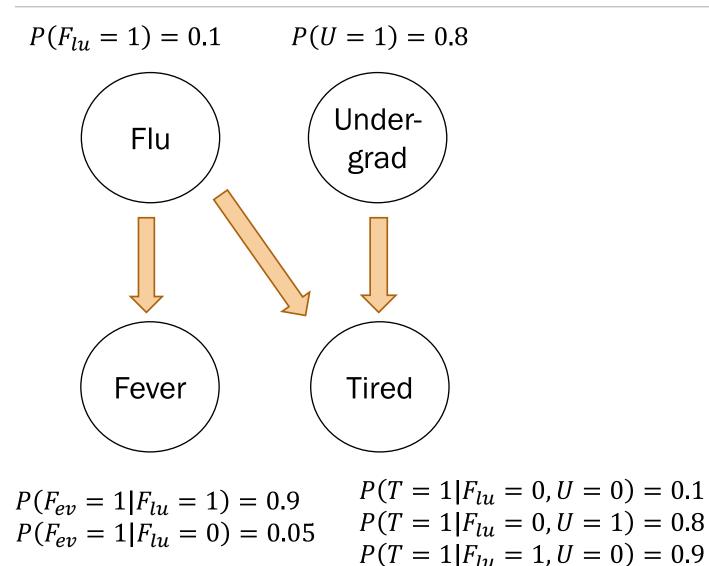
 $P(F_{lu} = 1, U = 1, F_{ev} = 1, T = 1)$

 $P(F_{lu} = 0, U = 1, F_{ev} = 0, T = 1)?$

2. Definition of conditional probability

$$\frac{\sum_{y} P(F_{lu} = 1, U = 1, F_{ev} = y, T = 1)}{\sum_{x} \sum_{y} P(F_{lu} = x, U = 1, F_{ev} = y, T = 1)}$$

= 0.122



Solving inference questions precisely is possible, but sometimes tedious.

Can we use sampling to do approximate inference?

Stanford University 84

Lisa Yan, CS109, 2019

 $P(T = 1 | F_{ly} = 1, U = 1) = 1.0$

Today's plan

Bootstrapping

- For a statistic
- For a p-value

Definition: Bayesian Networks

Inference:

- 1. Math
- 2. Rejection sampling ("joint" sampling)
- 3. Optional: Gibbs sampling (MCMC algorithm)

Step 0:

 $P(F_{lu} = 1) = 0.1$ P(U = 1) = 0.8Under-Flu grad Have a fully specified **Bayesian Network** Fever Tired $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(F_{ev} = 1 | F_{lu} = 1) = 0.9$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(F_{ev} = 1 | F_{lu} = 0) = 0.05$ $P(T = 1 | F_{ly} = 1, U = 0) = 0.9$ $P(T = 1 | F_{ly} = 1, U = 1) = 1.0$ Stanford University 86

Probability =

Inference question: What is $P(F_{lu} = 1 | U = 1, T = 1)$?

def rejection_sampling(event, observation):

```
samples = sample_a_ton()
samples_observation =
    reject_inconsistent(samples, observation)
samples_event =
    reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)
```

samples with ($F_{lu} = 1, U = 1, T = 1$) # samples with (U = 1, T = 1)

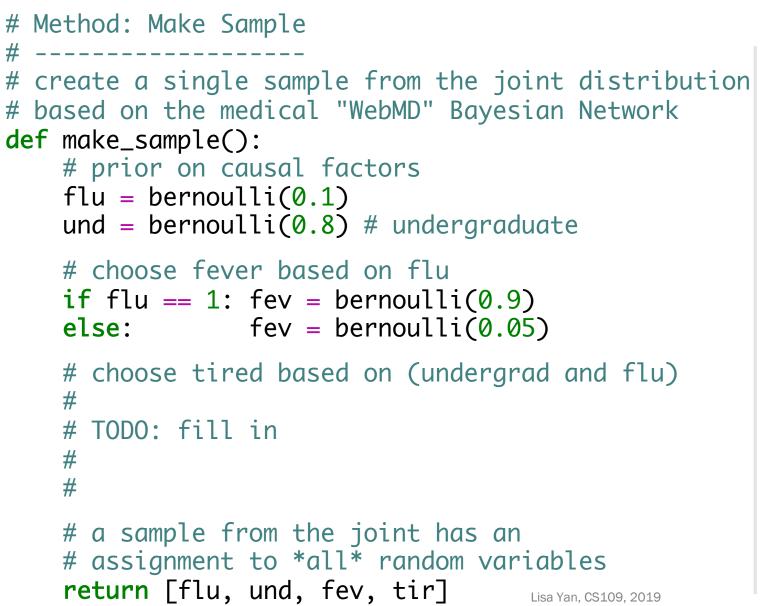
Inference question: What is $P(F_{lu} = 1 | U = 1, T = 1)$?

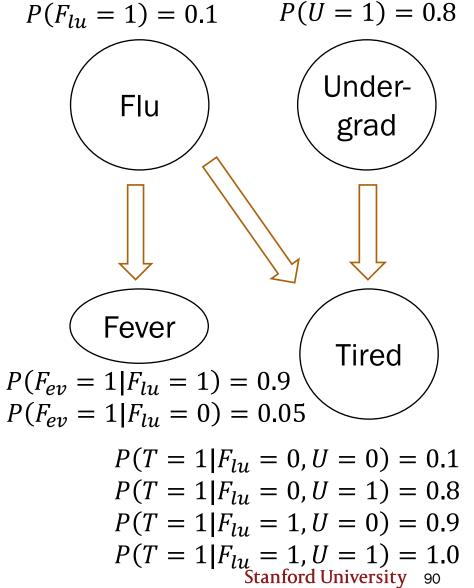
```
def rejection_sampling(event, observation):
```

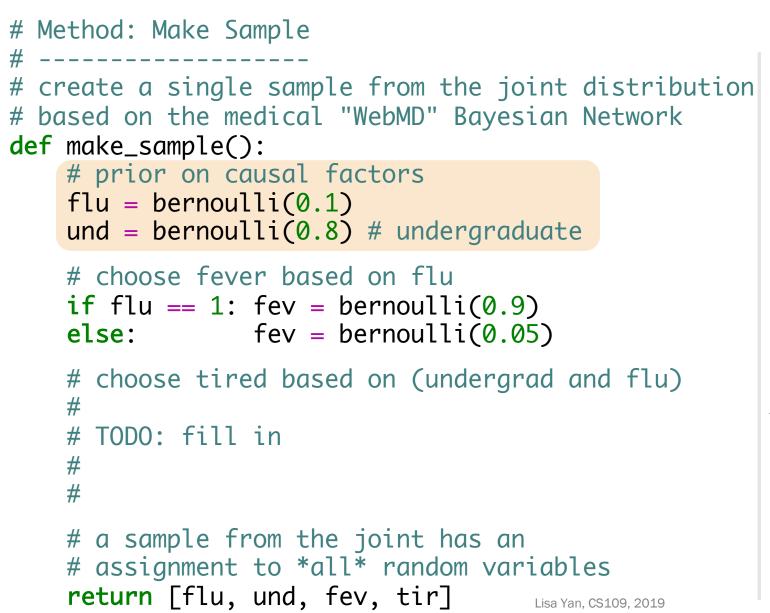
```
samples = sample_a_ton()
```

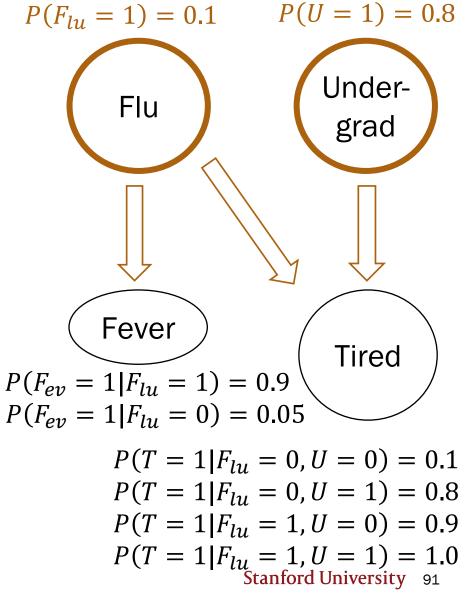
```
samples_observation =
    reject_inconsistent(samples, observation)
samples_event =
    reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)
```

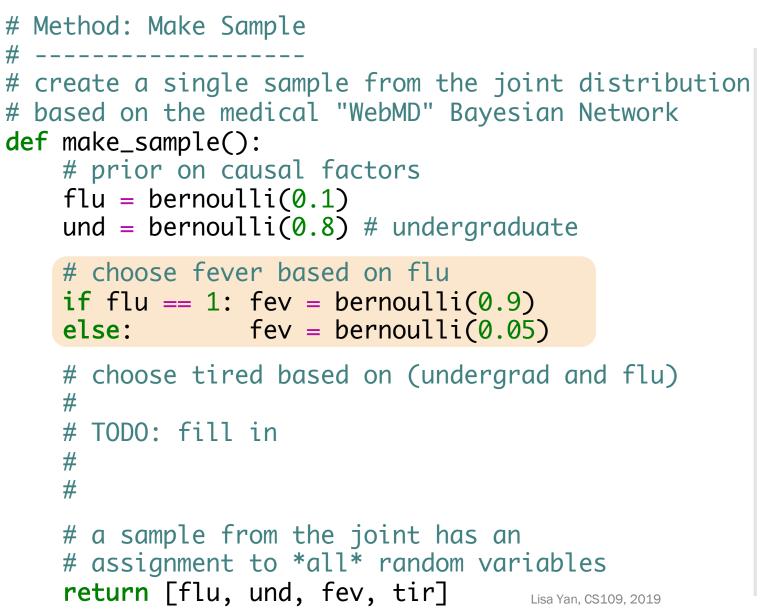
```
N_SAMPLES = 100000
# Method: Sample a ton
# create N_SAMPLES with likelihood proportional
# to the joint distribution
def sample_a_ton():
                                            How do we make a sample
    samples = []
                                              (F_{lu} = a, U = b, F_{ev} = c, T = d)
    for i in range(N_SAMPLES):
                                                   according to the
        sample = make_sample() # a particle
                                                   joint probability?
        samples.append(sample)
    return samples
```

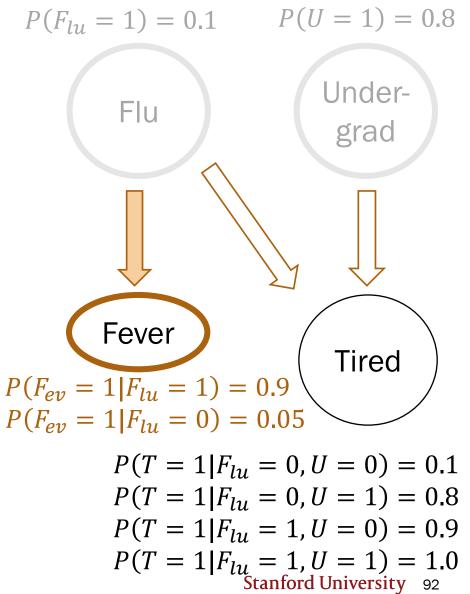



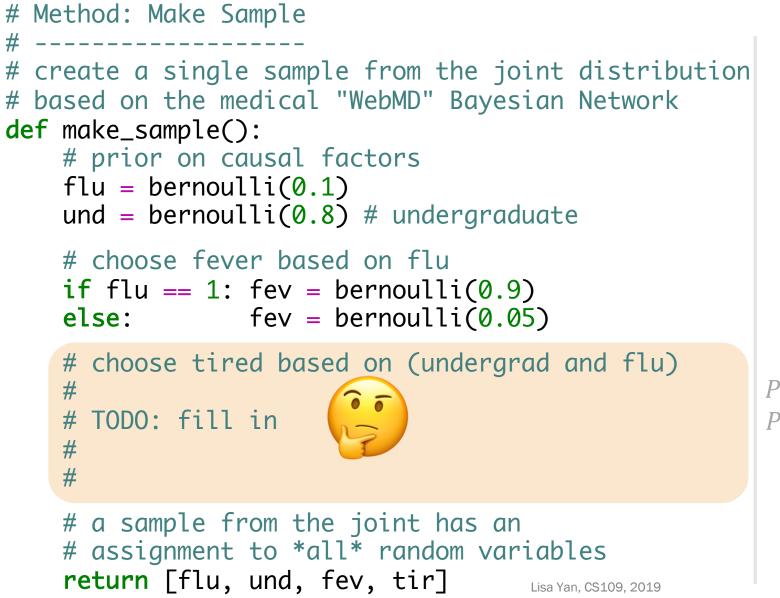


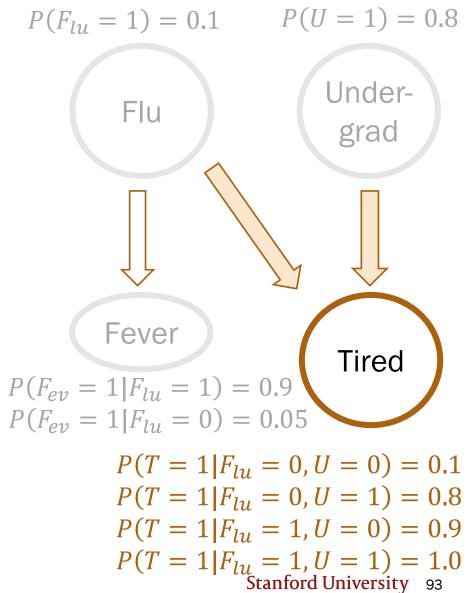


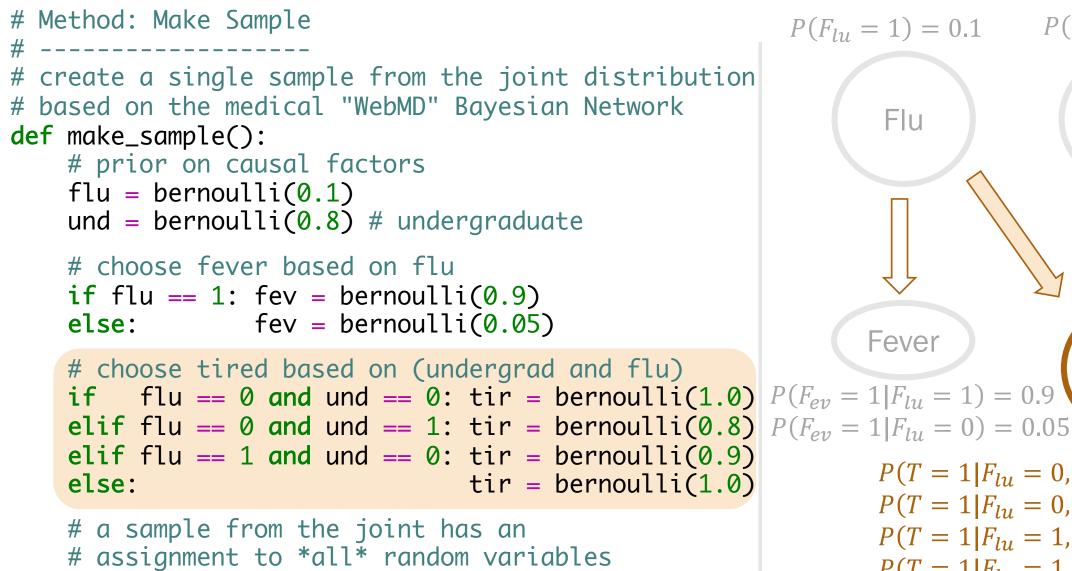








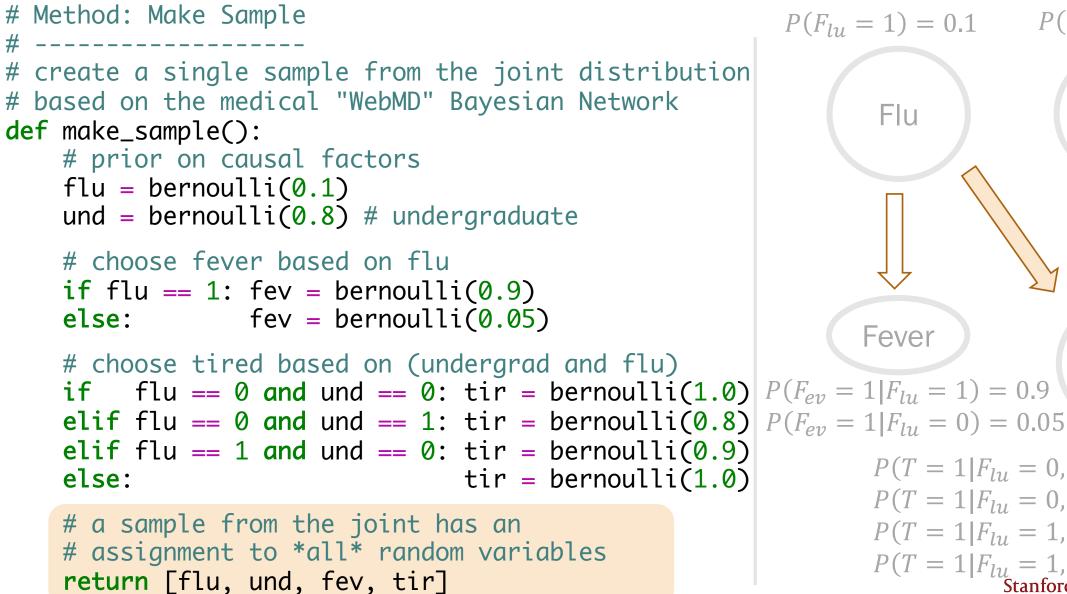


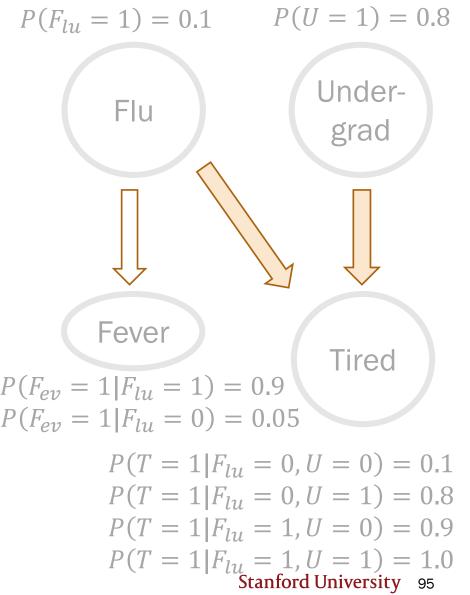


return [flu, und, fev, tir]

 $P(F_{lyl} = 1) = 0.1$ P(U = 1) = 0.8Under-Flu grad Fever Tired $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(T = 1 | F_{ly} = 1, U = 0) = 0.9$ $P(T = 1 | F_{lu} = 1, U = 1) = 1.0$ Stanford University 94

Lisa Yan, CS109, 2019





```
Inference
         What is P(F_{lu} = 1 | U = 1, T = 1)?
question:
                                                   [flu, und, fev, tir]
                                                   Sampling...
def rejection_sampling(event, observation):
                                                    [0, 1, 0, 1]
   samples = sample_a_ton()
                                                    [0, 1, 0, 1]
                                                    [0, 1, 0, 1]
   samples_observation =
                                                    [0, 0,
                                                          0, 01
            reject_inconsistent(samples, observ
                                                    [0, 1, 0, 1]
   samples_event =
            reject_inconsistent(samples_observa
                                                    [0,
                                                       1, 0, 01
                                                   [1, 1,
                                                          1, 1]
   return len(samples_event)/len(samples_obser
                                                    [0, 0, 1, 1]
                                                    Finished sampling
```

```
Inference question: What is P(F_{lu} = 1 | U = 1, T = 1)?
```

```
def rejection_sampling(event, observation):
```

```
samples = sample_a_ton()
```

```
samples_observation =
    reject_inconsistent(samples, observation)
```

```
samples_event =
    reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)
```

Keep only samples that are consistent with the observation (U = 1, T = 1).

```
Inference question: What is P(F_{lu} = 1 | U = 1, T = 1)?
```

```
def rejection_sampling(event, observation):
```

```
samples = sample_a_ton()
```

```
samples_observation =
         reject_inconsistent(samples, observation)
samples # Method: Reject Inconsistent
         # Rejects all samples that do not align with the outcome.
return |# Returns a list of consistent samples.
         def reject_inconsistent(samples, outcome):
             consistent_samples = []
                                              (T = 1, U = 0)
             for sample in samples:
                 if check_consistent(sample, outcome):
                     consistent_samples.append(sample)
             return consistent_samples
```

Inference question: What is $P(F_{lu} = 1 | U = 1, T = 1)$?

def rejection_sampling(event, observation):

samples = sample_a_ton()

samples_observation =
 reject_inconsistent(samples, observation)

samples_event =
 reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

Conditional event = samples with ($F_{lu} = 1, U = 1, T = 1$).

```
Inference question: What is P(F_{lu} = 1 | U = 1, T = 1)?
```

```
def rejection_sampling(event, observation):
    samples = sample_a_ton()
    samples_observation =
        reject_inconsistent(samples, observation)
    samples_event =
        reject_inconsistent(samples_observation, event)
    return len(samples_event)/len(samples_observation)
```

```
Probability =
```

samples with ($F_{lu} = 1, U = 1, T = 1$) # samples with (U = 1, T = 1)

To the code!

Rejection sampling

If you can sample enough from the joint distribution, you can answer any probability inference question.

With enough samples, you can correctly compute:

- Probability estimates
- Conditional probability estimates
- Expectation estimates

Because your samples are a representation of the joint distribution!

[flu, und, fev, tir]

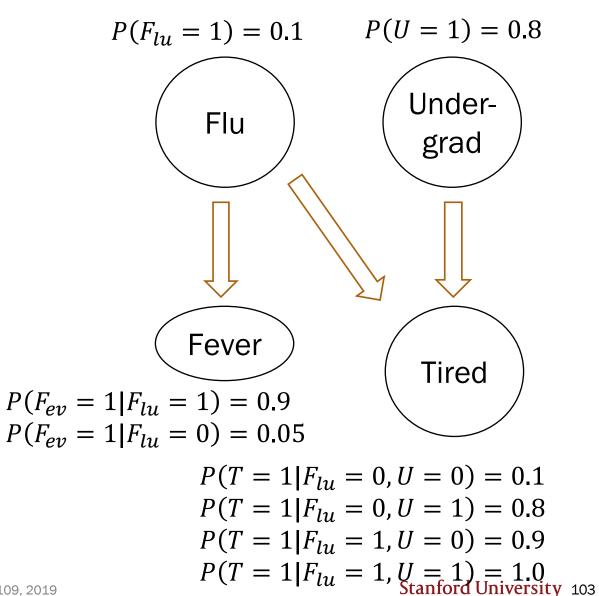
```
Sampling...
[0, 1, 0, 1]
[0, 1, 0, 1]
[0, 1, 0, 1]
[0, 0, 0, 0]
[0, 1, 0, 1]
[0, 1, 1, 1]
[0, 1, 0, 0]
[1, 1, 1, 1]
[0, 0, 1, 1]
[0, 1, 0, 1]
Finished sampling
```

P(has flu I undergrad and is tired) = 0.122

Disadvantages of rejection sampling

$$P(F_{lu} = 1 | F_{ev} = 1)?$$

What if we never encounter some samples?



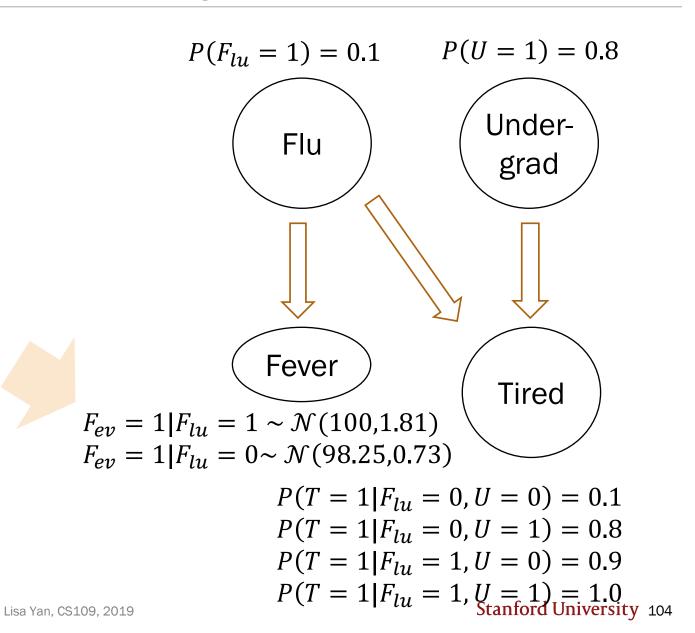
Lisa Yan, CS109, 2019

Disadvantages of rejection sampling

$$P(F_{lu} = 1 | F_{ev} = 99.4)?$$

What if we never encounter some samples?

What if random variables are continuous?

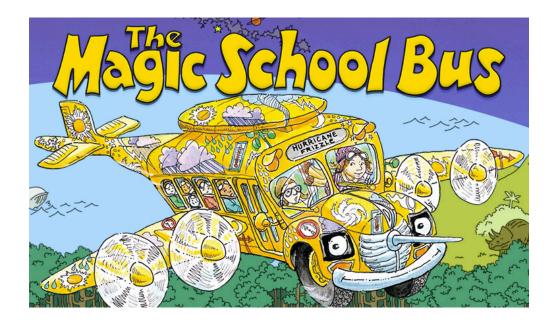


Gibbs Sampling (optional)

Basic idea:

- Fix all observed events
- Incrementally sample a new value for each random variable
- Difficulty: More coding for computing different posterior probabilities

Learn in extra slides/extra notebook! (or by taking CS228/CS238)



Bootstrapping for hypothesis testing

Definition: Bayesian Networks

Inference:

- 1. Math
- 2. Rejection sampling ("joint" sampling)
- 3. Optional: Gibbs sampling (MCMC algorithm)

Gibbs Sampling

MCMC algorithm – Markov Chain Monte Carlo

- Monte Carlo: random algorithms
- Markov Chain: random event sequence state machine

Gibbs Sampling – a particular MCMC technique

Note: This material is *optional* and covered more in CS228, but I want to show you that understanding Gibbs Sampling is not beyond your capabilities.

To the Jupyter Notebook!