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Estimating our parameter directly Review

maximizes the likelihood f (X1, X2, ..., Xn|0)

D log £(Xil6)

i=1 log likelihood

HMAP = drg max f(9|X1,X2, ""X‘l’l)

posterior distribution of 6

Maximum  Given our observed data
a Posteriori (x4, x5, ..., x5,), n
MAP what is the most likel
( ) tor 07 y = arg maxlog g(6) +210gf(Xi|9)
Estimator Parametero: 6 :

L : f =1
Og-prior o log likelihood
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Maximum A Posterior (MAP) Estimator

The MAP estimator has 2 interpretations:

The mode of the
6 —argmax f (01X, X,, ..., X T
MAP g@ f(01Xy, X; n) posterior distribution of 6

n
The 6 that
= argemax (logg(H) T z log f (X;] 6)) maximizes log prior +
i=1 log-likelinood

In both cases, you must specify your prior, g(60).

Key to MAP estimator; ~ You should pick a prior_g(H_) that makes computing
the mode of the posterior distribution is easy.

v

(in this class) @  Use a conjugate distribution.
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How does MAP work?

0. Observe data n heads, m tails

1. Choose model / Bernoulli(p) \

2. Choose prior of 6 (some g(6))

3. Compute n
posterior of 8 logg(0) + 2 log f(X;|6)
given data iT

A, Opmap = - Differentiate

arg max fO1X1, X2, . Xn)  « Solve

Lisa Yan, CS109, 2019

(choose conjugate)
Beta(a +1,b + 1)

l

Beta(a+n+1,b+m+1)

Mode of Beta:
This is a+n
nicel a+n+b+m

tanford University 4




How does MAP work?

0. Observe data n heads, m tails

1. Choose model / Bernoulli(p)

2. Choose prior of 6

(choose conjugate)
Beta(a + 1,b + 1)
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Where'd you get them priors?

. . prior
Let 6 be the probability a coin turns up heads. o] — — e
Model 8 with 2 different priors: zz ’
Prior 1: Beta(3,8): 2 imaginary heads, 2 o]
7 imaginary tails ~ mode: ¢ Lo
Prior 2: Beta(7,4): 6 imaginary heads, 6 0.5
3 imaginary tails ~ Mode: g N R

00 02 04 06 08 1.0

Now flip 100 coins and get 58 heads and 42 tails.
What are the two posterior distributions?
What are the modes of the two posterior distributions?

2
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Where'd you get them priors?

N _ prior
Let 6 be the probability a coin turns up heads. o] — — e
Model 8 with 2 different priors: > ’
Prior 1: Beta(3,8): 2 imaginary heads, 2 o 1'_54
7 imaginary tails ~ mode: ¢ Lo

Prior 2: Beta(7,4): 6 imaginary heads, 6 0.5
3 imaginary tails

00 02 04 06 08 1.0

Now flip 100 coins and get 58 heads and 42 tails.
What are the two posterior distributions?

What are the modes of the two posterior distributions?

Posterior 1: Beta(61,50) mode: 1%
Posterior 2: Beta(65,46) mode: — K‘?)

109
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Where'd you get them priors?

prior

* Let 6 be the probability a coin turns up heads. .| — — e
« Model 8 with 2 different priors: zz ’
> Prior 1: Beta(3,8): 2 imaginary heads, 2 o]
7 imaginary tails ~ mode: ¢ Lo
> Prior 2: Beta(7,4): 6 imaginary heads, 6 0.5
3 imaginary tails ~ Mode: g N R

00 02 04 06 08 1.0

Now flip 100 coins and get 58 heads and 42 tails. posterior
8.0 1 S
Posterior 1: Beta(61,50) mode: 16—(; 6.0 |
. 64 S 4.0-
Posterior 2: Beta(65,46) mode: —
109 ~
“=» As long as we collect enough data, oo

w5 posteriors will converge to the true value. 00 03
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Today’s plan

Maximum A Posteriori
=) ° Picking a conjugate distribution as your prior
* Laplace smoothing

Nalve Bayes
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Conjugate distributions

MAP 0 — aro max F(01X. X X The mode of the
estimator: MAP gg f(O1X1, X, ..., Xn) posterior distribution of 6

Distribution parameter Prior distribution for

parameter
Bernoulli p Beta
Binomial p Beta
Multinomial p; Dirichlet
Poisson A Gamma
Exponential A Gamma
Normal u Normal
Normal o2 Inverse Gamma Don't need to know

Inverse Gamma...
but it will know you ©
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Multinomial is Multiple times the fun

Dirichlet(a, a,, ..., a,,) is the conjugate for Multinomial.
Generalizes Beta in the

m
n L] 1 o —
same way Multinomial Fy, Xy ey X)) = ‘ ‘x_al 1
i i /Ri iq| B(a, ay, ..., a.) g
generalizes Bernoulli/Binomial: 1 a2, Gm) 24

Prior Dirichlet(a; + 1,a, + 1,...,a,,, + 1)
Saw ),'", a; imaginary trials, a; of outcome i
Experiment Observe n; + n, + --- + n,, new trials, with n; of outcome i
Posterior Dirichlet(a; + n; +1,a, +n, +1,...,a,, + n,, + 1)
MAP: p= e T T

m m
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Good times with Gamma

0.7
Gamma(a, 1) is the conjugate for Poisson. o6 — e-iicos
* Also conjugate for Exponential, 0.5 a8 20
but we won’t delve into that u 04 Iy
Q- 0.3
* Mode of gamma: a /A . \
0.1
Prior 0~Gammal(a, A) 00073 4 6 8 10 12 14 16 18 20
Saw « total imaginary events Poisson parameter

during A prior time periods
Experiment Observe n events during next k time periods

Posterior  (6|n events in k periods) g _atm
~Gamma(a + n,A + k) MAE = X+ k
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Gamma(a, A)

MAP fOI' POiSSOH is conjugate for Poisson Mode: a/4

Let A be the average # of successes in a time period.

1. What does it mean to have Observe 10 imaginary events
a prior of 6~Gamma(10,5)? in 5 time periods,

l.e., observe at Poisson rate = 2
Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the
posterior distribution?

3. What is 0y 47 —
o/
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Gammal(a, 1)

MAP fOI’ POiSSOH is conjugate for Poisson Mode: a/4

Let A be the average # of successes in a time period.

1. What does it mean to have Observe 10 imaginary events

a prior of 6~Gamma(10,5)? in 5 time periods, i.e., observe
at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the

oosterior distribution? (6|n events in k periods)~Gamma(21,7)

3. Whatis O)4p? Oy 4p = 3, the updated Poisson rate (4

&

Lisa Yan, C$109, 2019 Stanford University 14




Today's plan

=) -« Laplace smoothing

Machine Learning
* |nefficient classification: Brute force Bayes

* Naive Bayes
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Laplace smoothing

MAP with Laplace smoothing: a prior which represents one imagined
observation of each outcome.

Consider our previous 6-sided die.

Roll the dice n = 12 times.
Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
Recall Oy 5: 6, 4p With Laplace smoothing;

Assume Dirichlet prior where each
outcome seen k = 1 times.

Laplace estimate:
_Xl-+1 p1 =4/18,p, = 3/18,p3 = 1/18,
T n4+m ps = 4/18,ps = 2/18,ps = 4/18

=» [aplace smoothing avoids the case where you estimate a parameter of 0.
e Lisa Yan, C$109, 2019 Stanford University 16

!
pl — 3/12,p2 = 2/12,p3 — 0/12’
Pa = 3/12; Ps = 1/12,p6 = 3/12

Pi



Break for Friday/ 3%
announcements




Announcements

/Problem Set 6 )
Released: this afternoon
Due: Wednesday 12/4

(after break)

@overs: Up to next Wed. 11/20/

Late day reminder: No late days permitted past last day of the quarter, 12/6 (Friday)

/©S109 Contest N
Due: Monday 12/2 11:59pm
Note: All serious submissions will

\_ get some extra credit
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Today's plan

=) Machine Learning
* |nefficient classification: Brute force Bayes

* Nailve Bayes

Lisa Yan, CS109, 2019 Stanford University 19




Our path

X, S OmLE Opmap
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Supervised Learning

Real World Problem

1
Model the problem

“' Training
Formal Model 6 Data

| /

Learning Algorithm

v K

Testing 3 Prediction = Evaluation
Data Function 6* SCore

Stanford University




Modeling

! Real World Problem
I
(not the focus of Model the problem
this cl
o cess W Training

Formal Model 6 Data

+ /

Learning Algorithm

v K

Testing 3 Prediction = Evaluation
Data Function 6* SCore

Stanford University




Training

Real World Problem

1
Model the problem

—"
Training
Formal Model 6 Data

| /

Learning Algorithm
v K

Testing Prediction
Data Function 6*

Evaluation
score

Stanford University




Testing

Real World Problem

1
Model the problem

“' Training
Formal Model 6 Data
| S/
Learning Algorithm

£

Testing 3 Prediction = Evaluation
Data Function 6* SCore

¢erfiord University




Machine Learning (formally)

Many different forms of “Machine Learning”
We focus on the problem of prediction based on observations.

Goal Based on observed X, predict unseen Y
Features Vector X of m observed variables
X=X, Xy, .0, X))
Output Variable Y (also called class label)
Model ¥ = g(X), a function of observations X

Classification prediction when Y is discrete
Regression  prediction when Y is continuous

Lisa Yan, C$109, 2019 Stanford University 25




Training data

(x(l),y(l)), (x(z),y(z))’ (x(n),y(n))
n datapoints, generated i.i.d.

Fach datapoint i is (x(®,y®) :
m features: x(9) = (xfi),xéi), x,g?)

A single output y®
Independent of all other datapoints

Use these n datapoints to learn a

Training Goal: model ¥ = g(X) that predicts Y

Errata: Switched i and j. Updated 11/16 to be consistent with lecture notes Stanford University 26




Example datasets

Heart

NETELIX

Ancestry Netflix

Stanford University 27



o . (0
Classification terminology check X
B. y
Training data: (x@,y®), (x®,y®), ..., (™, y™) C (J(C_()l),y(l))
D. x;

BENJAMIN BRATT )
GANDIGE BERGEN

COMGENALTY | '

"Sandra Bullock

= 1: like movie
Moviel Movie 2 Movie m Output 0: dislike movie
User1l 1. 1 0 1 2.1
User2 3. 1 1 0
Usern 0 4. 0 1 1 “®

Errata: Switched i and j. Updated 11/16 to be consistent with lecture notes

Stanford University 28



s . (i
Classification terminology check X
B. y{
Training data: (x@,y®), (x®,y®), ..., (™, y™) C. (x\W,yW)
D. xV
' J

SANDRA BULLOGK
MICHAEL CAINE ¢
BENJAMIN BRATT %

CANDICEBERGEN S92

%7
CONGENIALTTY g

l: i-th user
Jj: movie j

"Sandra Bullock

g ~— Bull's-Eye!"

W |

pons
t ‘
i

Movie 1  Movie 2

1: like movie
0: dislike movie

[NOEPERDENCETAY

User1 1. 1 0 1 2.1 1 %@
User2 3. 1 1 0 2. yW

: 3 (x0y®)
Usern 0 4. 0 1 1 4 xj(l) — x§") (=

Errata: Switched i and j. Updated 11/16 to be consistent with lecture notes Stantord University 29




Regression: Predicting real numbers

Training data: (x@,y®), (x®@,y@), .., (x™,y™)

* = Global Land-
W‘t = 8 Ocean
@ temperature
CO2 levels Feature m Output
Ievel - ~N
Year 1 338.8 0o .. 1 0.26
Year 2 340.0 1 .. 0 0.32
Year n 340.76 0o .. 1 0.14
\_ J
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Classification: Harry Potter Sorting Hat

Yy =1

X=(11,10,0,..,1)

Lisa Yan, C$109, 2019 Stanford University 31




Today's plan

=) - Inefficient classification: Brute force Bayes
* Nailve Bayes

Lisa Yan, CS109, 2019 Stanford University 32




Classification: Having a healthy heart

Feature 1: Region of Interest (ROI) is
healthy (1) or unhealthy (O)

Feature 1 How can we predict the class label
_ heart is healthy (1) or unhealthy (0)?
Patient 1 1 0

Patient 2 1 1 _ _
_ _ One possible solution: Use Bayes.

Patientn 0 1

Lisa Yan, C$109, 2019 Stanford University 33




Brute force Bayes

Classification (for one patient):
Choose the class label that is most likely given the data.

P(Y = 1| x) : estimated probability

Y = arg max P‘(y | X) a heart is healthy given x
y={0,1} x: whether region of interest (ROI)

is healthy (1) or unhealthy (O)

(Bayes’ Theorem)

P(X|Y)P(Y)
arg max =
y=(013  P(X)

— argmax PLIVIP(Y) (4200 st
Y=Y,

Lisa Yan, C$109, 2019 Stanford University 34




Parameters for Brute Force Bayes

~ ~ ~ Parameters:
Y = argmax P(X|Y)P(Y) P(X|Y) forall X and Y
y=10,1} B(Y)forallY
P(X|Y = 0) P(X|Y =1)
Conditional probability _ _
tables P(X|Y) A1 =0 o1 X1=0 %
Xl — 1 92 Xl — 1 04
. P(Y) .
Marginal — ; Training Use n datapoints to learn
probability B > Goal: 2:2+ 2 = 6 parameters.
table P(Y) Y =1 U6

Lisa Yan, C$109, 2019 Stanford University 35




Training: Estimate parameters P(X|Y)

PX|Yy=0) | PX|IY=1)

X1 = 01 05
Xl =1 82 64
Feature 1 Output
Patient1 1 0 P(X|Y =0)and P(X|Y = 1)
Patient 2 1 1 are both multinomials with 2 outcomes!

Patientn 0 1
“2» Use MLE or Laplace (MAP)

- estimate for parameters P(X|Y)

Lisa Yan, C$109, 2019 Stanford University 36



Training: MLE estimates, P(X|Y)

PXX|lYy=0) | PX|IY =1

X1=0 0.4 0.0
X1 =1 0.6 1.0
Q/ = #(Xl — x,Y = y)
Feature 1 Just count! #(Y — }’)
Patient 1 1 0
Patient 2 1 1

Patientn 0 1

Lisa Yan, C$109, 2019 Stanford University 37



Training: Laplace (MAP) estimates, P(X|Y)

Feature 1 Output

Patient 1 1 0

| Map PX|Yy=0) | PX|Y=1)
Patient 2 1 1 X; =0 0.42 0.01

X, =1 0.58 0.99
Patientn 0 1

= #X1=xY =y)+1
Laplace of P(X; = x|Y =y) = ( ; . y)z
Just count + add imaginary trials! Y =y)+

Lisa Yan, C$109, 2019 Stanford University 38




Testing

Y = arg max P(X|Y)P(Y)

y={0,1}
(MAP) | B(X|Y =0) | P(X|Y =1) (MAP) P(Y)
X, =0 0.42 0.01 Y =0 0.10
X, =1 0.58 0.99 Y =1 0.90

New patient has a healthy ROI (X; = 1). What is your prediction, ¥?

P(X, =1Y =0)P(Y =0) =0.58-0.10 = 0.058
P(X,=1Y =1DP(Y =1)=0.99-0.90 = 0.891
0.058<05 = Y=1
0891 >05 = Y=1 -—
0.058<0891=> V=1 =
Lisa Yan, C$109, 2019 Stanford University 39




Brute force Bayes: m = 100 (# features)

Feature 1 Feature 2 Feature 100 Output
Patient1 1 0 1 1
Patient 2 1 1 0 0
Patientn 0 0 1 1 This won’t be

too bad, right?

Lisa Yan, C$109, 2019 Stanford University 40




Brute force Bayes: m = 100 (# features)

P(Y = 1| x) : estimated probability a

¥ = argmax P(Y | X) heart is healthy given x
y={071} X — (Xll Xz, ...,Xloo): Whether 100
regions of interest (ROI) are healthy (1)
~ ~ health
) P(X|Y)P(Y) or unhealthy (0)
~VBon P How many parameters do we
R R have to learn?
= arg max P(X|Y)P(Y) PX|Y) P(Y)
y=to 2-2 +2 =6
Learn parameters 2:-100 +2 = 202
through MLE or MAP 2.2100 L 2 — 5ot

o
“=» This approach requires you to \‘—d

= learn 0(2™) parameters, o
Lisa Yan, C$109, 2019 Stanford University 41




The problem with our Brute force Bayes classifier

= arg max P(X|Y)P(Y)
y={0,1} ‘ Estimating this joint conditional
P(X.,X,,...,X,,|Y) distribution will require too many

parameters.

What if we could make a simplifying (but naive) assumption-
that X4, ..., X,,, are conditionally independent given Y?

Lisa Yan, C$109, 2019 Stanford University 42



Today's plan

=) - Naive Bayes

Lisa Yan, CS109, 2019 Stanford University 43




The Naive Bayes assumption

X4, ..., X, are conditionally independent given Y.

Our prediction for Y Choose the Y that is
is a function of X most likely given X
| o ‘ (X)‘ | p(YiX5 P(X|VP(Y)
— = arg max = dIrg max = (Bayes)
7 yg{o,l} y={0,1} P(X)
= arg max ﬁ(X|Y)P(Y) (Normalization constant)
y={0,1}
m
_ 1e'd A~ Naive Bayes
- a;g{ronf}x (l_[ P(X; lY)) P(Y) Assumption
' i=1

Lisa Yan, CS109, 2019 Stanford University 44




Naive Bayes Classifier

m
¥ = arg max HP(XAY) P(Y)
y=t0,1} \7_3

What is the Big-O of # of
Training rameters we need to learn?
O(m)
B. 0(2™)
C. other

2
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Naive Bayes Classifier

m
¥ = arg max HP(XJY) P(Y)
y=t0,1} \7_3

fori =1, ..,m:
PX;lYy =0),P(X;|lY =1)
P(Yy=0),P(vy=1

Use MLE or

Training Laplace (MAP)

m
Testing Y = arg max | log P(Y) + z logP(Xl. 1Y) (for numeric
y={0,1} — stability)

Lisa Yan, C$109, 2019 Stanford University 46




NETFLIX
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Naive Bayes for TV shows

Will a user like the Pokémon TV series?

Observe indicator variables X = (X, X,) : Output Y indicator:

Xz — 1 -
“likes Star Wars” “likes Harry Potter” “likes Pokémon”

Lisa Yan, C$109, 2019 Stanford University 48



Training: Naive Bayes for TV shows (MLE) "= 35" <H i '”)P(”
Observe indicator vars. X = (X1, X5): 1l o 1 2| 0 1

X;: “likes Star Wars” Y Y

X,: “likes Harry Potter” 0 3 10 0 5 8
Predict Y: “likes Pokémon” 1 4 13 1 7 10

Training data counts

How many datapoints (n)
are in our train data”?

Compute MLE estimates X,
for P(X{|Y): Y

ity 49




Training: Naive Bayes for TV shows (MLE) "=%&% (

P(X; IY)) P(Y)

::]5

Observe indicator vars. X = (X1, X5):

Xq: “likes Star Wars”
X,: “likes Harry Potter”

Predict Y: “likes Pokémon”

How many datapoints (n)
are in our train data”?

Conrlpute MLE estimates
for P(X{|Y):

X1

1 2
v 0 1 v 0 1

3 10 0 5 8
1 4 13 1 7 10

Training data counts

0 1

10/13 ~ 0.77 (&)
13/17 = 0.76 4, «

3/13 ~ 0.23
4/17 ~ 0.24




Training: Naive Bayes for TV shows (MLE) "= 35" (1_[ % 'Y>)P<Y>
Observe indicator vars. X = (X1, X5): 19 1 2| 9 1
* Xq: “likes Star Wars” Y Y

* X,: “likes Harry Potter”

Predict Y: “likes Pokémon”

1
Y 0 1 Y Y
0.23 0.77 0 5/13 0.38 8/13 = 0.62 0 | 13/30 = 0.43
1 10.24 0.76 1 7/17 = 041 10/17 = 0.59 1 |17/30 = 0.57

#X;=xY =vy)

o Training MLE P(X; = x|Y = y) =

Nv—J estimates: just Y = y) #(Y =vy)

Py

count. P(Y=y)=

Lisa Yan, C$109, 2019 N Stanford University 51




Training : Naive Bayes for TV shows (MLE) "=%&% <H - '”)P(”
Observe indicator vars. X = (X1, X5): 1o 1 2l 0 1

Xq: “likes Star Wars” Y Y Y

X>: “likes Harry Potter” 0 [0.23 0.77 0 [0.38 0.62 0 | 0.43
Predict Y: “likes Pokémon” 1 |0.24 0.76 1 [0.41 0.59 1 |0.57

Now that we've trained and found parameters,
It’s time to classify new users!

Lisa Yan, C$109, 2019 Stanford University 52




Testing: Naive Bayes for TV shows (MLE) "= 3&5 <H - '”)P(”
Observe indicator vars. X = (X1, X5): 1o 1 2l 0 1

Xq: “likes Star Wars” Y Y Y

X>: “likes Harry Potter” 0 [0.23 0.77 0 |0.38 0.62 0 | 0.43
Predict Y: “likes Pokémon” 1 |0.24 0.76 1 [0.41 0.59 1 |0.57

Suppose a new person “likes Star Wars” (X; = 1) but “dislikes Harry Potter” (X, = 0).

Will they like Pokemon? Need to predict Y:

Y = argmax P(X|Y)P(Y) = argmaxP(X{|Y)P(X,|Y)P(Y)
y={0,1} y={0,1}

fY =0 PX;=1|Y =0)P(X, =0|Y =0)P(Y =0) =0.77-0.38-0.43 = 0.126

fYy=1. PX;=1Y=1PX,=0|Y=1P(Y=1) =0.76-0.41-0.57 =0.178

Since term is greatest when Y = 1, predict ¥ = 1

Lisa Yan, C$109, 2019 Stanford University 53




Training: Naive Bayes for TV shows (MAP; e H - '”)P(”
Observe indicator vars. X = (X1, X5): 1l o 1 2| 0 1
X;: “likes Star Wars” Y Y
X,: “likes Harry Potter” 0 3 10 0 5 8
Predict Y: “likes Pokémon” 1 4 13 1 7 10
Training data counts
| P(X; = x|Y = y): P(Y =y):
What are our MAP estimates #(X;=x,Y=y) #(Y=y)
using Laplace smoothing #(Y=y) H(Y=y)+2
for P(Xily) and P(Y)? #(Xi=x,Y=y)+1 #(Y=y)+1
#(Y=y)+2 n
#(X;=x,Y=y)+1 #(Y=y)+1 % )
#(Y=y)+4 n+2 K'y

Lisa Yan, CS109, 2019
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Training: Naive Bayes for TV shows (MAP; e H - '”)P(”
Observe indicator vars. X = (X1, X5): 1 2
‘s ” 1 O 1
X;: “likes Star Wars Y Y
X,: “likes Harry Potter” 0 10 0 5 8
Predict Y: “likes Pokémon” 1 13 1 7 10

What are our MAP estimates
using Laplace smoothing
for P(X;|Y) and P(Y)?

P(X; = x|Y = y):
#(Xi=x,Y=y)
#(Y=y)
#(Xi=x,Y=y)+1
#(Y=y)+2
#(Xi=x,Y=y)+1
#(Y=y)+4

Lisa Yan, CS109, 2019

Training data

P(Y =y):
#(Y=y)
#(Y=y)+2
#(Y=y)+1
n
#(Y=y)+1 ~ =

n+2 K"y

Stanford University 55




Training: Naive Bayes for TV shows (MAP) '~ %% (1_[ i '”)Pm
Observe indicator vars. X = (X1, X5): 1l 0 1 2| 0 1
* X;: “likes Star Wars” Y Y
* X,: “likes Harry Potter” 0 3 10 0 5 8
Predict Y: “likes Pokémon” 1 4 13 1 7 10
Traini
1 2
v 0 1 v 0 1 v
0.27 0.73 0 10.40 0.60 0 | 14/32 = 0.44
1 10.26 0.74 1 10.42 058 1 | 18/32 = 0.56
9 Training MAP P(X,=x|Y =y) = HXi=xY =y)+1 P
w., ©stimates:justcount + B #(Y =y)+2 K:?y
imaginary trials. B(Y = y) = #HY=y)+1 -

Lisa Yan, CS109, 2019 n+ 2 Stanford University 56




Naive Bayes Model is a Bayesian Network "~ % @P(XHY))P(”

Nailve Bayes

m m
eeommen P =] [P = P =pPm | [Poain
=1 i=1
Which Bayesian Network encodes this conditional independence?
C C C C \2)
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Naive Bayes Model is a Bayesian Network "~ % @P(XHY))P(”

m m
Nalve Bayes
i=1 =1

Which Bayesian Network encodes this conditional independence?
SO OIONG
\@ @ @ ) @ &)

X; are conditionally independent given parent Y

Stanford University 58




Extra slides

Naive Bayes with spam classification

Lisa Yan, C$109, 2019 Stanford University 59




What is Bayes doing in my mail server?

[ L _ ’ . .
e ————— - s LET'S get Bayesian on your spam:
To: sahami@robotics.stanford.edu
Subject: __For excellent metabolism | Content analysis details: (49.5 hits, 7.0 required)
1 0.9 RCVD_IN_PBL RBL: Received via a relay in Spamhaus PBL
=l palemet e Dueore i [93.40.189.29 listed in zen.spamhaus.org]
Viagra Cialis Viagra Professional 1.5 URIBL_WS_SURBL Contains an URL listed in the WS SURBL blocklist
Our price $1.15 Our price $1.99 Our price $3.73 [URIS: r.ecr.agas.cn]
5.0 URIBL_JP_SURBL Contains an URL listed in the JP SURBL blocklist
ColePrfesiondt  VagnSweracive Sl Super e | [URTs: recragas.cn] |
5.0 URIBL_OB_SURBL Contains an URL listed in the OB SURBL blocklist
Levitra Viagra Soft Tabs Cialis Soft Tabs [URIS: recr'agas'cn:l . .
Our price $2.93 Our price $1.64 Our price $3.51 5.0 URIBL_SC_SURBL Contains an URL 1isted in the SC SURBL blocklist
[URIs: recragas.cn]
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Email classification

Goal Based on email content X, predict if email is spam or not.

Features Consider a lexicon m words (for English: m = 100,000).
X = (X, Xy, ..., X,,,), mindicator variables
X; = 1 if word i appeared in document

Output Y =1 if email is spam

Note: m is huge. Make Naive Bayes assumption: p(X|spam) = HP(Xi|Spam)
=1

Appearances of words in email are conditionally independent
given the email is spam or not

Lisa Yan, C$109, 2019 Stanford University 61



Naive Bayes Email classification

Train set n previous emails (x,y®), (x@,y @), . (x™), ™)
) — () () (/) for each word, whether it
x (xl X r ) appears in email j
yU) =1 if spam, 0 if not spam

Estimate probabilities

Training P(Y) and P(X;|Y) for all {

Which estimator should we use?
MLE
Laplace estimate (MAP)
Other MAP estimate K‘l&
Both A and B
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Naive Bayes Email classification

Trainset  n previous emails (xV,yW), (x(2),y2)) (2, y™)

() = (xij)’ xéj), » x,(é)) for each yvord, V\./h.ether it
appears in email j

yU) = 1 if spam, 0 if not spam

Estimate probabilities

Training P(Y) and P(X;|Y) for all {

Which estimator should we use?
A. MLE

* Many words are likely to not appear

Laplace estimate (MAP) at all in the training set, so we
C. Other MAP estimate want to av0|.d 0 prpbgb|llt|es. (‘j |
* Laplace estimate is simple. ‘()

D. BothAand B .
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Naive Bayes Email classification

Trainset  n previous emails (x(1),y()), (x(2),y2)) (x5 ()

() = (xij)’ xéj), o xg)) for each word, V\./h.ether it
appears in email j

yU) = 1 if spam, 0 if not spam

Estimate probabilities
P(Y) and P(X;|Y) for all i

Training
Laplace (# spam emails with word i) + 1
_ P(X; = 1|Y =spam) = .
estimate: (X; | pam) (total # spam emails) + 2
_ Foranew °* Generate X = (X1, X5, ..., X;n)
TeStmg email: Classify as spam or not using Naive Bayes assumption
(Classification) A A L Use logs for

Y = arg max logP(Y) + 2 logP(Xl|Y) numeric Stab|||ty
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How well does Naive Bayes perform?

After training, you can test with another set of data, called the test set.

Test set also has known values for Y so we can see how often
we were right/wrong in our predictions Y.

Typical work flow:
Have a dataset of 1/89 emails (1578 spam, 211 ham)

Train set: First 1538 emails (by time)
Test set: Next 251 messages

Evaluation criteria on test set: Spam Non-spam
(# correctly predicted class Y) Prec. Recall|l Prec. Recall

precision = :
(# predicted class ¥) - Wordsonly | 97.1% 94.3%|87.7% 93.4%

(# correctly predicted class V) Words +
(# real class Y messages) addtl features | 100% 98.3%|96.2% 100%
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