24: Naïve Bayes

Lisa Yan November 15, 2019

Estimating our parameter directly

Maximum Likelihood Estimator (MLE)

What is the parameter θ that maximizes the likelihood of our observed data $(x_1, x_2, ..., x_n)$?

$$\theta_{MLE} = \arg\max_{\theta} f(X_1, X_2, ..., X_n | \theta)$$

$$= \arg\max_{\theta} \sum_{i=1}^{n} \log f(X_i | \theta)$$

$$= \log \text{ likelihood}$$

Maximum a Posteriori (MAP) Estimator

Given our observed data $(x_1, x_2, ..., x_n)$, what is the most likely parameter θ ?

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n)$$

$$= \arg\max_{\theta} \log g(\theta) + \sum_{i=1}^{n} \log f(X_i|\theta)$$

$$= \log\operatorname{-prior} \text{ of } \log \operatorname{-likelihood}_{\operatorname{Stanford University}} 2$$

Maximum A Posterior (MAP) Estimator

The MAP estimator has 2 interpretations:

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n)$$

$$= \arg\max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i|\theta)\right)$$

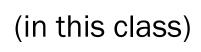
The mode of the posterior distribution of θ

The θ that maximizes log prior + log-likelihood

In both cases, you must specify your prior, $g(\theta)$.

Key to MAP estimator:

You should pick a prior $g(\theta)$ that makes computing the mode of the posterior distribution is easy.



(in this class) Use a conjugate distribution.

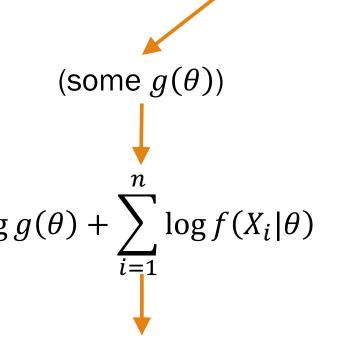
How does MAP work?

- Observe data
- 1. Choose model
- 2. Choose prior of θ

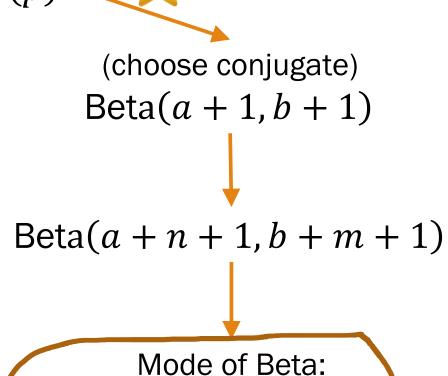
- 3. Compute posterior of θ given data
- 4. $\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$

n heads, m tails

Bernoulli(p)



- Differentiate
- Solve



This is $\frac{a+n}{a+n+b+m}$

How does MAP work?

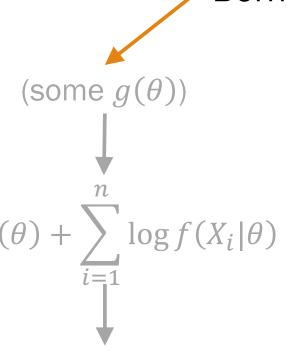
- Observe data
- 1. Choose model
- Choose prior of θ

3. Compute posterior of θ given data

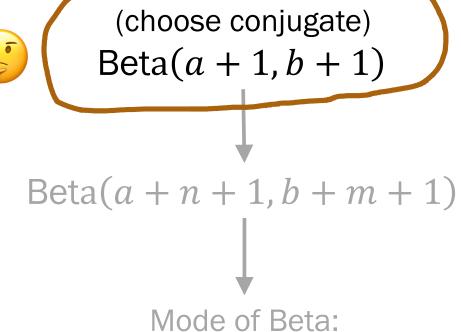
4.
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$
 • Difference Solve

n heads, m tails

Bernoulli(p)



- Differentiate

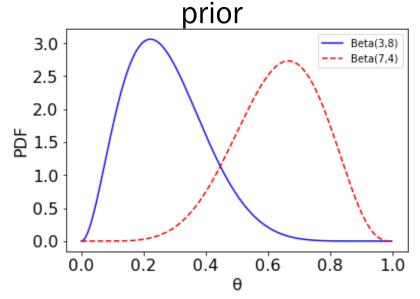


a + n

$$\overline{a+n+b+m}$$

Where'd you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: Beta(3,8): 2 imaginary heads, 7 imaginary tails $\frac{2}{9}$
 - Prior 2: Beta(7,4): 6 imaginary heads, 3 imaginary tails $\frac{6}{9}$

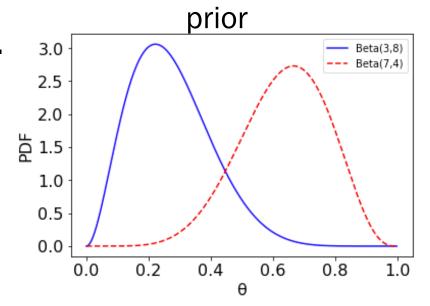


Now flip 100 coins and get 58 heads and 42 tails.

- 1. What are the two posterior distributions?
- 2. What are the modes of the two posterior distributions?

Where'd you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: Beta(3,8): 2 imaginary heads, 7 imaginary tails $\frac{2}{9}$
 - Prior 2: Beta(7,4): 6 imaginary heads, 3 imaginary tails $\frac{6}{9}$



Now flip 100 coins and get 58 heads and 42 tails.

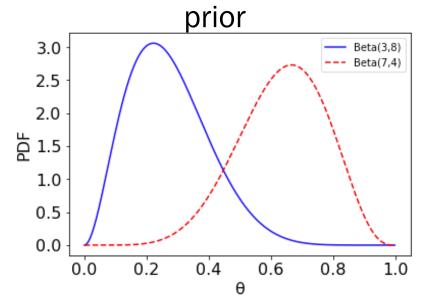
- 1. What are the two posterior distributions?
- 2. What are the modes of the two posterior distributions?

Posterior 1: Beta(61,50) mode: $\frac{60}{109}$

Posterior 2: Beta(65,46) mode: $\frac{64}{109}$

Where'd you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: Beta(3,8): 2 imaginary heads, 7 imaginary tails $\frac{2}{9}$
 - Prior 2: Beta(7,4): 6 imaginary heads, 3 imaginary tails $\frac{6}{9}$



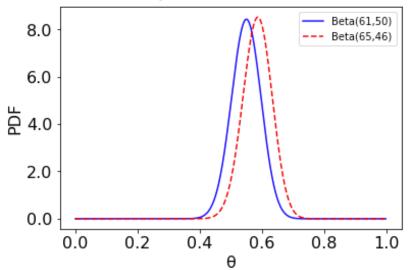
Now flip 100 coins and get 58 heads and 42 tails.

Posterior 1: Beta(61,50) mode: $\frac{60}{109}$

Posterior 2: Beta(65,46) mode: $\frac{64}{109}$

As long as we collect enough data, posteriors will converge to the true value.

posterior



Today's plan

Maximum A Posteriori

- Picking a conjugate distribution as your prior
- Laplace smoothing

Naïve Bayes

Conjugate distributions

MAP estimator:

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

The mode of the posterior distribution of θ

Distribution parameter	Prior distribution for
	parameter
Bernoulli p	Beta
Binomial p	Beta
Multinomial p_i	Dirichlet
Poisson λ	Gamma
Exponential λ	Gamma
Normal μ	Normal
Normal σ^2	Inverse Gamma

Don't need to know Inverse Gamma... but it will know you ©

Multinomial is Multiple times the fun

Dirichlet $(a_1, a_2, ..., a_m)$ is the conjugate for Multinomial.

 Generalizes Beta in the same way Multinomial generalizes Bernoulli/Binomial:

$$f(x_1, x_2, ..., x_m) = \frac{1}{B(a_1, a_2, ..., a_m)} \prod_{i=1}^m x_i^{a_i - 1}$$

Prior Dirichlet $(a_1 + 1, a_2 + 1, ..., a_m + 1)$

Saw $\sum_{i=1}^{m} a_i$ imaginary trials, a_i of outcome i

Experiment Observe $n_1 + n_2 + \cdots + n_m$ new trials, with n_i of outcome i

Posterior Dirichlet $(a_1 + n_1 + 1, a_2 + n_2 + 1, ..., a_m + n_m + 1)$

MAP: $p_i = \frac{a_i + n_i}{\sum_{i=1}^{m} a_i + \sum_{i=1}^{m} n_i}$

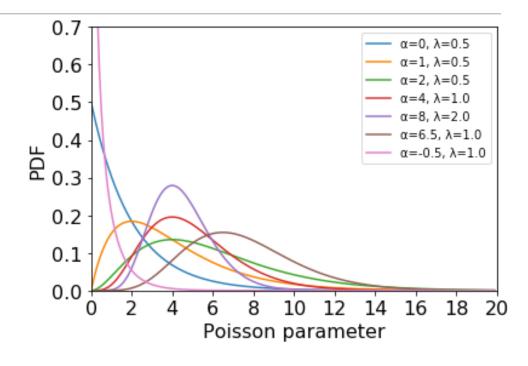
Good times with Gamma

Gamma (α, λ) is the conjugate for Poisson.

- Also conjugate for Exponential, but we won't delve into that
- Mode of gamma: α/λ

Prior

 $\theta \sim Gamma(\alpha, \lambda)$ Saw α total imaginary events during λ prior time periods



Experiment Observe n events during next k time periods

Posterior

 $(\theta | n \text{ events in } k \text{ periods})$ \sim Gamma($\alpha + n, \lambda + k$)

$$\theta_{MAP} = \frac{a+n}{\lambda+k}$$

Let λ be the average # of successes in a time period.

1. What does it mean to have a prior of $\theta \sim \text{Gamma}(10,5)$?

Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the posterior distribution?

3. What is θ_{MAP} ?

Mode: α/λ

Let λ be the average # of successes in a time period.

1. What does it mean to have a prior of $\theta \sim \text{Gamma}(10,5)$?

Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the posterior distribution?

 $(\theta | n \text{ events in } k \text{ periods}) \sim \text{Gamma}(21, 7)$

3. What is θ_{MAP} ?

 $\theta_{MAP} = 3$, the updated Poisson rate

Today's plan

Maximum A Posteriori

Picking a conjugate distribution as your prior

Laplace smoothing

Machine Learning

- Inefficient classification: Brute force Bayes
- Naïve Bayes

Laplace smoothing

MAP with Laplace smoothing: a prior which represents one imagined observation of each outcome.

Consider our previous 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall θ_{MLE} :

$$p_1 = 3/12, p_2 = 2/12, p_3 = 0/12,$$

 $p_4 = 3/12, p_5 = 1/12, p_6 = 3/12$

θ_{MAP} with Laplace smoothing:

- Assume Dirichlet prior where each outcome seen k=1 times.
- Laplace estimate:

$$p_i = \frac{X_i + 1}{n + m}$$
 $p_1 = 4/18, p_2 = 3/18, p_3 = 1/18,$ $p_4 = 4/18, p_5 = 2/18, p_6 = 4/18$

lace smoothing avoids the case where you estimate a parameter of 0.

Break for Friday/ announcements

Andy Warhol, Campbell's Soup Cans (1962)

Announcements

Problem Set 6

Released: this afternoon

Wednesday 12/4 Due:

(after break)

Up to next Wed. 11/20 Covers:

Late day reminder: No late days permitted past last day of the quarter, 12/6 (Friday)

CS109 Contest

Monday 12/2 11:59pm Due:

All serious submissions will Note:

get some extra credit

Today's plan

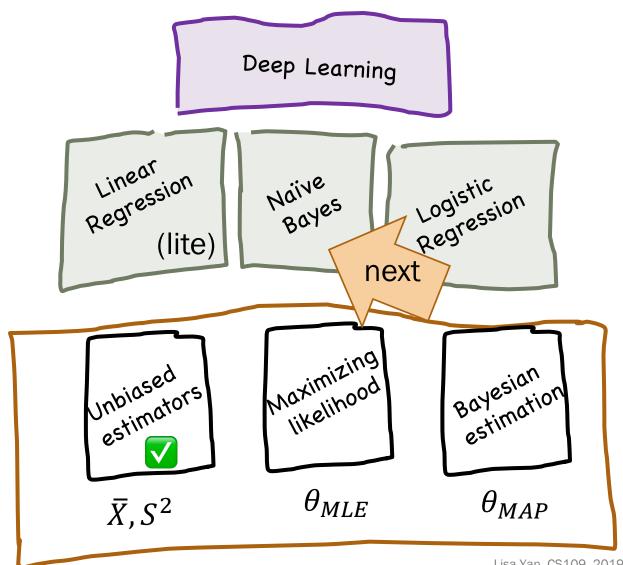
Maximum A Posteriori

- Picking a conjugate distribution as your prior
- Laplace smoothing

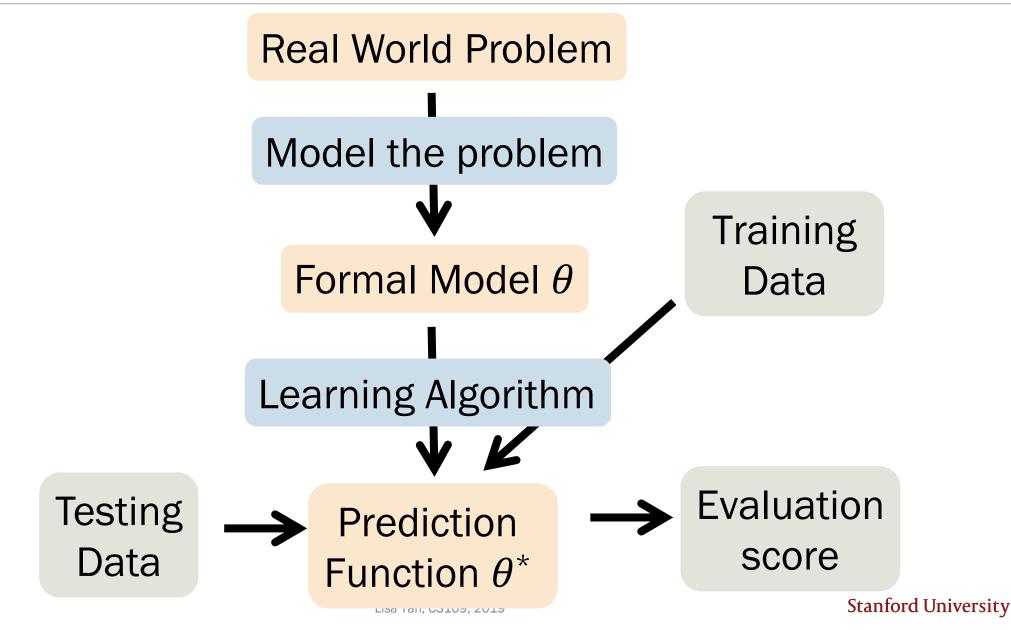
Machine Learning

- Inefficient classification: Brute force Bayes
- Naïve Bayes

Our path



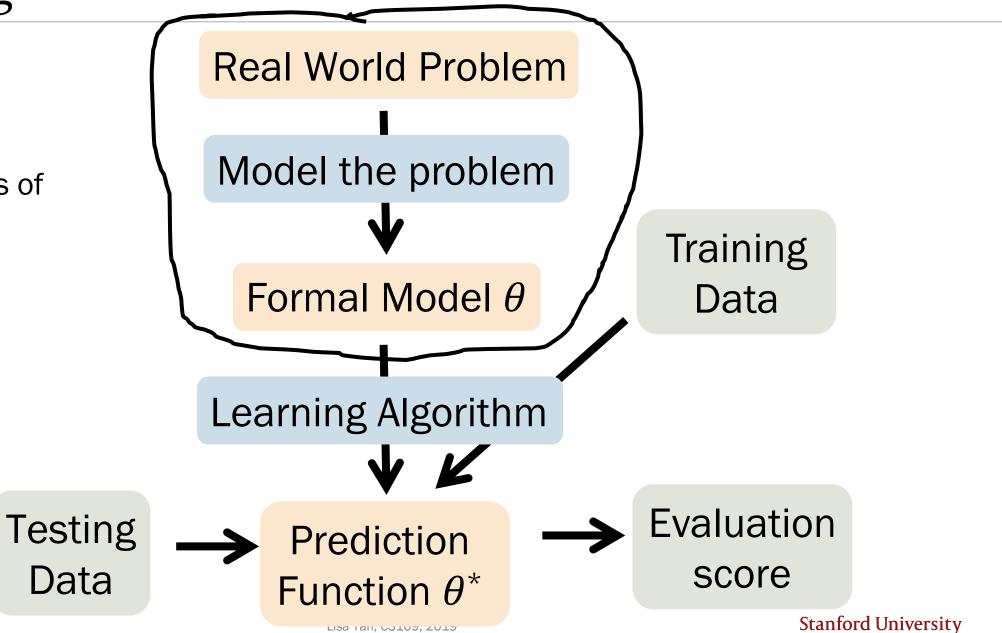
Supervised Learning



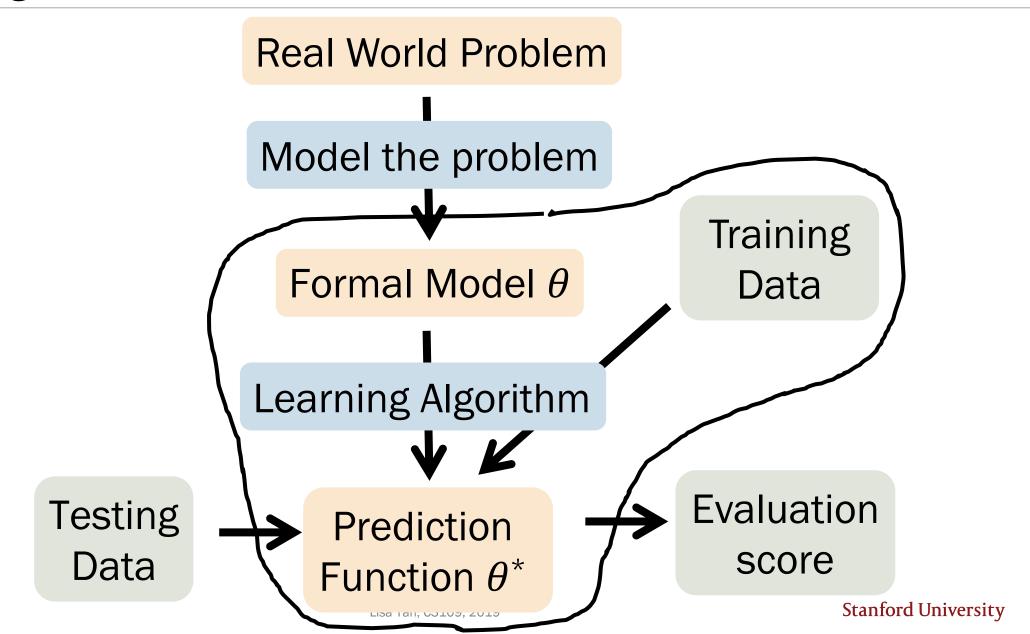
Modeling

(not the focus of this class)

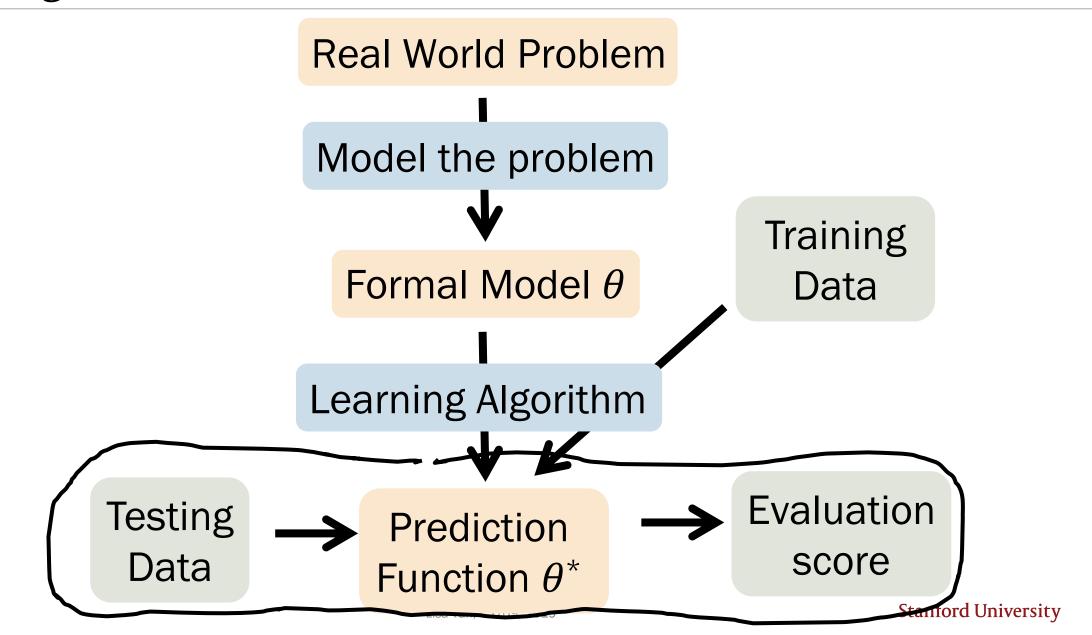
Data



Training



Testing



Machine Learning (formally)

Many different forms of "Machine Learning"

We focus on the problem of prediction based on observations.

Goal

Based on observed X, predict unseen Y

Features

Vector **X** of *m* observed variables

$$\boldsymbol{X} = (X_1, X_2, \dots, X_m)$$

Output

Variable *Y* (also called class label)

Model

 $\widehat{Y} = g(X)$, a function of observations X

Classification

prediction when Y is discrete

Regression

prediction when Y is continuous

Training data

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

 n datapoints, generated i.i.d.

Each datapoint i is $(x^{(i)}, y^{(i)})$:

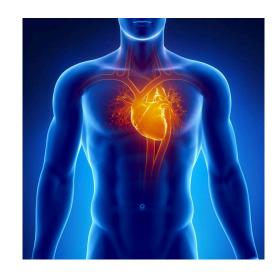
- m features: $\mathbf{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)})$
- A single output $y^{(i)}$
- Independent of all other datapoints

Training Goal:

Use these *n* datapoints to learn a model $\hat{Y} = g(X)$ that predicts Y

Example datasets

Heart



Ancestry

Netflix

Classification terminology check

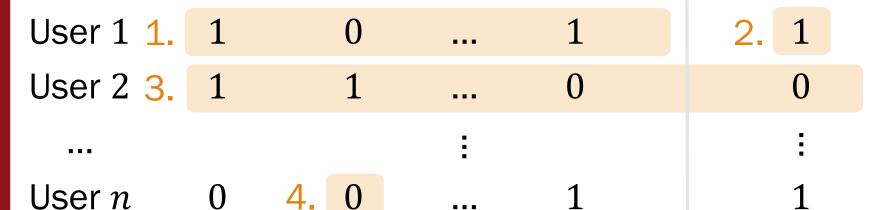
Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Movie 1

Movie 2

Movie *m*

Output



A. $x^{(i)}$ B. $y^{(i)}$

1: like movie

0: dislike movie

Classification terminology check

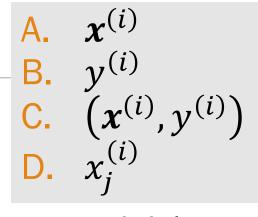
Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Movie 1

Movie 2

Movie m

Output



i: i-th user *j*: movie *j*

1: like movie

0: dislike movie

User 1 1.
 1
 0
 ...
 1
 2.
 1

 User 2 3.
 1
 1
 ...
 0
 0

 ...

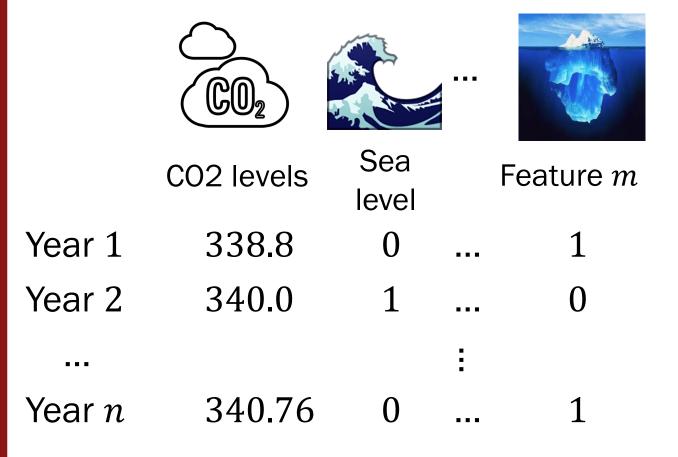
$$\vdots$$
 \vdots
 \vdots

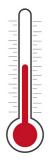
 User n
 0
 4.
 0
 ...
 1
 1

1. $x^{(i)}$

Regression: Predicting real numbers

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$



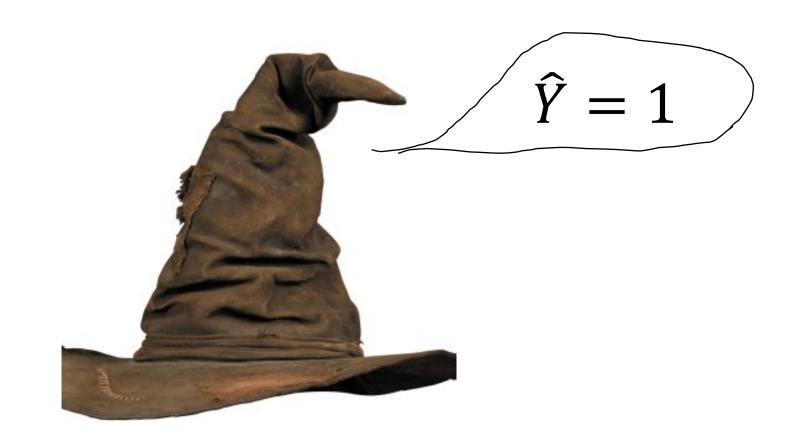


Global Land-Ocean temperature

Output

0.26 0.32 : 0.14

Classification: Harry Potter Sorting Hat



$$X = (1, 1, 1, 0, 0, ..., 1)$$

Today's plan

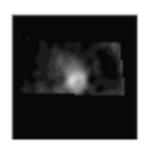
Maximum A Posteriori

- Picking a conjugate distribution as your prior
- Laplace smoothing

Machine Learning

- Inefficient classification: Brute force Bayes
- Naïve Bayes

Classification: Having a healthy heart



Feature 1

Patient 1 1

Patient 2 1

Patient n = 0

Output

Feature 1: Region of Interest (ROI) is healthy (1) or unhealthy (0)

How can we predict the class label heart is healthy (1) or unhealthy (0)?

One possible solution: Use Bayes.

Brute force Bayes

Classification (for one patient):

Choose the class label that is most likely given the data.

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(Y \mid X)$$

- $\widehat{P}(Y = 1 \mid x)$: estimated probability a heart is healthy given x
- x: whether region of interest (ROI) is healthy (1) or unhealthy (0)

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

(Bayes' Theorem)

$$= \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

 $(1/\hat{P}(X))$ is a positive constant w.r.t *Y*)

Parameters for Brute Force Bayes

$$\widehat{Y} = \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

Parameters:

- $\widehat{P}(X|Y)$ for all X and Y
- $\widehat{P}(Y)$ for all Y

Conditional probability tables $\hat{P}(X|Y)$

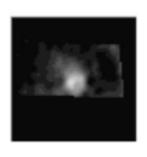
	$\widehat{P}(X Y=0)$		$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	$ heta_1$	$X_1 = 0$	$ heta_3$
$X_1 = 1$	$ heta_2$	$X_1 = 1$	$ heta_4$

Marginal	$\widehat{P}(Y)$		
probability	Y = 0	$ heta_5$	
table $\hat{P}(Y)$	Y = 1	θ_6	

Training Goal:

Use *n* datapoints to learn $2 \cdot 2 + 2 = 6$ parameters.

Training: Estimate parameters $\hat{P}(X|Y)$



	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	$ heta_1$	$ heta_3$
$X_1 = 1$	$ heta_2$	$ heta_4$

Feature 1

Output

Pa	ti۵	nt	1	1
Ia	CIC	110	1	1

Patient 2 1

Patient n = 0

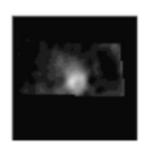
1

÷

$$\widehat{P}(X|Y=0)$$
 and $\widehat{P}(X|Y=1)$ are both multinomials with 2 outcomes!

Use MLE or Laplace (MAP) estimate for parameters P(X|Y)

Training: MLE estimates, $\hat{P}(X|Y)$



Feature 1

Output

Dationt	1	1

Pauent I I

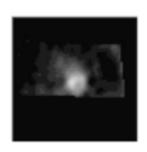
Patient 2 1

Patient n = 0

	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	0.4	0.0
$X_1 = 1$	0.6	1.0

MLE of
$$\widehat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y)}{\#(Y = y)}$$
Just count!

Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$



Patient 1 1

Patient 2 1

Patient n = 0

Output

MAF	

	$\widehat{P}(X Y=0)$	$\widehat{P}(X Y=1)$
$X_1 = 0$	0.4	0.0
$X_1 = 1$	0.6	1.0

MLE of
$$\hat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y)}{\#(Y = y)}$$
Just count!

	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	0.42	0.01
$X_1 = 1$	0.58	0.99

Laplace of
$$\widehat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y) + 1}{\#(Y = y) + 2}$$
Just count + add imaginary trials!

Testing

$$\widehat{Y} = \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

(MAP)	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(X Y=1)$
$X_1 = 0$	0.42	0.01
$X_1 = 1$	0.58	0.99

(MAP)	$\widehat{P}(Y)$
Y = 0	0.10
Y = 1	0.90

New patient has a healthy ROI ($X_1=1$). What is your prediction, \widehat{Y} ?

$$\hat{P}(X_1 = 1 | Y = 0)\hat{P}(Y = 0) = 0.58 \cdot 0.10 \approx 0.058$$

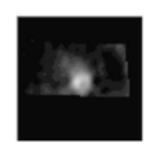
 $\hat{P}(X_1 = 1 | Y = 1)\hat{P}(Y = 1) = 0.99 \cdot 0.90 \approx 0.891$

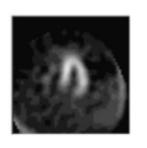
$$A. \quad 0.058 < 0.5 \quad \Rightarrow \quad \widehat{Y} = 1$$

B.
$$0.891 > 0.5 \implies \hat{Y} = 1$$

C.
$$0.058 < 0.891 \Rightarrow \hat{Y} = 1$$

Brute force Bayes: m = 100 (# features)





Feature 1 F	eature 2
-------------	----------

Feature 100

Output

Patient 1 1

Patient 2 1

Patient *n* 0

This won't be too bad, right?

Brute force Bayes: m = 100 (# features)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

$$= \arg \max_{Y \in \{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

Learn parameters through MLE or MAP

- $\hat{P}(Y=1 \mid x)$: estimated probability a heart is healthy given x
- $X = (X_1, X_2, ..., X_{100})$: whether 100 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn?

$$\hat{P}(X|Y)$$
 $\hat{P}(Y)$

A.
$$2 \cdot 2 + 2 = 6$$

B.
$$2 \cdot 100 + 2 = 202$$

$$(C.) 2 \cdot 2^{100} + 2 = a lot$$

This approach requires you to learn $O(2^m)$ parameters.

Stanford University 41

The problem with our Brute force Bayes classifier

$$\widehat{Y} = \arg \max \widehat{P}(Y \mid X)$$
$$y = \{0,1\}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

=
$$\underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(\boldsymbol{X}|Y) \widehat{P}(Y)$$

 $\widehat{P}(X_1, X_2, ..., X_m|Y)$

Estimating this joint conditional distribution will require too many parameters.

What if we could make a simplifying (but naïve) assumptionthat X_1, \dots, X_m are conditionally independent given Y?

Today's plan

Maximum A Posteriori

- Picking a conjugate distribution as your prior
- Laplace smoothing

Machine Learning

Inefficient classification: Brute force Bayes

Naïve Bayes

The Naïve Bayes assumption

 X_1, \dots, X_m are conditionally independent given Y.

Our prediction for *Y* is a function of X Choose the *Y* that is most likely given X

$$\widehat{Y} = g(\mathbf{X}) = \underset{y = \{0,1\}}{\operatorname{arg max}} \widehat{P}(Y \mid \mathbf{X}) = \underset{y = \{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\mathbf{X}|Y)\widehat{P}(Y)}{\widehat{P}(\mathbf{X})}$$
 (Bayes)

$$= \arg \max_{Y \in \{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

(Normalization constant)

$$= \underset{y=\{0,1\}}{\arg \max} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$
 Naïve Bayes Assumption

Naïve Bayes Classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Training

What is the Big-O of # of parameters we need to learn?

- (A.) O(m)
 - B. $O(2^m)$
- C. other

Naïve Bayes Classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Training

Use MLE or Laplace (MAP)
$$\widehat{P}(\widehat{x})$$

for
$$i = 1, ..., m$$
:
 $\hat{P}(X_i|Y = 0), \hat{P}(X_i|Y = 1)$
 $\hat{P}(Y = 0), \hat{P}(Y = 1)$

Testing

$$\widehat{Y} = \underset{y=\{0,1\}}{\arg\max} \left(\log \widehat{P}(Y) + \sum_{i=1}^{m} \log \widehat{P}(X_i|Y) \right) \text{ (for numeric stability)}$$

and Learn

Naïve Bayes for TV shows

Will a user like the Pokémon TV series?

Observe indicator variables $X = (X_1, X_2)$:

 $X_1 = 1$: "likes Star Wars"

 $X_2 = 1$: "likes Harry Potter"

Output *Y* indicator:

Y = 1: "likes Pokémon"

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Observe indicator vars. $X = (X_1, X_2)$:

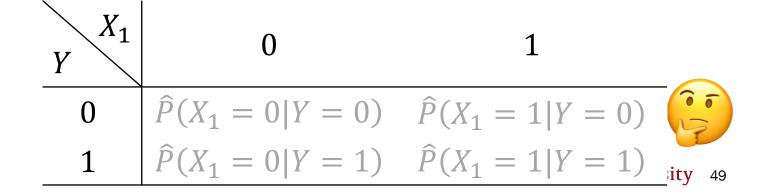
- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1	X_2	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

- 1. How many datapoints (n) are in our train data?
- 2. Compute MLE estimates for $\widehat{P}(X_1|Y)$:



$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

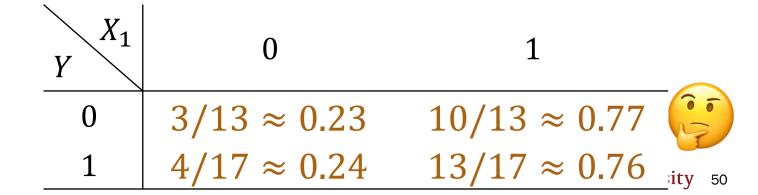
Predict Y: "likes Pokémon"

X_1	0	1	X_2	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

- 1. How many datapoints (n) are in our train data?
- 2. Compute MLE estimates for $\hat{P}(X_1|Y)$:

$$n = 30$$



$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X_2 : "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1	X_2	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

X_1	0	1	X_2	0	1	Y	
0	0.23	0.77	0	5/13 ≈ 0.38	$8/13 \approx 0.62$	0	$13/30 \approx 0.43$
1	0.24	0.76	1	$7/17 \approx 0.41$	$10/17 \approx 0.59$	1	$17/30 \approx 0.57$

Training MLE
$$\hat{P}(X_i = x | Y = y) = \frac{\#(X_i = x, Y = y)}{\#(Y = y)}$$
 estimates: just count. $\hat{P}(Y = y) = \frac{\#(Y = y)}{n}$ Stanford University 51

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1
0	0.23	0.77
1	0.24	0.76

X_2	0	1
0	0.38	0.62
1	0.41	0.59

Y	
0	0.43
1	0.57

Now that we've trained and found parameters, It's time to classify new users!

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1	X_2	
0	0.23	0.77	0	C
1	0.24	0.76	1	C

X_2	0	1	Y	
0	0.38	0.62	0	0.43
1	0.41	0.59	1	0.57
	•			•

Suppose a new person "likes Star Wars" ($X_1 = 1$) but "dislikes Harry Potter" ($X_2 = 0$). Will they like Pokemon? Need to predict Y:

$$\hat{Y} = \arg \max_{y = \{0,1\}} \hat{P}(X|Y)\hat{P}(Y) = \arg \max_{y = \{0,1\}} \hat{P}(X_1|Y)\hat{P}(X_2|Y)\hat{P}(Y)$$

If
$$Y = 0$$
: $\hat{P}(X_1 = 1|Y = 0)\hat{P}(X_2 = 0|Y = 0)\hat{P}(Y = 0) = 0.77 \cdot 0.38 \cdot 0.43 = 0.126$

If
$$Y = 1$$
: $\hat{P}(X_1 = 1|Y = 1)\hat{P}(X_2 = 0|Y = 1)\hat{P}(Y = 1) = 0.76 \cdot 0.41 \cdot 0.57 = 0.178$

Since term is greatest when Y = 1, predict $\hat{Y} = 1$

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1	X_2	0	1
0	3	10	0	5	8
1	4	13	_ 1	7	10

Training data counts

What are our MAP estimates using Laplace smoothing for $\hat{P}(X_i|Y)$ and $\hat{P}(Y)$?

$$\widehat{P}(X_i = x | Y = y):$$

$$A. \frac{\#(X_i=x,Y=y)}{\#(Y=y)}$$

B.
$$\frac{\#(X_i=x,Y=y)+1}{\#(Y=y)+2}$$

$$\frac{\#(X_i = x, Y = y) + 1}{\#(Y = y) + 4}$$

$$\widehat{P}(Y=y)$$
:

A.
$$\frac{\#(Y=y)}{\#(Y=y)+2}$$

$$B. \quad \frac{\#(Y=y)+1}{n}$$

C.
$$\frac{\#(Y=y)+1}{n+2}$$

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X_2 : "likes Harry Potter"

Predict Y: "likes Pokémon"

Y^{X_1}	0	1	Y^{X_2}	0	1
0	3	10	0	5	8
1	4	13	_ 1	7	10

Training data

What are our MAP estimates using Laplace smoothing for $\hat{P}(X_i|Y)$ and $\hat{P}(Y)$?

$$\widehat{P}(X_i = x | Y = y):$$

 $\setminus_{\mathbf{V}}$

$$A. \frac{\#(X_i=x,Y=y)}{\#(Y=y)}$$

B.
$$\frac{\#(X_i=x,Y=y)+1}{\#(Y=y)+2}$$

$$\frac{\#(X_i = x, Y = y) + 1}{\#(Y = y) + 4}$$

$$\widehat{P}(Y=y)$$
:

$$A = \frac{\#(Y=y)}{\#(Y=y)+2}$$

$$B. \frac{\#(Y=y)+1}{n}$$

$$C. \frac{\#(Y=y)+1}{n+2}$$

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X_2 : "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1	X_2	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data

X_1	0	1
0	0.27	0.73
1	0.26	0.74

X_2	0	1 <
0	0.40	0.60
1	0.42	0.58

$$Y$$
0 14/32 \approx 0.44
1 18/32 \approx 0.56

Training MAP estimates: just count + imaginary trials.

$$\hat{P}(X_i = x | Y = y) = \frac{\#(X_i = x, Y = y) + 1}{\#(Y = y) + 2}$$

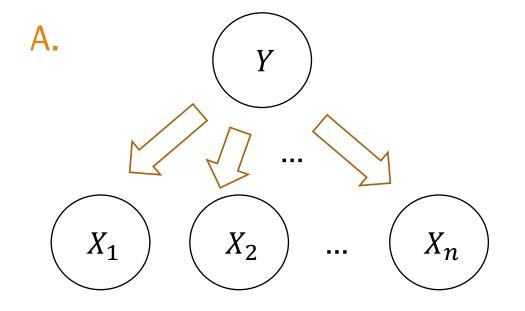
$$\hat{P}(Y = y) = \frac{\#(Y = y) + 1}{n + 2}$$
Stanford University

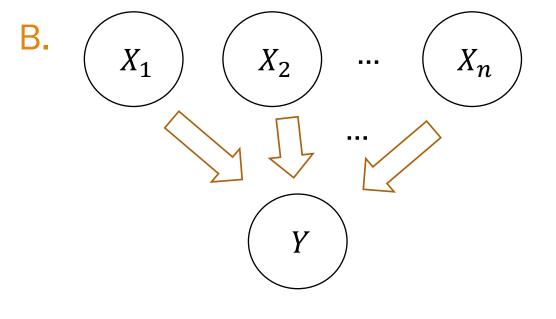
Naïve Bayes Model is a Bayesian Network

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

$$P(X|Y) = \prod_{i=1}^{m} P(X_i|Y) \implies P(X,Y) = P(Y) \prod_{i=1}^{m} P(X_i|Y)$$

Which Bayesian Network encodes this conditional independence?



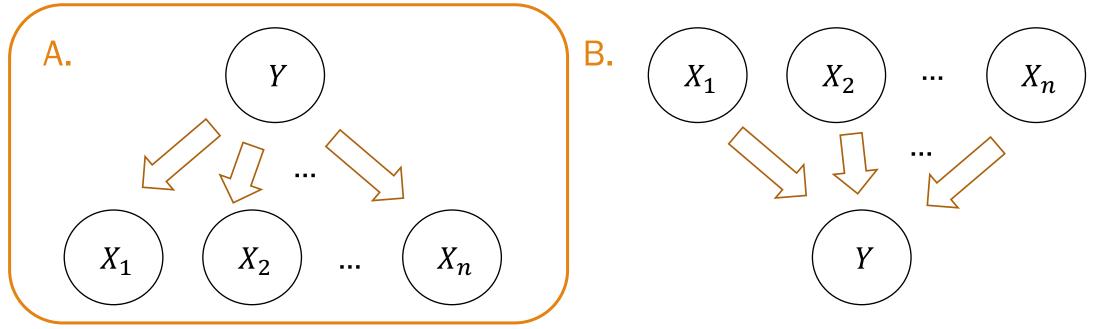


Naïve Bayes Model is a Bayesian Network

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

$$P(X|Y) = \prod_{i=1}^{m} P(X_i|Y) \implies P(X,Y) = P(Y) \prod_{i=1}^{m} P(X_i|Y)$$

Which Bayesian Network encodes this conditional independence?



 X_i are conditionally independent given parent Y

Extra slides

Naïve Bayes with spam classification

What is Bayes doing in my mail server?

Let's get Bayesian on your spam:

Content analysis details:
0.9 RCVD_IN_PBL

1.5 URIBL_WS_SURBL

5.0 URIBL_JP_SURBL

5.0 URIBL_OB_SURBL

5.0 URIBL_SC_SURBL

2.0 URIBL_BLACK

8.0 BAYES 99

(49.5 hits, 7.0 required)
RBL: Received via a relay in Spamhaus PBL
[93.40.189.29 listed in zen.spamhaus.org]
Contains an URL listed in the WS SURBL blocklist
[URIs: recragas.cn]
Contains an URL listed in the JP SURBL blocklist
[URIs: recragas.cn]
Contains an URL listed in the OB SURBL blocklist
[URIs: recragas.cn]
Contains an URL listed in the SC SURBL blocklist
[URIs: recragas.cn]
Contains an URL listed in the URIBL blacklist
[URIs: recragas.cn]
BODY: Bayesian spam probability is 99 to 100%

[score: 1.0000]

A Bayesian Approach to Filtering Junk E-Mail Mehran Sahami* David Heckerman[†] Eric Horvitz[†] Susan Dumais[†] *Gates Building 1A Computer Science Department [†]Microsoft Research Stanford University Redmond, WA 98052-6399 Stanford, CA 94305-9010 {sdumais, heckerma, horvitz}@microsoft.com sahami@cs.stanford.edu Abstract contain offensive material (such as graphic pornography), there is often a higher cost to users of actually In addressing the growing problem of junk E-mail on viewing this mail than simply the time to sort out the the Internet, we examine methods for the automated

Email classification

Goal

Based on email content X, predict if email is spam or not.

Features

Consider a lexicon m words (for English: $m \approx 100,000$).

 $\boldsymbol{X}=(X_1,X_2,\ldots,X_m),\,m$ indicator variables

 $X_i = 1$ if word *i* appeared in document

Output

Y = 1 if email is spam

Note: m is huge. Make Naïve Bayes assumption: $P(X|\text{spam}) = \prod_{i=1}^{n} P(X_i|\text{spam})$

Appearances of words in email are conditionally independent given the email is spam or not

Naïve Bayes Email classification

Train set

$$n$$
 previous emails $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

$$\mathbf{x}^{(j)} = \left(x_1^{(j)}, x_2^{(j)}, \dots, x_m^{(j)}\right)$$
 for each word, whether it appears in email j

 $y^{(j)} = 1$ if spam, 0 if not spam

Training

Estimate probabilities $\hat{P}(Y)$ and $\hat{P}(X_i|Y)$ for all i

Which estimator should we use?

- A. MLE
- B. Laplace estimate (MAP)
- C. Other MAP estimate
- D. Both A and B

Naïve Bayes Email classification

Train set

$$n$$
 previous emails $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

$$\mathbf{x}^{(j)} = \left(x_1^{(j)}, x_2^{(j)}, \dots, x_m^{(j)}\right)$$
 for each word, whether it appears in email j

$$y^{(j)} = 1$$
 if spam, 0 if not spam

Training

Estimate probabilities $\hat{P}(Y)$ and $\hat{P}(X_i|Y)$ for all i

Which estimator should we use?

- A. MLE
- B. Laplace estimate (MAP)
- C. Other MAP estimate
- D. Both A and B

- Many words are likely to not appear at all in the training set, so we want to avoid 0 probabilities.
- Laplace estimate is simple.

Naïve Bayes Email classification

Train set

$$n$$
 previous emails $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

$$\mathbf{x}^{(j)} = \left(x_1^{(j)}, x_2^{(j)}, \dots, x_m^{(j)}\right)$$
 for each word, whether it appears in email j

$$y^{(j)} = 1$$
 if spam, 0 if not spam

Training

Estimate probabilities $\hat{P}(Y)$ and $\hat{P}(X_i|Y)$ for all i

Laplace estimate:
$$\widehat{P}(X_i = 1 | Y = \text{spam}) = \frac{(\# \text{ spam emails with word } i) + 1}{(\text{total } \# \text{ spam emails}) + 2}$$

Testing (Classification)

For a new • Generate $X = (X_1, X_2, ..., X_m)$

email: • Classify as spam or not using Naïve Bayes assumption

$$\widehat{Y} = \underset{y=\{0,1\}}{\arg\max} \left(\log \widehat{P}(Y) + \sum_{i=1}^{m} \log \widehat{P}(X_i|Y) \right) \quad \text{Use logs for numeric stability}_{\text{Stanford University}} \right)$$

How well does Naïve Bayes perform?

After training, you can test with another set of data, called the test set.

• Test set also has known values for Y so we can see how often we were right/wrong in our predictions \hat{Y} .

Typical work flow:

- Have a dataset of 1789 emails (1578 spam, 211 ham)
- Train set: First 1538 emails (by time)
- Test set: Next 251 messages

Evaluation criteria on test set:		Spam		Non-spam	
$\mathbf{precision} = \frac{(\text{# correctly predicted class } Y)}{(\text{# correctly predicted class } Y)}$		Prec.	Recall		•
(# predicted class Y)	Words only	97.1%	94.3%	87.7%	93.4%
$recall = \frac{(\# correctly predicted class Y)}{(\# correctly predicted class Y)}$	Words +				
$\frac{1ecan}{}$ (# real class Y messages)	addtl features	100%	98.3%	96.2%	100%