
24: Naïve Bayes
Lisa Yan
November 15, 2019

1



Lisa Yan, CS109, 2019

Estimating our parameter directly

2

Maximum 
Likelihood 
Estimator

(MLE)

What is the parameter 𝜃
that maximizes the likelihood
of our observed data 
𝑥#, 𝑥%, … , 𝑥' ?

𝜃()* = arg max
1

𝑓 𝑋#, 𝑋%, … , 𝑋'|𝜃

= arg max
1

5
67#

'

log 𝑓 𝑋6|𝜃

Maximum
a Posteriori

(MAP) 
Estimator

Given our observed data 
𝑥#, 𝑥%, … , 𝑥' ,

what is the most likely 
parameter 𝜃?

𝜃(:; = arg max
1

𝑓 𝜃|𝑋#, 𝑋%, … , 𝑋'
posterior distribution of 𝜃

Review

log likelihood

= arg max
1

log 𝑔 𝜃 +5
67#

'

log 𝑓 𝑋6|𝜃

Log-prior of 
𝜃

log likelihood
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Maximum A Posterior (MAP) Estimator
The MAP estimator has 2 interpretations:

In both cases, you must specify your prior, 𝑔 𝜃 .

Key to MAP estimator:

3

𝜃(:; = arg max
1

𝑓 𝜃|𝑋#, 𝑋%, … , 𝑋'
The mode of the
posterior distribution of 𝜃

= arg max
1

log 𝑔 𝜃 +5
67#

'

log 𝑓 𝑋6| 𝜃
The 𝜃 that 
maximizes log prior + 
log-likelihood

You should pick a prior 𝑔 𝜃 that makes computing 
the mode of the posterior distribution is easy.

👉(in this class) Use a conjugate distribution.

Review
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How does MAP work?

4

1. Choose model Bernoulli 𝑝
0. Observe data

2. Choose prior of 𝜃

3. Compute
posterior of 𝜃
given data

4.

𝑛 heads, 𝑚 tails

Beta 𝑎 + 𝑛 + 1, 𝑏 + 𝑚 + 1

𝜃(:; =
arg max

1
𝑓 𝜃|𝑋#, 𝑋%, … , 𝑋'

Mode of Beta:
𝑎 + 𝑛

𝑎 + 𝑛 + 𝑏 +𝑚

log𝑔 𝜃 +5
67#

'

log 𝑓 𝑋6|𝜃

• Differentiate
• Solve

This is
nice!

(choose conjugate)
Beta 𝑎 + 1, 𝑏 + 1(some 𝑔 𝜃 )

⭐
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How does MAP work?

5

1. Choose model Bernoulli 𝑝
0. Observe data

2. Choose prior of 𝜃

3. Compute
posterior of 𝜃
given data

4.

𝑛 heads, 𝑚 tails

Beta 𝑎 + 𝑛 + 1, 𝑏 + 𝑚 + 1

𝜃(:; =
arg max

1
𝑓 𝜃|𝑋#, 𝑋%, … , 𝑋'

Mode of Beta:
𝑎 + 𝑛

𝑎 + 𝑛 + 𝑏 +𝑚

log𝑔 𝜃 +5
67#

'

log 𝑓 𝑋6|𝜃

(choose conjugate)
Beta 𝑎 + 1, 𝑏 + 1(some 𝑔 𝜃 ) 🤔

• Differentiate
• Solve
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🤔
6

Where’d you get them priors?
• Let 𝜃 be the probability a coin turns up heads.
• Model 𝜃 with 2 different priors:
◦ Prior 1: Beta(3,8): 2 imaginary heads,

7 imaginary tails
◦ Prior 2: Beta(7,4): 6 imaginary heads,

3 imaginary tails

Now flip 100 coins and get 58 heads and 42 tails.
1. What are the two posterior distributions?
2. What are the modes of the two posterior distributions?

mode: %
D

mode: ED

prior
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🤔
7

Where’d you get them priors?
• Let 𝜃 be the probability a coin turns up heads.
• Model 𝜃 with 2 different priors:
◦ Prior 1: Beta(3,8): 2 imaginary heads,

7 imaginary tails
◦ Prior 2: Beta(7,4): 6 imaginary heads,

3 imaginary tails

Now flip 100 coins and get 58 heads and 42 tails.
1. What are the two posterior distributions?
2. What are the modes of the two posterior distributions?

mode: %
D

mode: ED

prior

Posterior 1: Beta(61,50) mode: EF#FD

mode: EG#FDPosterior 2: Beta(65,46)
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🤔
8

Where’d you get them priors?
• Let 𝜃 be the probability a coin turns up heads.
• Model 𝜃 with 2 different priors:
◦ Prior 1: Beta(3,8): 2 imaginary heads,

7 imaginary tails
◦ Prior 2: Beta(7,4): 6 imaginary heads,

3 imaginary tails

Now flip 100 coins and get 58 heads and 42 tails.

mode: %
D

mode: ED

prior

posterior

Posterior 1: Beta(61,50) mode: EF#FD

mode: EG#FDPosterior 2: Beta(65,46)

As long as we collect enough data,
posteriors will converge to the true value.👉
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Today’s plan

Maximum A Posteriori
• Picking a conjugate distribution as your prior
• Laplace smoothing

Naïve Bayes

9
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Conjugate distributions
MAP
estimator:

10

𝜃(:; = arg max
1

𝑓 𝜃|𝑋#, 𝑋%, … , 𝑋' The mode of the
posterior distribution of 𝜃

Distribution parameter Prior distribution for 
parameter

Bernoulli 𝑝 Beta
Binomial 𝑝 Beta
Multinomial 𝑝6 Dirichlet
Poisson 𝜆 Gamma
Exponential 𝜆 Gamma
Normal 𝜇 Normal
Normal 𝜎% Inverse Gamma Don’t need to know 

Inverse Gamma…
but it will know you J
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Multinomial is Multiple times the fun
Dirichlet 𝑎#, 𝑎%, … , 𝑎K is the conjugate for Multinomial.
• Generalizes Beta in the

same way Multinomial
generalizes Bernoulli/Binomial:

Prior Dirichlet 𝑎# + 1, 𝑎% + 1,… , 𝑎K + 1
Saw ∑67#K 𝑎6 imaginary trials, 𝑎6 of outcome 𝑖

Experiment Observe 𝑛# + 𝑛% +⋯+ 𝑛K new trials, with 𝑛6 of outcome 𝑖

Posterior Dirichlet 𝑎# + 𝑛# + 1, 𝑎% + 𝑛% + 1,… , 𝑎K + 𝑛K + 1

11

MAP: 𝑝6 =
𝑎6 + 𝑛6

∑67#K 𝑎6 + ∑67#K 𝑛6

𝑓 𝑥#, 𝑥%, … , 𝑥K =
1

𝐵 𝑎#, 𝑎%, … , 𝑎K
P
67#

K

𝑥6
QRS#



Lisa Yan, CS109, 2019

Good times with Gamma
Gamma 𝛼, 𝜆 is the conjugate for Poisson.
• Also conjugate for Exponential,

but we won’t delve into that
• Mode of gamma: 𝛼/𝜆

Prior 𝜃~Gamma 𝛼, 𝜆
Saw 𝛼 total imaginary events
during 𝜆 prior time periods

Experiment Observe 𝑛 events during next 𝑘 time periods

Posterior 𝜃|𝑛 events in 𝑘 periods
~Gamma 𝛼 + 𝑛, 𝜆 + 𝑘

12

𝜃(:; =
𝑎 + 𝑛
𝜆 + 𝑘
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🤔
13

MAP for Poisson
Let 𝜆 be the average # of successes in a time period.

1. What does it mean to have
a prior of 𝜃~Gamma 10,5 ?

Now perform the experiment and see 11 events in next 2 time periods.
2. Given your prior, what is the

posterior distribution?

3. What is 𝜃(:;?

Gamma 𝛼, 𝜆
is conjugate for Poisson Mode: 𝛼/𝜆

Observe 10 imaginary events
in 5 time periods,
i.e., observe at Poisson rate = 2
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🤔
14

MAP for Poisson
Let 𝜆 be the average # of successes in a time period.

1. What does it mean to have
a prior of 𝜃~Gamma 10,5 ?

Now perform the experiment and see 11 events in next 2 time periods.
2. Given your prior, what is the

posterior distribution?

3. What is 𝜃(:;?

Gamma 𝛼, 𝜆
is conjugate for Poisson Mode: 𝛼/𝜆

Observe 10 imaginary events 
in 5 time periods, i.e., observe 
at Poisson rate = 2

𝜃|𝑛 events in 𝑘 periods ~Gamma 21, 7

𝜃(:; = 3, the updated Poisson rate
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Today’s plan

Maximum A Posteriori
• Picking a conjugate distribution as your prior
• Laplace smoothing

Machine Learning
• Inefficient classification: Brute force Bayes
• Naïve Bayes

15
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MAP with Laplace smoothing: a prior which represents one imagined 
observation of each outcome.

Consider our previous 6-sided die.
• Roll the dice 𝑛 = 12 times.
• Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

𝜃(:; with Laplace smoothing:
• Assume Dirichlet prior where each

outcome seen 𝑘 = 1 times.
• Laplace estimate: 

Laplace smoothing

16

Laplace smoothing avoids the case where you estimate a parameter of 0.👉

𝑝# = 3/12, 𝑝% = 2/12, 𝑝] = 0/12,
𝑝G = 3/12, 𝑝^ = 1/12, 𝑝E = 3/12

𝑝6 =
𝑋6 + 1
𝑛 +𝑚

Recall 𝜃()* :

𝑝# = 4/18, 𝑝% = 3/18, 𝑝] = 1/18,
𝑝G = 4/18, 𝑝^ = 2/18, 𝑝E = 4/18

⚠



Break for Friday/
announcements

17

Andy Warhol, Campbell’s 
Soup Cans (1962)
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Announcements

18

Problem Set 6

Released: this afternoon
Due: Wednesday 12/4

(after break)
Covers: Up to next Wed. 11/20

Late day reminder: No late days permitted past last day of the quarter, 12/6

CS109 Contest

Due: Monday 12/2 11:59pm
Note: All serious submissions will

get some extra credit

(Friday)
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Today’s plan

Maximum A Posteriori
• Picking a conjugate distribution as your prior
• Laplace smoothing

Machine Learning
• Inefficient classification: Brute force Bayes
• Naïve Bayes

19



Lisa Yan, CS109, 2019
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Our path

✅

(lite)

𝜃()*a𝑋, 𝑆%

next

𝜃(:;
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Real World Problem

Formal Model 𝜃

Prediction 
Function 𝜃*

Model the problem

Learning Algorithm

Testing
Data

Training 
Data

Evaluation
score

Supervised Learning
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Real World Problem

Formal Model 𝜃

Prediction 
Function 𝜃*

Model the problem

Learning Algorithm

Testing
Data

Training 
Data

Evaluation
score

Modeling

(not the focus of 
this class)
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Real World Problem

Formal Model 𝜃

Prediction 
Function 𝜃*

Model the problem

Learning Algorithm

Testing
Data

Training 
Data

Evaluation
score

Training



Lisa Yan, CS109, 2019

Real World Problem

Formal Model 𝜃

Prediction 
Function 𝜃*

Model the problem

Learning Algorithm

Testing
Data

Training 
Data

Evaluation
score

Testing
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Machine Learning (formally)
Many different forms of “Machine Learning”
• We focus on the problem of prediction based on observations.

Goal Based on observed 𝑿, predict unseen 𝑌
• Features Vector 𝑿 of 𝑚 observed variables

𝑿 = 𝑋#, 𝑋%, … , 𝑋K
• Output Variable 𝑌 (also called class label)

Model e𝑌 = 𝑔 𝑿 , a function of observations 𝑿
• Classification prediction when 𝑌 is discrete
• Regression prediction when 𝑌 is continuous

25
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Training data

𝒙 # , 𝑦 # , 𝒙 % , 𝑦 % , …, 𝒙 ' , 𝑦 '

𝑛 datapoints, generated i.i.d.

Each datapoint 𝑖 is 𝒙 6 , 𝑦 6 :
• 𝑚 features: 𝒙 6 = 𝑥#

6 , 𝑥%
6 , … , 𝑥K

6

• A single output 𝑦 6

• Independent of all other datapoints

26

Training Goal: Use these 𝑛 datapoints to learn a
model e𝑌 = 𝑔 𝑿 that predicts 𝑌

Errata: Switched 𝑖 and 𝑗. Updated  11/16 to be consistent with lecture notes
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Example datasets

27

Heart

Ancestry Netflix
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🤔

1. 2.
3.

28

Classification terminology check
Training data: 𝒙 # , 𝑦 # , 𝒙 % , 𝑦 % , …, 𝒙 ' , 𝑦 '

A. 𝒙 6

B. 𝑦 6

C. 𝒙 6 , 𝑦 6

D. 𝑥i
6

…

Movie 1 Movie 2 Movie 𝑚 Output

User 1 1 0 … 1 1
User 2 1 1 … 0 0

…
User 𝑛 0 0 … 1 1

… …

4.

1: like movie
0: dislike movie

Errata: Switched 𝑖 and 𝑗. Updated  11/16 to be consistent with lecture notes
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🤔

User 1 1 0 … 1 1
User 2 1 1 … 0 0

…
User 𝑛 0 0 … 1 1

Errata: Switched 𝑖 and 𝑗. Updated  11/16 to be consistent with lecture notes 29

Classification terminology check
Training data: 𝒙 # , 𝑦 # , 𝒙 % , 𝑦 % , …, 𝒙 ' , 𝑦 '

…

Movie 1 Movie 2 Movie 𝑚 Output

… …
1.

4.

2. 1. 𝒙 6

2. 𝑦 6

3. 𝒙 6 , 𝑦 6

4. 𝑥i
6 = 𝑥%

'

A. 𝒙 6

B. 𝑦 6

C. 𝒙 6 , 𝑦 6

D. 𝑥i
6

1: like movie
0: dislike movie

𝑖: 𝑖-th user
𝑗: movie 𝑗

3.
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Regression: Predicting real numbers

30

Training data: 𝒙 # , 𝑦 # , 𝒙 % , 𝑦 % , …, 𝒙 ' , 𝑦 '

…

CO2 levels Output

… …
Year 1 338.8 0 … 1 0.26
Year 2 340.0 1 … 0 0.32

…
Year 𝑛 340.76 0 … 1 0.14

Feature 𝑚Sea
level

Global Land-
Ocean
temperature
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Classification: Harry Potter Sorting Hat

31

𝑿 = 1, 1, 1, 0, 0, … , 1

e𝑌 = 1
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Today’s plan

Maximum A Posteriori
• Picking a conjugate distribution as your prior
• Laplace smoothing

Machine Learning
• Inefficient classification: Brute force Bayes
• Naïve Bayes

32
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Classification: Having a healthy heart

Feature 1: Region of Interest (ROI) is
healthy (1) or unhealthy (0) 

How can we predict the class label
heart is healthy (1) or unhealthy (0)?

One possible solution: Use Bayes.

33

Patient 1 1 0
Patient 2 1 1

Patient 𝑛 0 1

Feature 1 Output

… …
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Brute force Bayes

34

• e𝑃 𝑌 = 1 | 𝒙 : estimated probability 
a heart is healthy given 𝒙

• 𝒙: whether region of interest (ROI) 
is healthy (1) or unhealthy (0)

e𝑌 = arg max
n7 F,#

e𝑃 𝑌 | 𝑿

= arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌
e𝑃 𝑿

Classification (for one patient):
Choose the class label that is most likely given the data.

(Bayes’ Theorem)

= arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌 (1/ e𝑃 𝑿 is a positive
constant w.r.t 𝑌)
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Parameters for Brute Force Bayes
Parameters:
• e𝑃 𝑿|𝑌 for all 𝑿 and 𝑌
• e𝑃 𝑌 for all 𝑌

35

e𝑌 = arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌

e𝑃 𝑿|𝑌 = 0
𝑋# = 0 𝜃#
𝑋# = 1 𝜃%

Conditional probability 
tables e𝑃 𝑿|𝑌

Marginal 
probability 
table e𝑃 𝑌

Training 
Goal:

Use 𝑛 datapoints to learn
2 ⋅ 2 + 2 = 6 parameters.

e𝑃 𝑿|𝑌 = 1
𝑋# = 0 𝜃]
𝑋# = 1 𝜃G

e𝑃 𝑌
𝑌 = 0 𝜃^
𝑌 = 1 𝜃E
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Training: Estimate parameters e𝑃 𝑿|𝑌

36

👉 Use MLE or Laplace (MAP) 
estimate for parameters 𝑃 𝑿|𝑌

e𝑃 𝑿|𝑌 = 0 e𝑃 𝑿|𝑌 = 1
𝑋# = 0 𝜃# 𝜃]
𝑋# = 1 𝜃% 𝜃G

e𝑃 𝑿|𝑌 = 0 and e𝑃 𝑿|𝑌 = 1
are both multinomials with 2 outcomes!

Patient 1 1 0
Patient 2 1 1

Patient 𝑛 0 1

Feature 1 Output

… …
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Training: MLE estimates, e𝑃 𝑿|𝑌

37

e𝑃 𝑿|𝑌 = 0 e𝑃 𝑿|𝑌 = 1
𝑋# = 0 0.4 0.0
𝑋# = 1 0.6 1.0

MLE of e𝑃 𝑋# = 𝑥|𝑌 = 𝑦 =
# 𝑋# = 𝑥,𝑌 = 𝑦

# 𝑌 = 𝑦MLE
Just count!

Patient 1 1 0
Patient 2 1 1

Patient 𝑛 0 1

Feature 1 Output

… …
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Patient 1 1 0
Patient 2 1 1

Patient 𝑛 0 1

Training: Laplace (MAP) estimates, e𝑃 𝑿|𝑌

38

Feature 1 Output

… …

e𝑃 𝑿|𝑌 = 0 e𝑃 𝑿|𝑌 = 1
𝑋# = 0 0.4 0.0
𝑋# = 1 0.6 1.0

MLE of e𝑃 𝑋# = 𝑥|𝑌 = 𝑦 =
# 𝑋# = 𝑥,𝑌 = 𝑦

# 𝑌 = 𝑦MLE
Just count!

e𝑃 𝑿|𝑌 = 0 e𝑃 𝑿|𝑌 = 1
𝑋# = 0 0.42 0.01
𝑋# = 1 0.58 0.99

Laplace of e𝑃 𝑋# = 𝑥|𝑌 = 𝑦 =
# 𝑋# = 𝑥,𝑌 = 𝑦 + 1

# 𝑌 = 𝑦 + 2Just count + add imaginary trials!

MAP
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🤔
39

Testing

New patient has a healthy ROI (𝑋# = 1). What is your prediction, e𝑌?
e𝑃 𝑋# = 1|𝑌 = 0 e𝑃 𝑌 = 0 = 0.58 ⋅ 0.10 ≈ 0.058
e𝑃 𝑋# = 1|𝑌 = 1 e𝑃 𝑌 = 1 = 0.99 ⋅ 0.90 ≈ 0.891

A. 0.058 < 0.5 ⇒ e𝑌 = 1
B. 0.891 > 0.5 ⇒ e𝑌 = 1
C. 0.058 < 0.891 ⇒ e𝑌 = 1

e𝑌 = arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌

e𝑃 𝑿|𝑌 = 0 e𝑃 𝑿|𝑌 = 1
𝑋# = 0 0.42 0.01
𝑋# = 1 0.58 0.99

e𝑃 𝑌
𝑌 = 0 0.10
𝑌 = 1 0.90

(MAP) (MAP)
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Brute force Bayes: 𝑚 = 100 (# features)

40

…

Feature 1 Feature 2 Feature 100 Output

Patient 1 1 0 … 1 1
Patient 2 1 1 … 0 0

…
Patient 𝑛 0 0 … 1 1

… …

This won’t be
too bad, right?
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🤔
41

Brute force Bayes: 𝑚 = 100 (# features)
• e𝑃 𝑌 = 1 | 𝒙 : estimated probability a 

heart is healthy given 𝒙
• 𝑿 = 𝑋#, 𝑋%, … , 𝑋#FF : whether 100

regions of interest (ROI) are healthy (1) 
or unhealthy (0)

= arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌

How many parameters do we 
have to learn?

A. 2 ⋅ 2 + 2 = 6
B. 2 ⋅ 100 + 2 = 202
C. 2 ⋅ 2#FF + 2 = a lot

e𝑃 𝑿|𝑌 e𝑃 𝑌

Learn parameters
through MLE or MAP

👉 This approach requires you to 
learn 𝑂 2K parameters.

e𝑌 = arg max
n7 F,#

e𝑃 𝑌 | 𝑿

= arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌
e𝑃 𝑿
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The problem with our Brute force Bayes classifier

42

e𝑌 = arg max
n7 F,#

e𝑃 𝑌 | 𝑿

= arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌
e𝑃 𝑿

= arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌

e𝑃 𝑋#, 𝑋%, … , 𝑋K|𝑌
Estimating this joint conditional 
distribution will require too many 
parameters.

What if we could make a simplifying (but naïve) assumption–
that 𝑋#,… , 𝑋K are conditionally independent given 𝑌?
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Today’s plan

Maximum A Posteriori
• Picking a conjugate distribution as your prior
• Laplace smoothing

Machine Learning
• Inefficient classification: Brute force Bayes
• Naïve Bayes

43
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The Naïve Bayes assumption

𝑋#, … , 𝑋K are conditionally independent given 𝑌.

44

e𝑌 = 𝑔 𝑿 = arg max
n7 F,#

e𝑃 𝑌 | 𝑿 = arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌
e𝑃 𝑿

= arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌

Our prediction for 𝑌
is a function of 𝑿

Choose the 𝑌 that is 
most likely given 𝑿

= arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌 Naïve Bayes 
Assumption

(Bayes)

(Normalization constant)
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🤔
45

Naïve Bayes Classifier

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌

45

Training
What is the Big-O of # of 
parameters we need to learn?
A. 𝑂 𝑚
B. 𝑂 2K
C. other
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Naïve Bayes Classifier

46

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌

46

for 𝑖 = 1,… ,𝑚:

e𝑃 𝑌 = 0 , e𝑃 𝑌 = 1
e𝑃 𝑋6|𝑌 = 0 , e𝑃 𝑋6|𝑌 = 1

Testing e𝑌 = arg max
n7 F,#

log e𝑃 𝑌 +5
67#

K

log e𝑃 𝑋6|𝑌 (for numeric 
stability)

Training Use MLE or
Laplace (MAP)



and Learn
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Naïve Bayes for TV shows

Will a user like the Pokémon TV series?

48

Observe indicator variables 𝑿 = 𝑋#, 𝑋% :

𝑋# = 1:
“likes Star Wars”

𝑋% = 1:
“likes Harry Potter”

Output 𝑌 indicator:

𝑌 = 1:
“likes Pokémon”
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Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋#, 𝑋% :
• 𝑋#: “likes Star Wars”
• 𝑋%: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

1. How many datapoints (𝑛)
are in our train data?

2. Compute MLE estimates
for e𝑃 𝑋#|𝑌 :

Training data counts

𝑋#
𝑌 0 1

0 3 10
1 4 13

𝑋%
𝑌 0 1

0 5 8
1 7 10

𝑋#
𝑌 0 1

0 e𝑃 𝑋# = 0|𝑌 = 0 e𝑃 𝑋# = 1|𝑌 = 0
1 e𝑃 𝑋# = 0|𝑌 = 1 e𝑃 𝑋# = 1|𝑌 = 1

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌
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🤔

𝑋#
𝑌 0 1

0 e𝑃 𝑋# = 0|𝑌 = 0 e𝑃 𝑋# = 1|𝑌 = 0
1 e𝑃 𝑋# = 0|𝑌 = 1 e𝑃 𝑋# = 1|𝑌 = 1 50

Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋#, 𝑋% :
• 𝑋#: “likes Star Wars”
• 𝑋%: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

1. How many datapoints (𝑛)
are in our train data?

2. Compute MLE estimates
for e𝑃 𝑋#|𝑌 :

𝑋#
𝑌 0 1

0 3 10
1 4 13

𝑋%
𝑌 0 1

0 5 8
1 7 10

𝑛 = 30

3/13 ≈ 0.23 10/13 ≈ 0.77
4/17 ≈ 0.24 13/17 ≈ 0.76

Training data counts

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌
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Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋#, 𝑋% :
• 𝑋#: “likes Star Wars”
• 𝑋%: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

51

Training data counts

𝑋#
𝑌 0 1

0 3 10
1 4 13

𝑋%
𝑌 0 1

0 5 8
1 7 10

𝑌
0 13/30 ≈ 0.43
1 17/30 ≈ 0.57

𝑋%
𝑌 0 1

0 5/13 ≈ 0.38 8/13 ≈ 0.62
1 7/17 ≈ 0.41 10/17 ≈ 0.59

𝑋#
𝑌 0 1

0 0.23 0.77
1 0.24 0.76

👉
Training MLE 
estimates: just 

count.

e𝑃 𝑋6 = 𝑥|𝑌 = 𝑦 =
# 𝑋6 = 𝑥,𝑌 = 𝑦

# 𝑌 = 𝑦
e𝑃 𝑌 = 𝑦 =

# 𝑌 = 𝑦
𝑛

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌
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Training : Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋#, 𝑋% :
• 𝑋#: “likes Star Wars”
• 𝑋%: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

52

𝑋#
𝑌 0 1

0 0.23 0.77
1 0.24 0.76

𝑋%
𝑌 0 1

0 0.38 0.62
1 0.41 0.59

𝑌
0 0.43
1 0.57

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌

Now that we’ve trained and found parameters,
It’s time to classify new users!



Lisa Yan, CS109, 2019

Testing: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋#, 𝑋% :
• 𝑋#: “likes Star Wars”
• 𝑋%: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

Suppose a new person “likes Star Wars” (𝑋# = 1) but “dislikes Harry Potter” (𝑋% = 0).
Will they like Pokemon? Need to predict 𝑌:

53

𝑋#
𝑌 0 1

0 0.23 0.77
1 0.24 0.76

𝑋%
𝑌 0 1

0 0.38 0.62
1 0.41 0.59

𝑌
0 0.43
1 0.57

e𝑌 = arg max
n7 F,#

e𝑃 𝑿|𝑌 e𝑃 𝑌 = arg max
n7 F,#

e𝑃 𝑋#|𝑌 e𝑃 𝑋%|𝑌 e𝑃 𝑌

If 𝑌 = 0: e𝑃 𝑋# = 1|𝑌 = 0 e𝑃 𝑋% = 0|𝑌 = 0 e𝑃 𝑌 = 0 = 0.77 ⋅ 0.38 ⋅ 0.43 = 0.126

If 𝑌 = 1: e𝑃 𝑋# = 1|𝑌 = 1 e𝑃 𝑋% = 0|𝑌 = 1 e𝑃 𝑌 = 1 = 0.76 ⋅ 0.41 ⋅ 0.57 = 0.178

Since term is greatest when Y = 1, predict e𝑌 = 1

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌
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Training: Naïve Bayes for TV shows (MAP)
Observe indicator vars. 𝑿 = 𝑋#, 𝑋% :
• 𝑋#: “likes Star Wars”
• 𝑋%: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

What are our MAP estimates
using Laplace smoothing
for e𝑃 𝑋6|𝑌 and e𝑃 𝑌 ?

Training data counts

𝑋#
𝑌 0 1

0 3 10
1 4 13

𝑋%
𝑌 0 1

0 5 8
1 7 10

e𝑃 𝑋6 = 𝑥|𝑌 = 𝑦 : 

A. # wR7x,y7n
# y7n

B. # wR7x,y7n z#
# y7n z%

C. # wR7x,y7n z#
# y7n zG

e𝑃 𝑌 = 𝑦 : 

A. # y7n
# y7n z%

B. # y7n z#
'

C. # y7n z#
'z%

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌
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Training: Naïve Bayes for TV shows (MAP)
Observe indicator vars. 𝑿 = 𝑋#, 𝑋% :
• 𝑋#: “likes Star Wars”
• 𝑋%: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

What are our MAP estimates
using Laplace smoothing
for e𝑃 𝑋6|𝑌 and e𝑃 𝑌 ?

Training data

𝑋#
𝑌 0 1

0 3 10
1 4 13

𝑋%
𝑌 0 1

0 5 8
1 7 10

e𝑃 𝑋6 = 𝑥|𝑌 = 𝑦 : 

A. # wR7x,y7n
# y7n

B. # wR7x,y7n z#
# y7n z%

C. # wR7x,y7n z#
# y7n zG

e𝑃 𝑌 = 𝑦 : 

A. # y7n
# y7n z%

B. # y7n z#
'

C. # y7n z#
'z%

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌
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Training: Naïve Bayes for TV shows (MAP)
Observe indicator vars. 𝑿 = 𝑋#, 𝑋% :
• 𝑋#: “likes Star Wars”
• 𝑋%: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

Training data

𝑋#
𝑌 0 1

0 3 10
1 4 13

𝑋%
𝑌 0 1

0 5 8
1 7 10

👉
Training MAP 

estimates: just count + 
imaginary trials.

e𝑃 𝑋6 = 𝑥|𝑌 = 𝑦 =
# 𝑋6 = 𝑥,𝑌 = 𝑦 + 1

# 𝑌 = 𝑦 + 2
e𝑃 𝑌 = 𝑦 =

# 𝑌 = 𝑦 + 1
𝑛 + 2

𝑌
0 14/32 ≈ 0.44
1 18/32 ≈ 0.56

𝑋#
𝑌 0 1

0 0.27 0.73
1 0.26 0.74

𝑋%
𝑌 0 1

0 0.40 0.60
1 0.42 0.58

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌
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Naïve Bayes Model is a Bayesian Network

𝑃 𝑿|𝑌 =P
67#

K

𝑃 𝑋6|𝑌
Naïve Bayes 
Assumption 𝑃 𝑿, 𝑌 = 𝑃 𝑌 P

67#

K

𝑃 𝑋6|𝑌⇒

A. B.𝑌

𝑋# 𝑋%

…

𝑋'… 𝑌

𝑋# 𝑋%

…

𝑋'…

Which Bayesian Network encodes this conditional independence?

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌
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Naïve Bayes Model is a Bayesian Network

Naïve Bayes 
Assumption

Which Bayesian Network encodes this conditional independence?

A. B.𝑌

𝑋# 𝑋%

…

𝑋'… 𝑌

𝑋# 𝑋%

…

𝑋'…

𝑋6 are conditionally independent given parent 𝑌

e𝑌 = arg max
n7 F,#

P
67#

K

e𝑃 𝑋6|𝑌 e𝑃 𝑌

𝑃 𝑿|𝑌 =P
67#

K

𝑃 𝑋6|𝑌 𝑃 𝑿, 𝑌 = 𝑃 𝑌 P
67#

K

𝑃 𝑋6|𝑌⇒
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Extra slides

Naïve Bayes with spam classification

59
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What is Bayes doing in my mail server?

60

Let’s get Bayesian on your spam:
Content analysis details:   (49.5 hits, 7.0 required)
0.9 RCVD_IN_PBL            RBL: Received via a relay in Spamhaus PBL

[93.40.189.29 listed in zen.spamhaus.org]
1.5 URIBL_WS_SURBL         Contains an URL listed in the WS SURBL blocklist

[URIs: recragas.cn]
5.0 URIBL_JP_SURBL         Contains an URL listed in the JP SURBL blocklist

[URIs: recragas.cn]
5.0 URIBL_OB_SURBL         Contains an URL listed in the OB SURBL blocklist

[URIs: recragas.cn]
5.0 URIBL_SC_SURBL         Contains an URL listed in the SC SURBL blocklist

[URIs: recragas.cn]
2.0 URIBL_BLACK            Contains an URL listed in the URIBL blacklist

[URIs: recragas.cn]
8.0 BAYES_99               BODY: Bayesian spam probability is 99 to 100%

[score: 1.0000]
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Email classification
Goal Based on email content 𝑿, predict if email is spam or not.

Features Consider a lexicon 𝑚 words (for English: 𝑚 ≈ 100,000).
𝑿 = 𝑋#, 𝑋%, … , 𝑋K , 𝑚 indicator variables
𝑋6 = 1 if word 𝑖 appeared in document

Output 𝑌 = 1 if email is spam

Note: 𝑚 is huge. Make Naïve Bayes assumption:

61

𝑃 𝑿|spam =P
67#

K

𝑃 𝑋6|spam

Appearances of words in email are conditionally independent 
given the email is spam or not
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Naïve Bayes Email classification

Train set 𝑛 previous emails 𝒙 # , 𝑦 # , 𝒙 % , 𝑦 % , …, 𝒙 ' , 𝑦 '

𝒙 i = 𝑥#
i , 𝑥%

i , … , 𝑥K
i

𝑦 i = 1 if spam, 0 if not spam

for each word, whether it 
appears in email 𝑗

Which estimator should we use?
A. MLE
B. Laplace estimate (MAP)
C. Other MAP estimate
D. Both A and B

Training
Estimate probabilities
e𝑃 𝑌 and e𝑃 𝑋6|𝑌 for all 𝑖
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Naïve Bayes Email classification

Train set 𝑛 previous emails 𝒙 # , 𝑦 # , 𝒙 % , 𝑦 % , …, 𝒙 ' , 𝑦 '

𝒙 i = 𝑥#
i , 𝑥%

i , … , 𝑥K
i

𝑦 i = 1 if spam, 0 if not spam

for each word, whether it 
appears in email 𝑗

• Many words are likely to not appear
at all in the training set, so we
want to avoid 0 probabilities.

• Laplace estimate is simple.

Estimate probabilities
e𝑃 𝑌 and e𝑃 𝑋6|𝑌 for all 𝑖Training

Which estimator should we use?
A. MLE
B. Laplace estimate (MAP)
C. Other MAP estimate
D. Both A and B
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Naïve Bayes Email classification

Train set 𝑛 previous emails 𝒙 # , 𝑦 # , 𝒙 % , 𝑦 % , …, 𝒙 ' , 𝑦 '

𝒙 i = 𝑥#
i , 𝑥%

i , … , 𝑥K
i

𝑦 i = 1 if spam, 0 if not spam

64

for each word, whether it 
appears in email 𝑗

Training
Estimate probabilities
e𝑃 𝑌 and e𝑃 𝑋6|𝑌 for all 𝑖

Laplace 
estimate:

e𝑃 𝑋6 = 1|𝑌 = spam =
# spam emails with word 𝑖 + 1

total # spam emails + 2

Testing
(Classification)

e𝑌 = arg max
n7 F,#

log e𝑃 𝑌 +5
67#

K

log e𝑃 𝑋6|𝑌

For a new 
email:

• Generate 𝑿 = 𝑋#, 𝑋%, … , 𝑋K
• Classify as spam or not using Naïve Bayes assumption

Use logs for
numeric stability
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How well does Naïve Bayes perform?
After training, you can test with another set of data, called the test set.
• Test set also has known values for 𝑌 so we can see how often

we were right/wrong in our predictions e𝑌.
Typical work flow:
• Have a dataset of 1789 emails (1578 spam, 211 ham)
• Train set: First 1538 emails (by time)
• Test set:  Next 251 messages

Evaluation criteria on test set:

65

precision =
# correctly predicted class 𝑌

# predicted class 𝑌

recall =
# correctly predicted class 𝑌

# real class 𝑌 messages

Spam Non-spam
Prec. Recall Prec. Recall

Words only 97.1% 94.3% 87.7% 93.4%
Words +
addtl features 100% 98.3% 96.2% 100%


