25: Logistic Regression

Lisa Yan

November 18, 2019

Multinomial MLE and MAP

Model:

Observe:

$$
p_{i}=\frac{\frac{\mathrm{MLE}}{n_{i}}}{\sum_{i=1}^{m} n_{i}}
$$

Multinomial with m outcomes: p_{i} probability of outcome i
$n_{i}=\#$ of trials with outcome i Total of $\sum_{i=1}^{m} n_{i}$ trials

MAP with Laplace smoothing (Laplace estimate)

$$
p_{i}=\frac{n_{i}+1}{\sum_{i=1}^{m} n_{i}+m}
$$

Classification problem

Feature 1 Feature 2
Feature 100

Patient 1	1	0	\ldots	1
Patient 2	1	1	\ldots	0
$\quad \ldots$			\vdots	
Patient n	0	0	\ldots	1

Output

1
$0 \quad \hat{Y}=\arg \max \hat{P}(Y \mid X)$ $y=\{0,1\}$
:
1 (Predict the Y that is most likely given our observation \boldsymbol{X})

Training: Train set notation errata

Training data: $\left(\boldsymbol{x}^{(1)}, y^{(1)}\right),\left(\boldsymbol{x}^{(2)}, y^{(2)}\right), \ldots,\left(\boldsymbol{x}^{(n)}, y^{(n)}\right) \quad n$ datapoints

Notation consistent with lecture notes (last lecture has been updated):
i-th observation:
$\boldsymbol{x}^{(i)}=\left(x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{m}^{(i)}\right)$
j-th feature of i-th observation:
$x_{j}^{(i)}$

Brute force Bayes Classifier

$$
\begin{array}{rlr}
\hat{Y} & =\underset{y=\{0,1\}}{\arg \max } \hat{P}(Y \mid \boldsymbol{X}) & \begin{array}{l}
\text { (Predict the } Y \text { that is most likely } \\
\text { given our observation } \boldsymbol{X} \text {) }
\end{array} \\
& =\underset{y=\{0,1\}}{\arg \max } \frac{\hat{P}(\boldsymbol{X} \mid Y) \hat{P}(Y)}{\hat{P}(\boldsymbol{X})} & \text { (Bayes' Theorem) } \\
& =\underset{y=\{0,1\}}{\arg \max } \hat{P}(\boldsymbol{X} \mid Y) \hat{P}(Y) & \text { (eliminate normalization constant } \hat{P}(\boldsymbol{X}) \text {) } \\
& \longrightarrow \hat{P}\left(X_{1}, X_{2}, \ldots, X_{m} \mid Y\right) &
\end{array}
$$

Use MLE or Laplace estimates to find $\hat{P}\left(X_{1}, X_{2}, \ldots, X_{m} \mid Y\right)$ and Y

- $\hat{P}\left(X_{1}, X_{2}, \ldots, X_{m} \mid Y=1\right)$: Multinomial, 2^{m} outcomes Total \#
- $\hat{P}\left(X_{1}, X_{2}, \ldots, X_{m} \mid Y=0\right)$: Multinomial, 2^{m} outcomes parameters:
- $\hat{P}(Y)$: Multinomial, 2 outcomes

The problem with our Brute force Bayes classifier

$$
\begin{aligned}
\hat{Y} & =\underset{y=\{0,1\}}{\arg \max } \hat{P}(Y \mid \boldsymbol{X}) \\
& =\underset{y=\{0,1\}}{\arg \max } \frac{\hat{P}(\boldsymbol{X} \mid Y) \hat{P}(Y)}{\hat{P}(\boldsymbol{X})} \\
& =\underset{y=\{0,1\}}{\arg \max } \hat{P}(\boldsymbol{X} \mid Y) \hat{P}(Y)
\end{aligned}
$$

(Predict the Y that is most likely given our observation \boldsymbol{X})
(Bayes' Theorem)
(eliminate normalization constant $\hat{P}(\boldsymbol{X})$)
too many parameters to estimate

What if we could make a simplifying (but naïve) assumptionthat X_{1}, \ldots, X_{m} are conditionally independent given Y ?

The Naïve Bayes assumption

$$
\begin{aligned}
\hat{Y} & =\underset{y=\{0,1\}}{\arg \max } \hat{P}(Y \mid \boldsymbol{X}) \\
& =\underset{y=\{0,1\}}{\arg \max } \frac{\hat{P}(\boldsymbol{X} \mid Y) \hat{P}(Y)}{\hat{P}(\boldsymbol{X})} \\
& =\underset{y=\{0,1\}}{\arg \max } \hat{P}(\boldsymbol{X} \mid Y) \hat{P}(Y) \\
& =\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
\end{aligned}
$$

(Predict the Y that is most likely given our observation \boldsymbol{X})
(Bayes' Theorem)
(eliminate normalization constant $\hat{P}(\boldsymbol{X})$)

Naïve Bayes

Assumption
X_{1}, \ldots, X_{m} are conditionally independent given Y.

Today's plan

Naïve Bayes

Logistic Regression

Naïve Bayes Classifier

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
$$

Training
Use MLE or $\hat{P}\left(X_{i} \mid Y=0\right), \hat{P}\left(X_{i} \mid Y=1\right), \forall i$
Laplace (MAP) $\hat{P}(Y=0), \hat{P}(Y=1)$
Total \# params: $O(m)$

Testing

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\log \hat{P}(Y)+\sum_{i=1}^{m} \log \hat{P}\left(X_{i} \mid Y\right)\right) \text { (for numeric }
$$

and Learn

Naïve Bayes for TV shows

Will a user like the Pokémon TV series?

Input indicator variables $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$:

"likes Star Wars"

$$
X_{2}=1:
$$

"likes Harry Potter"

Output Y indicator:

$Y=1$:
"likes Pokémon"

Training: Naïve Bayes for TV shows (MLE)

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
$$

Observe indicator vars. $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$:

- X_{1} : "likes Star Wars"
- X_{2} : "likes Harry Potter"

Predict Y : "likes Pokémon"

1. How many datapoints (n)

$Y^{X_{1}}$	0	1	$Y x_{2}$	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts are in our train data?
2. How many parameters do we need to estimate?
3. Compute MLE estimates for $\hat{P}\left(X_{1} \mid Y\right)$:

Training: Naïve Bayes for TV shows (MLE)

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
$$

Observe indicator vars. $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$:

- X_{1} : "likes Star Wars"
- X_{2} : "likes Harry Potter"

$$
\text { Predict } Y \text { : "likes Pokémon" }
$$

$Y X_{1}$	0	1	$Y_{Y} X_{2}$	0	1
0	3	10	0	5	8
1	4	13	1	7	10

1. How many datapoints (n) are in our train data?
2. How many parameters do we need to estimate?

$$
n=30
$$

- $\hat{P}\left(X_{1} \mid Y=0\right), \hat{P}\left(X_{1} \mid Y=1\right): 4$ params
- $\hat{P}\left(X_{2} \mid Y=0\right), \hat{P}\left(X_{2} \mid Y=1\right): 4$ params
- $\hat{P}(Y): 2$ params

3. Compute MLE estimates for $\widehat{P}\left(X_{1} \mid Y\right)$:

Training: Naïve Bayes for TV shows (MLE)

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
$$

Observe indicator vars. $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$:

- X_{1} : "likes Star Wars"
- X_{2} : "likes Harry Potter"

Predict Y : "likes Pokémon"

X_{1}	0	1
$Y \bigvee^{\prime}$		
0	3	10
1	4	13

x_{2}	0	1
Y		
0	5	8
1	7	10

Training data counts

1. How many datapoints (n) are in our train data?
2. How many parameters do we need to estimate?
3. Compute MLE estimates for $\hat{P}\left(X_{1} \mid Y\right)$:

$$
n=30
$$

$$
\text { - } \hat{P}\left(X_{1} \mid Y=0\right), \hat{P}\left(X_{1} \mid Y=1\right): 4 \text { params }
$$

$$
\text { - } \hat{P}\left(X_{2} \mid Y=0\right), \hat{P}\left(X_{2} \mid Y=1\right): 4 \text { params }
$$

$$
\text { - } \widehat{P}(Y): 2 \text { params }
$$

X_{1} 0		
	1	
0	$3 / 13 \approx 0.23$	$10 / 13 \approx 0.77$
1	$4 / 17 \approx 0.24$	$13 / 17 \approx 0.76$

Training: Naïve Bayes for TV shows (MLE)

$$
\widehat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
$$

Observe indicator vars. $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$:

- X_{1} : "likes Star Wars"
- X_{2} : "likes Harry Potter"

Predict Y : "likes Pokémon"
MLE estimates of $\hat{P}\left(X_{1} \mid Y\right), \hat{P}\left(X_{2} \mid Y\right), \hat{P}(Y)$:

X_{1}	0	1
Y		
0	3	10
1	4	13

X_{2}	0	1
$Y \sum_{0}$		
0	5	8
1	7	10

Training data counts

| X_{1} 0 1
 Y 0
 0 0.23 0.77
 1 0.24 0.76
 $\left(X_{1} \mid Y\right)$ |
| :---: | :--- | :--- |

Y	
0	$13 / 30 \approx 0.43$
1	$17 / 30 \approx 0.57$
$\hat{P}(Y)$	

Training: Naïve Bayes for TV shows (MLE)

$\hat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)$
Observe indicator vars. $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$:

- X_{1} : "likes Star Wars"
- X_{2} : "likes Harry Potter"

Predict Y : "likes Pokémon"

| X_{1} 0 1
 Y 0
 0 0.23 0.77
 1 0.24 0.76$\quad \hat{P}\left(X_{1} \mid Y\right)$ |
| :---: | :---: | :---: |

$Y X_{2}$	$0 \quad 1$	Y	
0	0.380 .62	0	0.43
1	0.410 .59	1	0.57
$\widehat{P}\left(X_{2} \mid Y\right)$			$\widehat{P}(Y)$

Now that we've trained and found parameters,
It's time to classify new users!

Testing：Naïve Bayes for TV shows（MLE）

$\hat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)$
Observe indicator vars． $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ ：
－X_{1} ：＂likes Star Wars＂
－X_{2} ：＂likes Harry Potter＂
Predict Y ：＂likes Pokémon＂

| X_{1} 0 1
 Y 0
 0 0.23 0.77
 1 0.24 0.76$⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土$ |
| :---: | :---: | :---: |

| X_{2} 0 1
 Y
 0 0.38 0.62
 1 0.41 0.59$⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土$ |
| :---: | :---: | :---: |

Y	
0	0.43
1	0.57

Suppose a new person＂likes Star Wars＂$\left(X_{1}=1\right)$ but＂dislikes Harry Potter＂$\left(X_{2}=0\right)$ ． Will they like Pokemon？Need to predict Y ：

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max } \hat{P}(\boldsymbol{X} \mid Y) \hat{P}(Y) \quad=\underset{y=\{0,1\}}{\arg \max } \hat{P}\left(X_{1} \mid Y\right) \hat{P}\left(X_{2} \mid Y\right) \hat{P}(Y)
$$

If $Y=0: \quad \hat{P}\left(X_{1}=1 \mid Y=0\right) \hat{P}\left(X_{2}=0 \mid Y=0\right) \hat{P}(Y=0)=0.77 \cdot 0.38 \cdot 0.43=0.126$
If $Y=1: \quad \hat{P}\left(X_{1}=1 \mid Y=1\right) \hat{P}\left(X_{2}=0 \mid Y=1\right) \hat{P}(Y=1)=0.76 \cdot 0.41 \cdot 0.57=0.178$
Since term is greatest when $Y=1$ ，predict $\widehat{Y}=1$

Naïve Bayes Classifier

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
$$

We can use MLE or MAP to estimate our parameters.
Let's try using MAP with Laplace smoothing.

Observe indicator vars. $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$:

- X_{1} : "likes Star Wars"
- X_{2} : "likes Harry Potter"

Predict Y : "likes Pokémon"

$Y_{Y}^{X_{1}}$	0	1	$Y x_{2}$	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

$$
\hat{P}\left(X_{i}=x \mid Y=y\right): \quad \hat{P}(Y=y):
$$

What are our MAP estimates using Laplace smoothing
A. $\frac{\#\left(X_{i}=x, Y=y\right)}{\#(Y=y)} \quad$ A. $\frac{\#(Y=y)}{\#(Y=y)+2}$ for $\widehat{P}\left(X_{i} \mid Y\right)$ and $\widehat{P}(Y)$?

$$
\begin{array}{ll}
\text { B. } \frac{\#\left(X_{i}=x, Y=y\right)+1}{\#(Y=y)+2} & \text { B. } \frac{\#(Y=y)+1}{n} \\
\text { C. } \frac{\#\left(X_{i}=x, Y=y\right)+1}{\#(Y=y)+4} & \text { C. } \frac{\#(Y=y)+1}{n+2}
\end{array}
$$

Training: Naïve Bayes for TV shows (MAP) $\quad P=\underset{\substack{\arg \max \\ y=0, y}}{m}\left(\prod_{i=1}^{p} \mathcal{P}\left(X_{i} \mid \gamma\right)\right)^{\mathcal{P}(\gamma)}$

Observe indicator vars. $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$:

- X_{1} : "likes Star Wars"
- X_{2} : "likes Harry Potter"

Predict Y : "likes Pokémon"

$Y_{Y}^{X_{1}}$	0	1	$Y x_{2}$	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

$$
\hat{P}\left(X_{i}=x \mid Y=y\right): \quad \hat{P}(Y=y):
$$

What are our MAP estimates using Laplace smoothing

$$
\text { A. } \frac{\#\left(X_{i}=x, Y=y\right)}{\#(Y=y)} \quad \text { A. } \frac{\#(Y=y)}{\#(Y=y)+2}
$$ for $\hat{P}\left(X_{i} \mid Y\right)$ and $\hat{P}(Y)$?

$$
\begin{array}{ll}
\text { B. } \frac{\#\left(X_{i}=x, Y=y\right)+1}{\#(Y=y)+2} & \text { B. } \frac{\#(Y=y)+1}{n} \\
\text { C. } \frac{\#\left(X_{i}=x, Y=y\right)+1}{\#(Y=y)+4} & \text { C. } \frac{\#(Y=y)+1}{n+2}
\end{array}
$$

Training：Naïve Bayes for TV shows（MAP）

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
$$

Observe indicator vars． $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ ：
－X_{1} ：＂likes Star Wars＂
－X_{2} ：＂likes Harry Potter＂
Predict Y ：＂likes Pokémon＂

X_{1}	0	1
Y		
0	3	10
1	4	13

X_{2}	0	1
0	5	8
1	7	10

| X_{1} 0 1
 Y 0
 0 0.27 0.73
 1 0.26 0.74$⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土$ |
| :---: | :---: | :---: |

		Training data	
$y x_{2}$	$0 \quad 1$	Y	
0	0.400 .60	0	14／32 ≈ 0.44
1	0.420 .58	1	18／32 ≈ 0.56

$$
\begin{aligned}
& \hat{P}\left(X_{i}=x \mid Y=y\right)=\frac{\#\left(X_{i}=x, Y=y\right)+1}{\#(Y=y)+2} \\
& \hat{P}(Y=y)=\frac{\#(Y=y)+1}{n+2} \quad \text { Stanford University } 21
\end{aligned}
$$

Naïve Bayes Classifier

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
$$

What is the intuition behind the Naïve Bayes assumption?

Naïve Bayes Model is a Bayesian Network

$$
\widehat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
$$

Naïve Bayes Assumption

$$
P(\boldsymbol{X} \mid Y)=\prod_{i=1}^{m} P\left(X_{i} \mid Y\right) \quad \Rightarrow \quad P(\boldsymbol{X}, Y)=P(Y) \prod_{i=1}^{m} P\left(X_{i} \mid Y\right)
$$

Which Bayesian Network encodes this conditional independence?

Naïve Bayes Model is a Bayesian Network

$$
\widehat{Y}=\underset{y=\{0,1\}}{\arg \max }\left(\prod_{i=1}^{m} \hat{P}\left(X_{i} \mid Y\right)\right) \hat{P}(Y)
$$

Naïve Bayes Assumption

$$
P(\boldsymbol{X} \mid Y)=\prod_{i=1}^{m} P\left(X_{i} \mid Y\right) \quad \Rightarrow \quad P(\boldsymbol{X}, Y)=P(Y) \prod_{i=1}^{m} P\left(X_{i} \mid Y\right)
$$

Which Bayesian Network encodes this conditional independence?

B.

X_{i} are conditionally independent given parent Y

Break for jokes/
 announcements

Announcements

Problem Set 6
 Due:
 Wednesday 12/4 (after break)
 Covers: Up to end of this week

Late day reminder: No late days permitted past last day of the quarter, 12/6 (Friday)

CS109 Contest

Due: Monday 12/2 11:59pm
Note: All serious submissions will get some extra credit

Today's plan

Naïve Bayes

Logistic Regression

- Chapter 0: Background
- Chapter 1: Big Picture
- Chapter 2: Details
- Chapter 3: Philosophy

Background: Weighted sum

If $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$:

$$
\begin{array}{rlr}
z & =\theta^{T} \boldsymbol{X}=\sum_{j=1}^{m} \theta_{j} X_{j} \quad & \text { Weighted sum } \\
& =\theta_{1} X_{1}+\theta_{2} X_{2}+\cdots+\theta_{m} X_{m}
\end{array}
$$

Weighted sum with an intercept term:

$$
\begin{aligned}
z & =\theta_{0}+\sum_{j=1}^{m} \theta_{j} X_{j} \\
& =\theta_{0} X_{0}+\theta_{1} X_{1}+\theta_{2} X_{2}+\cdots+\theta_{m} X_{m} \quad \text { Define } X_{0}=1 \\
& =\theta^{T} \boldsymbol{X} \quad \text { New } \boldsymbol{X}=\left(1, X_{1}, X_{2}, \ldots, X_{m}\right)
\end{aligned}
$$

Background: Sigmoid function $\sigma(z)$

- The sigmoid function:

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- Sigmoid squashes z to a number between 0 and 1 .

- Recall definition of probability: A number between 0 and 1

Background: Chain Rule

$$
\frac{\partial f(x)}{\partial x}=\frac{\partial f(z)}{\partial z} \frac{\partial z}{\partial x}
$$

Calculus Chain Rule

$$
f(x)=f(z(x))
$$

aka decomposition of composed functions

Today's plan

Naïve Bayes

Logistic Regression

- Chapter 0: Background
- Chapter 1: Big Picture
- Chapter 2: Details
- Chapter 3: Philosophy

From Naïve Bayes to Logistic Regression

Classification goal:

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X})
$$

Predict the Y that is most likely given our observation \boldsymbol{X}

Naïve Bayes Classifier:

- Estimate $P(\boldsymbol{X} \mid Y)$ and $P(Y)$ because $\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X})=\underset{y=\{0,1\}}{\arg \max } P(\boldsymbol{X} \mid Y) P(Y)$
- Actually modeling $P(\boldsymbol{X}, Y)$
- Assume $P(\boldsymbol{X} \mid Y)=P\left(X_{1}, X_{2}, \ldots, X_{n} \mid Y\right)=\prod_{i=1}^{m} P\left(X_{i} \mid Y\right)$

Can we model $P(Y \mid \boldsymbol{X})$ directly?

- Welcome our friend: Logistic Regression!

Logistic Regression

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X})
$$

Predict the Y that is most likely given our observation \boldsymbol{X}

Logistic Regression Model

$$
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right) \begin{aligned}
& \text { models } \\
& P(Y \mid \boldsymbol{X}) \\
& \text { directly }
\end{aligned}
$$

Logistic Regression

$$
P(Y=1 \mid \boldsymbol{X}=x)=\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right)
$$

Logistic Regression Cartoon

θ parameter

Logistic Regression cartoon

Logistic Regression input/output

Components of Logistic Regression

Different predictions for different inputs

Different predictions for different inputs

Parameters affect prediction

$$
x_{3}
$$

Parameters affect prediction

$$
x_{3}
$$

Logistic Regression Model

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X}) \quad \text { where } \quad P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right)
$$

Predict the Y that is most likely given our observation \boldsymbol{X}

- $\sigma(z)=\frac{1}{1+e^{-z}}$, the sigmoid function
- For simplicity, define $x_{0}=1$:

$$
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right)
$$

- Since $P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})+P(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})=1$:

$$
P(Y=0 \mid \boldsymbol{X}=\boldsymbol{x})=1-\sigma\left(\theta^{T} \boldsymbol{x}\right)
$$

Classifying using the sigmoid function

Logistic
Regression
Model

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X}) \quad \text { where } \quad P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right)
$$

Logistic Regression uses the sigmoid function to try and distinguish $y=1$ (blue) points from $y=0$ (red) points.

Classifying using the sigmoid function

Logistic
Regression
Model

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X}) \quad \text { where } \quad P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right)
$$

When do we predict $\hat{Y}=1$?

A. If $\sigma\left(\theta^{T} \boldsymbol{x}\right)>1-\sigma\left(\theta^{T} \boldsymbol{x}\right)$
B. If $\sigma\left(\theta^{T} \boldsymbol{x}\right)>0.5$
C. If $\theta^{T} \boldsymbol{x}>0$
D. All are valid, but C is easiest
E. None/Other

Classifying using the sigmoid function

Logistic
Regression
Model

$$
\widehat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X}) \quad \text { where } \quad P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta_{0}+\sum_{j=1}^{m} \theta_{j} x_{j}\right)
$$

$$
\text { When do we predict } \hat{Y}=1 \text { ? }
$$

A. If $\sigma\left(\theta^{T} \boldsymbol{x}\right)>1-\sigma\left(\theta^{T} \boldsymbol{x}\right)$
B. If $\sigma\left(\theta^{T} \boldsymbol{x}\right)>0.5$
C. If $\theta^{T} x>0$
D. All are valid, but C is easiest
E. None/Other

Naming algorithms

Regression Algorithms

Linear Regression

Classification Algorithms

Naïve Bayes

Logistic Regression

Awesome classifier, terrible name

If Lisa could rename it, she would call it: Sigmoidal Classification

Training: Learning the parameters

Logistic regression gets its intelligence from its parameters $\theta=$ $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{m}\right)$.

- Logistic Regression Model:

$$
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right)
$$

- Want to predict training data as correctly as possible:

$$
\underset{y=\{0,1\}}{\arg \max ^{\max } P\left(Y \mid \boldsymbol{X}=\boldsymbol{x}^{(i)}\right)=y^{(i)}} \begin{aligned}
& \text { as often } \\
& \\
& \text { as possible }
\end{aligned}
$$

- Therefore, choose θ that maximizes the conditional likelihood of observing i.i.d. training data:

$$
L(\theta)=\prod_{i=1}^{n} P\left(Y=y^{(i)} \mid \boldsymbol{X}=\boldsymbol{x}^{(i)}, \theta\right)
$$

During training, find the θ that maximizes log-conditional likelihood of the training data. Use MLE!

Training: Learning the parameters via MLE

0. Add $x_{0}^{(i)}=1$ to each $\boldsymbol{x}^{(i)}$
1. Logistic Regression model:

$$
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right)
$$

2. Compute log-likelihood of training data:

$$
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right)
$$

3. Compute derivative of log-likelihood with respect

$$
\frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}
$$

to each $\theta_{j}, j=0,1, \ldots, m$:

Walk uphill and you will find a local maxima (if your step is small enough).

Logistic regression $L L(\theta)$ is convex

Training: Gradient ascent step

4. Optimize.

$$
\frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}
$$

Repeat many times:
For all thetas:

$$
\begin{aligned}
\theta_{j}^{\text {new }} & =\theta_{j}^{\text {old }}+\eta \cdot \frac{\partial L L\left(\theta^{\text {old }}\right)}{\partial \theta_{j}^{\text {old }}} \\
& =\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} x^{(i)}\right)\right] x_{j}^{(i)}
\end{aligned}
$$

What does this look like in code?

Training: Gradient Ascent

$$
\begin{array}{r}
\text { Gradient } \\
\text { Ascent Step } \\
\theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \text {)}
\end{array}
$$

initialize $\theta_{j}=0$ for $0 \leq \mathrm{j} \leq \mathrm{m}$ repeat many times:
gradient[j] $=0$ for $0 \leq j \leq m$
// compute all gradient[j]'s
// based on n training examples

$$
\theta_{j}+=\eta^{*} \text { gradient[j] for all } 0 \leq j \leq m
$$

Training: Gradient Ascent

initialize $\theta_{j}=0$ for $0 \leq j \leq m$ repeat many times:
gradient[j] = 0 for $0 \leq j \leq m$
for each training example (x, y):
for each $0 \leq j \leq m$:
// update gradient[j] for
// current (x, y) example

$$
\theta_{j}+=\eta^{*} \text { gradient }[j] \text { for all } 0 \leq j \leq m
$$

Training: Gradient Ascent

initialize $\theta_{j}=0$ for $0 \leq j \leq m$ repeat many times:
gradient[j] = 0 for $0 \leq j \leq m$
for each training example (x, y):
for each $0 \leq j \leq m$:

$$
\operatorname{gradient}[\mathrm{j}]+=\left[y-\frac{1}{1+e^{-\theta^{T} x}}\right] x_{j}
$$

$$
\theta_{j}+=\eta^{*} \text { gradient[j] for all } 0 \leq j \leq m
$$

What are important implementation details?

Training: Gradient Ascent

$$
\begin{array}{r}
\text { Gradient } \\
\text { Ascent Step } \\
\theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \text {)}
\end{array}
$$

initialize $\theta_{j}=0$ for $0 \leq j \leq m$ repeat many times:
gradient[j] = 0 for $0 \leq j \leq m$
for each training example (x, y):
for each $0 \leq j \leq m:$

$$
\text { gradient }[j]+=\left[y-\frac{1}{1+e^{-\theta^{T} x}}\right] x_{j}
$$

$$
\theta_{j}+=\eta^{*} \text { gradient[j] for all } 0 \leq j \leq m
$$

Training: Gradient Ascent

$$
\begin{array}{r}
\text { Gradient } \theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)} \text {. }{ }^{(i)} \text { Stent Step }
\end{array}
$$

initialize $\theta_{j}=0$ for $0 \leq \mathrm{j} \leq \mathrm{m}$ repeat many times:
gradient[j] = 0 for $0 \leq j \leq m$
for each training example (x, y):
for each $0 \leq j \leq m:$

$$
\text { gradient }[j]+=\left[y-\frac{1}{1+\left[e^{-\theta^{T} x}\right]} x_{j}\right.
$$

$$
\theta_{j}+=\eta^{*} \text { gradient[j] for all } 0 \leq j \leq m
$$

- x_{j} is j-th feature of input var $x=\left(x_{1}, \ldots, x_{m}\right)$
- Insert $x_{0}=1$ before training

Training: Gradient Ascent

$$
\begin{aligned}
& \text { Gradient } \\
& \text { Ascent Step } \\
& \theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}
\end{aligned}
$$

initialize $\theta_{j}=0$ for $0 \leq j \leq m$ repeat many times:
gradient[j] = 0 for $0 \leq j \leq m$
for each training example (x, y):
for each $0 \leq j \leq m$:

$$
\operatorname{gradient}[\mathrm{j}]+=\left[y-\frac{1}{1+e^{-\theta^{T} x}}\right] x_{j}
$$

$$
\theta_{i}+=\eta^{*} \text { gradient[j] for all } 0 \leq j \leq m
$$

Training: Gradient Ascent

$$
\begin{aligned}
& \text { Gradient } \\
& \text { Ascent Step } \\
& \theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}, ~
\end{aligned}
$$

initialize $\theta_{j}=0$ for $0 \leq j \leq m$ repeat many times:
gradient[j] = 0 for $0 \leq j \leq m$
for each training example (x, y):
for each $0 \leq j \leq m:$

$$
\operatorname{gradient}[j]+=\left[y-\frac{1}{1+e^{-\theta^{T} x}}\right] x_{j}
$$

$\theta_{j}+=\eta$ gradient[j] for all $0 \leq j \leq m$

- x_{j} is j-th feature of input var $x=\left(x_{1}, \ldots, x_{m}\right)$
- Insert $x_{0}=1$ before training
- Finish computing gradient before updating any part of θ
- Learning rate η is a constant you set before training

Training: Gradient Ascent

initialize $\theta_{j}=0$ for $0 \leq j \leq m$ repeat many times:
gradient[j] = 0 for $0 \leq j \leq m$
for each training example (x, y):
for each $0 \leq j \leq m:$

$$
\operatorname{gradient}[j]+=\left[y-\frac{1}{1+e^{-\theta^{T} x}}\right] x_{j}
$$

$$
\theta_{j}+=\eta^{*} \text { gradient[j] for all } 0 \leq j \leq m
$$

- x_{j} is j-th feature of input var $x=\left(x_{1}, \ldots, x_{m}\right)$
- Insert $x_{0}=1$ before training
- Finish computing gradient before updating any part of θ
- Learning rate η is a constant you set before training

Testing: Classification with Logistic Regression

$$
\text { Learn parameters } \theta=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{m}\right)
$$

Training
via gradient ascent:

$$
\theta_{j}^{\text {new }}=\theta_{j}^{\text {old }}+\eta \cdot \sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{\text {old }^{T}} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}
$$

- Compute $\hat{y}=P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right)=\frac{1}{1+e^{-\theta^{T} x}}$
- Classify instance as:

Testing

$$
\left\{\begin{array}{lc}
1 & \hat{y}>0.5, \text { equivalently } \theta^{T} x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

! Parameters θ_{j} are not updated during testing phase

Today's plan

Naïve Bayes

Logistic Regression

- Chapter 0: Background
- Chapter 1: Big Picture
- Chapter 2: Details
- Chapter 3: Philosophy

Introducing notation \hat{y}

Logistic Regression model:

$$
P(Y=y \mid \boldsymbol{X}=\boldsymbol{x})= \begin{cases}\hat{y} & \text { if } y=1 \\ 1-\hat{y} & \text { if } y=0\end{cases}
$$

Prediction:

$$
\hat{Y}=\underset{y=\{0,1\}}{\arg \max } P(Y \mid \boldsymbol{X}=\boldsymbol{x})= \begin{cases}1 & \text { if } \hat{y}>0.5 \\ 0 & \text { otherwise }\end{cases}
$$

Training: Learning the parameters via MLE

0. Add $x_{0}^{(i)}=1$ to each $\boldsymbol{x}^{(i)}$
1. Logistic Regression model:

$$
\begin{gathered}
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\hat{y} \\
\hat{y}=\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{gathered}
$$

2. Compute log-likelihood of training data:

$$
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right)
$$

3. Compute derivative of log-likelihood with respect to each $\theta_{j}, j=0,1, \ldots, m$:

$$
\frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}
$$

Training: Learning the parameters via MLE

0. $\operatorname{Add} x_{0}^{(i)}=1$ to each $x^{(i)}$
1. Logistic Regression model:

$$
\begin{gathered}
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\hat{y} \\
\hat{y}=\sigma\left(\theta^{T} \boldsymbol{x}\right)
\end{gathered}
$$

2. Compute log-likelihood of training data:

$$
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} x^{(i)}\right)\right)
$$

3. Compute derivative How did we get this likelihood function? Iog-likelihood with respect
to each $\theta_{j}, j=0,1, \ldots, m$:

$$
\frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} x^{(i)}\right)\right] x_{j}^{(i)}
$$

Log-likelihood of data

Logistic Regression model:

$$
\begin{array}{rlr}
P(Y=y \mid \boldsymbol{X}=\boldsymbol{x}) & = \begin{cases}\hat{y} & \text { if } y=1 \\
1-\hat{y} & \text { if } y=0\end{cases} & \text { where } \hat{y}= \\
& =(\hat{y})^{y}(1-\hat{y})^{1-y} & \text { (see Bernol } \\
\text { MLE PMF) }
\end{array}
$$

Likelihood of training data:

$$
L(\theta)=\prod_{i=1}^{n} P\left(Y=y^{(i)} \mid \boldsymbol{X}=\boldsymbol{x}^{(i)}, \theta\right)
$$

Notes:

- Actually conditional likelihood
- Still correctly gets correct $\theta_{M L E}$ since \boldsymbol{X}, θ independent
- See lecture notes

Log-likelihood of data

Logistic Regression model:

$$
\begin{array}{rll}
P(Y=y \mid \boldsymbol{X}=\boldsymbol{x}) & =\left\{\begin{array}{lll}
\hat{y} & \text { if } y=1 \\
1-\hat{y} & \text { if } y=0
\end{array}\right. & \text { where } \hat{y}=\sigma\left(\theta^{T} x\right) \\
& =(\hat{y})^{y}(1-\hat{y})^{1-y} & \text { (see Bernoulli } \\
\text { MLE PMF) }
\end{array}
$$

Likelihood of training data:

$$
L(\theta)=\prod_{i=1}^{n} P\left(Y=y^{(i)} \mid X=\boldsymbol{x}^{(i)}, \theta\right)=\prod_{i=1}^{n}\left(\hat{y}^{(i)}\right)^{y^{(i)}}\left(1-\hat{y}^{(i)}\right)^{1-y^{(i)}}
$$

Log-likelihood: $\quad L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)}+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)$

$$
=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right)
$$

Training: Learning the parameters via MLE

0. $\operatorname{Add} x_{0}^{(i)}=1$ to each $x^{(i)}$
1. Logistic Regression model:

$$
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right)
$$

2. Compute log-likelihood of training data:

$$
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} x^{(i)}\right)\right)
$$

3. Compute derivative of log-likelihood with respect

$$
\frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} x^{(i)}\right)\right] x_{j}^{(i)}
$$

to each $\theta_{j}, j=0,1, \ldots, m$:
How did we get this gradient?

Aside: Sigmoid has a beautiful derivative

Sigmoid function:

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

What is $\frac{\partial}{\partial \theta_{j}} \sigma\left(\theta^{T} \boldsymbol{x}\right)$?
A. $\sigma\left(x_{j}\right)\left[1-\sigma\left(x_{j}\right)\right] x_{j}$
B. $\sigma\left(\theta^{T} \boldsymbol{x}\right)\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right)\right] \boldsymbol{x}$
C. $\sigma\left(\theta^{T} \boldsymbol{x}\right)\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right)\right] x_{j}$
D. $\sigma\left(\theta^{T} \boldsymbol{x}\right) x_{j}\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right) x_{j}\right]$
E. None/other

Aside: Sigmoid has a beautiful derivative

Sigmoid function:

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

Derivative:

$$
\frac{d}{d z} \sigma(z)=\sigma(z)[1-\sigma(z)]
$$

What is $\frac{\partial}{\partial \theta_{j}} \sigma\left(\theta^{T} \boldsymbol{x}\right)$?

$$
\text { Let } z=\theta^{T} \boldsymbol{x}=\sum_{k=0}^{m} \theta_{k} x_{k} \text {. }
$$

A. $\sigma\left(x_{j}\right)\left[1-\sigma\left(x_{j}\right)\right] x_{j}$
B. $\sigma\left(\theta^{T} x\right)\left[1-\sigma\left(\theta^{T} x\right)\right] x$

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} \sigma\left(\theta^{T} \boldsymbol{x}\right) & =\frac{\partial}{\partial z} \sigma(z) \cdot \frac{\partial z}{\partial \theta_{j}} \quad \text { (Chain Rule) } \\
& =\sigma\left(\theta^{T} \boldsymbol{x}\right)\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right)\right] x_{j}
\end{aligned}
$$

C. $\sigma\left(\theta^{T} \boldsymbol{x}\right)\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right)\right] x_{j}$
D. $\sigma\left(\theta^{T} \boldsymbol{x}\right) x_{j}\left[1-\sigma\left(\theta^{T} \boldsymbol{x}\right) x_{j}\right]$
E. None/other

Compute gradient of log-conditional likelihood

Find: $\frac{\partial L L(\theta)}{\partial \theta_{j}}$
 where

Log-conditional Likelihood:

$$
L L(\theta)=\sum_{i=1}^{n} y^{(i)} \log \sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right)
$$

Are you ready？

Quora Home
Answer

\square
Notifications
Q Sears
Moments Personal Experiences Important Life Lessons $+5$
What is your best＂I＇ve never been more ready in my life＂ moment？
「 \quad Answer 力 Follow $2 \rightarrow 0$ Request $ふ$ fy $\downarrow 00$1 Answer
Right now！！！
12 views • View Upvoters

Compute gradient of log-likelihood

$$
\begin{align*}
\frac{\partial L L(\theta)}{\partial \theta_{j}} & =\sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}}\left[y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right] \quad \text { Let } \hat{y}^{(i)}=\sigma\left(\theta^{T} x^{(i)}\right) \\
& =\sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}}\left[y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}} \quad \quad \text { (Chain Rule) } \tag{ChainRule}\\
& =\sum_{i=1}^{n}\left[y^{(i)} \frac{1}{\hat{y}^{(i)}}+\left(1-y^{(i)}\right) \frac{1}{1-\hat{y}^{(i)}}\right] \cdot \hat{y}^{(i)}\left(1-\hat{y}^{(i)}\right) x_{j}^{(i)} \tag{calculus}\\
& =\sum_{i=1}^{n}\left[y^{(i)}-\hat{y}^{(i)}\right] x_{j}^{(i)} \quad \quad=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} x^{(i)}\right)\right] x_{j}^{(i)}
\end{align*}
$$

Compute gradient of log-likelihood

$$
\begin{aligned}
& \frac{\partial L L(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}}\left[y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right] \quad \text { Let } \hat{y}^{(i)}=\sigma\left(\theta^{T} x^{(i)}\right) \\
& =\sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}}\left[y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}} \\
& =\sum_{i=1}^{n}\left[y^{(i)} \frac{1}{\hat{y}^{(i)}}+\left(1-y^{(i)}\right) \frac{1}{1-\hat{y}^{(i)}}\right] \cdot \hat{y}^{(i)}\left(1-\hat{y}^{(i)}\right) x_{j}^{(i)} \\
& =\sum_{i=1}^{n}\left[y^{(i)}-\hat{y}^{(i)}\right] x_{j}^{(i)} \quad=\sum_{i=1}^{n}\left[y^{(i)}-\sigma\left(\theta^{T} \boldsymbol{x}^{(i)}\right)\right] x_{j}^{(i)}
\end{aligned}
$$

Today's plan

Naïve Bayes

Logistic Regression

- Chapter 0: Background
- Chapter 1: Big Picture
- Chapter 2: Details
- Chapter 3: Philosophy

Intuition about Logistic Regression

Logistic
Regression
Model

$$
P(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\sigma\left(\theta^{T} \boldsymbol{x}\right) \quad \text { where } \quad \theta^{T} \boldsymbol{x}=\sum_{j=0}^{m} \theta_{j} x_{j}
$$

Logistic Regression is trying to fit a line that separates data instances where $y=1$ from those where $y=0$:

- We call such data (or functions generating the data linearly separable.
- Naïve Bayes is linear too, because there is no interaction between different features.

Data is often not linearly separable

- Not possible to draw a line that successfully separates all the $y=1$ points (green) from the $y=0$ points (red)
- Despite this fact, Logistic Regression and Naive Bayes still often work well in practice

Many tradeoffs in choosing an algorithm

Modeling goal
Generative or discriminative?

Naïve Bayes

$$
P(\boldsymbol{X}, Y)
$$

Generative: could use joint distribution to generate new points (! but you might not need this extra effort)
! Needs parametric form
Continuous input features
(e.g., Gaussian) or discretized buckets (for multinomial features)

Discrete input features

Yes, multi-value discrete data $=$ multinomial $P\left(X_{i} \mid Y\right)$

Logistic Regression

$$
P(Y \mid \boldsymbol{X})
$$

Discriminative: just tries to discriminate $y=0$ vs $y=1$
(cannot generate new points b/c no $P(\boldsymbol{X}, Y))$
\checkmark Yes, easily
! Multi-valued discrete data hard (e.g., if $X_{i} \in\{A, B, C\}$, not necessarily good to encode as $\{1,2,3\}$

