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Multinomial MLE and MAP

Model: Multinomial with m outcomes:
p; probability of outcome i

Observe: n; = # of trials with outcome i
Total of };i%, n; trials

MAP with Laplace smoothing

LE (Laplace estimate)
p; = n; n; + 1
L ., —
i=1 M Pi mon +m
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Classification problem

n -

Feature 1 Feature 2 Feature 100

Patient1 1 0 1
Patient 2 1 1
Patientn 0 0 1

Lisa Yan, CS109, 2019

¥ =argmaxP(Y | X)
y={0,1}

(Predict the Y that is most likely
given our observation X)
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Training: Train set notation errata

Training data: (xV, y®), (x®,y@), (2™, y™W)  n datapoints

Notation consistent with lecture notes (last lecture has been updated):

i-th observation: xW = (xii)’xéi)' xv(v?)

j-th feature of i-th observation: xj(")
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Brute force Bayes Classifier

% D Predict the Y that is most likel
Y = argmax P(Y | X) y e ervation X d
y={0,1} given our observation X)

P(X|V)P(Y)

= darg max = (Bayes’ Theorem)
y=(01}  P(X)

= arg max P(X|Y)P(Y) (eliminate normalization constant P (X))
y={0,1}

P(X{, Xy, o, Xy |Y)

Use MLE or Laplace estimates to find P(Xq, X5, ..., X,y |Y) and Y
P(X{,X,, ..., Xmn|Y = 1): Multinomial, 2™ outcomes  Total #
P(X{,X,, ..., X, |Y = 0): Multinomial, 2™ outcomes  parameters:
P(Y): Multinomial, 2 outcomes 0(2™)

Lisa Yan, C$109, 2019 Stanford University 5




The problem with our Brute force Bayes classifier Review

% D Predict the Y that is most likel
Y = argmax P(Y | X) y e ervation X d
y={0,1} given our observation X)

P(X|V)P(Y)

= darg max = (Bayes’ Theorem)
y=(01}  P(X)

= arg max ﬁ(X|Y)P(Y) (eliminate normalization constant P (X))
y={0,1}

L’ P(X{, X, ...,X,|Y) toomany parameters to estimate

What if we could make a simplifying (but naive) assumption-
that X4, ..., X,,, are conditionally independent given Y?
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The Naive Bayes assumption

vV — D (Predict the Y that is most likely
Y= a;g{ronf}x P(Y l X) given our observation X)

P(X|V)P(Y)

= darg max = (Bayes’ Theorem)
y=(01}  P(X)
= arg max P(X|Y)P(Y) (eliminate normalization constant P (X))
y=10,1}
m
. ~ ~ Naive Bayes
- a;g{f)nf}x (1_[ P(X; lY)) P(Y) Assumption
' i=1

X4, ..., X,, are conditionally independent given Y.
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Today’s plan

=) Naive Bayes

Logistic Regression
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Naive Bayes Classifier

m
¥ = arg max HP(XAY) P(Y)
y=t0,1} \7_3

Use MLE or P(X;|Y = 0),P(X;|Y = 1), Vi

Laplace (MAP) P(Y =0),P(Y =1)
Total # params: O(m)

Training

m
Testing Y = arg max (log P(Y) + z log P(X; |y)) (for numeric
y={0,1} — stability)
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Naive Bayes for TV shows

Will a user like the Pokémon TV series?

Input indicator variables X = (X, X,) : Output Y indicator:

Xz — 1 -
“likes Star Wars” “likes Harry Potter” “likes Pokémon”
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Training: Naive Bayes for TV shows (MLE) "= 35" <H i '”)P(”
Observe indicator vars. X = (X1, X5): 1l o 1 2| 0 1

X;: “likes Star Wars” Y Y

X,: “likes Harry Potter” 0 3 10 0 5 8
Predict Y: “likes Pokémon” 1 4 13 1 7 10

How many datapoints (n) Training data counts

are in our train data?

How many parameters do
we need to estimate?

Compute MLE estimates
for P(X{|Y): \7_9
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Training: Naive Bayes for TV shows (MLE) "=%&% (

::]s

P(X; |Y))I3(Y)

Observe indicator vars. X = (X1, X5):

Xq: “likes Star Wars”
X,: “likes Harry Potter”

Predict Y: “likes Pokémon”
How many datapoints (n)
are in our train data?

How many parameters do
we need to estimate?

Compute MLE estimates
for P(X{|Y):

1 2
v 0 1 v 0 1

3 10 0 5 8
1 4 13 1 7 10

Training data counts

n = 30

P(X{|Y = 0),P(X{|Y = 1): 4 params
P(X,|Y = 0),P(X,|Y = 1): 4 params
P(Y): 2 params

A—.

&
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Training: Naive Bayes for TV shows (MLE) "= 35" (1_[ i '”)Pm
Observe indicator vars. X = (X1, X5): 1l o 1

* X;: “likes Star Wars” Y

* X5,: “likes Harry Potter” 0 3 10
Predict Y: “likes Pokémon” 1 4 13

Training data counts

3. Compute MLE estimates Y 0 1

for P(X,]Y): 0 | 3/13~023 10/13~0.77 (&)
4/17 = 024 13/17 = 0.76 44 .,




Training: Naive Bayes for TV shows (MLE) "= 35" (1_[ % 'Y>)P<Y>
Observe indicator vars. X = (X1, X5): 19 1 2| 9 1
* Xq: “likes Star Wars” Y Y

3 10 0 5 3
Predict Y: “likes Pokémon” 1 4 13 1 7 10

MLE estimates of, X1 [Y), P(X,|Y), P(Y): Mts
o1 % 0 1

* X,: “likes Harry Potter”

Y Y Y
0.23 0.77 0 5/13 = 0.38 8/13 = 0.62 0 | 13/30 = 0.43
1 10.24 0.76 1 7/17 = 041 10/17 = 0.59 1 17/30 = 0.57
P(X1]Y) P(X,|Y) P(Y)
2 Training MLE B(X; = x|Y = y) = 141 =% =)
#(Y =y)

“&/  estimates: just #Y =vy)

Py

count. P(Y =y)=
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Training: Naive Bayes for TV shows (MLE) "= 35" <H i '”)‘B ")
Observe _indicator vars. X = (X1, X5): 1o 1 2l 0 1
Xq: “likes Star Wars” Y Y Y
X, “likes Harry Potter” 0 10.23 0.77 0 |0.38 0.62 0 |0.43
Predict Y: “likes Pokémon” 1 [0.24 0.76 1 ]0.41 0.59 1 |0.57
P(X4|Y) P(X,|Y) P(Y)

Now that we've trained and found parameters,
It’s time to classify new users!
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Testing: Naive Bayes for TV shows (MLE) "= 3&5 <H - '”)P(”
Observe indicator vars. X = (X1, X5): 1o 1 2l 0 1

Xq: “likes Star Wars” Y Y Y

X>: “likes Harry Potter” 0 [0.23 0.77 0 |0.38 0.62 0 | 0.43
Predict Y: “likes Pokémon” 1 |0.24 0.76 1 [0.41 0.59 1 |0.57

Suppose a new person “likes Star Wars” (X; = 1) but “dislikes Harry Potter” (X, = 0).

Will they like Pokemon? Need to predict Y:

Y = argmax P(X|Y)P(Y) = argmaxP(X{|Y)P(X,|Y)P(Y)
y={0,1} y={0,1}

fY =0 PX;=1|Y =0)P(X, =0|Y =0)P(Y =0) =0.77-0.38-0.43 = 0.126

fYy=1. PX;=1Y=1PX,=0|Y=1P(Y=1) =0.76-0.41-0.57 =0.178

Since term is greatest when Y = 1, predict ¥ = 1
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Naive Bayes Classifier

||:§

= arg max( P(X; |Y))13(Y)

y={0,1}

We can use MLE or MAP to estimate our parameters.

Let’s try using MAP with Laplace smoothing.
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Training: Naive Bayes for TV shows (MAP; e H - '”)P(”
Observe indicator vars. X = (X1, X5): 1l o 1 2| 0 1
X;: “likes Star Wars” Y Y
X,: “likes Harry Potter” 0 3 10 0 5 8
Predict Y: “likes Pokémon” 1 4 13 1 7 10
Training data counts
| P(X; = x|Y = y): P(Y =y):
What are our MAP estimates #(X;=x,Y=y) #(Y=y)
using Laplace smoothing #(Y=y) H(Y=y)+2
for P(Xily) and P(Y)? #(Xi=x,Y=y)+1 #(Y=y)+1
#(Y=y)+2 n
#(X;=x,Y=y)+1 #(Y=y)+1 % )
#(Y=y)+4 n+2 K'y

Lisa Yan, CS109, 2019
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Training: Naive Bayes for TV shows (MAP; e H - '”)P(”
Observe indicator vars. X = (X1, X5): 1l o 1 2| 0 1
X;: “likes Star Wars” Y Y
X,: “likes Harry Potter” 0 3 10 0 5 8
Predict Y: “likes Pokémon” 1 4 13 1 7 10
Training data counts
| P(X; = x|Y = y): P(Y =y):
What are our MAP estimates #(X;=x,Y=y) #(Y=y)
using Laplace smoothing #(Y=y) H(Y=y)+2
for P(Xily) and P(Y)? #(Xi=x,Y=y)+1 #(Y=y)+1
#(Y=y)+2 n
#(X;=x,Y=y)+1 #(Y=y)+1 % )
#(Y=y)+4 n+2 K'y

Lisa Yan, CS109, 2019
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Training: Naive Bayes for TV shows (MAP) '~ %% (1_[ i '”)Pm
Observe indicator vars. X = (X1, X5): 1l 0 1 2| 0 1
* X;: “likes Star Wars” Y Y
* X,: “likes Harry Potter” 0 3 10 0 5 8
Predict Y: “likes Pokémon” 1 4 13 1 7 10
Traini
1 2
v 0 1 v 0 1 v
0.27 0.73 0 10.40 0.60 0 | 14/32 = 0.44
1 10.26 0.74 1 10.42 058 1 | 18/32 = 0.56
9 Training MAP P(X,=x|Y =y) = HXi=xY =y)+1 P
w., ©stimates:justcount + B #(Y =y)+2 K:?y
imaginary trials. B(Y = y) = #HY=y)+1 -

Lisa Yan, CS109, 2019 n+ 2 Stanford University 21




Naive Bayes Classifier

||:§

= arg max( P(X; |Y))13(Y)

y={0,1}

What is the intuition behind
the Nailve Bayes assumption?

Lisa Yan, C$109, 2019 Stanford University 22




Naive Bayes Model is a Bayesian Network "~ % @P(XHY))P(”

Nailve Bayes

m m
eeommen P =] [P = P =pPm | [Poain
=1 i=1
Which Bayesian Network encodes this conditional independence?
C C C C \2)
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Naive Bayes Model is a Bayesian Network "~ % @P<Xily>)ﬁ<Y>

Nailve Bayes

Assumption P(le) = HP(Xily) = PXY)= P(Y)HP(XL'W)
Which Bayesian Network encodes this conditional independence?
O OIONO
\@ @ @ Y, @ ()

X; are conditionally independent given parent Y

Stanford University 24




Break for jokes/
announcements




Announcements

\
Problem Set 6
Due: Wednesday 12/4
(after break)
Covers: Up to end of this week

\_

Late day reminder: No late days permitted past last day of the quarter, 12/6 (Friday)

/©S109 Contest N
Due: Monday 12/2 11:59pm
Note: All serious submissions will

\_ get some extra credit

Lisa Yan, C$109, 2019 Stanford University 26




Today’s plan

Logistic Regression

napter O: Background
napter 1: Big Picture
napter 2: Details

napter 3: Philosophy

Lisa Yan, CS109, 2019
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Background: Weighted sum

X = (X, Xy o) X))

m
Weighted sum
— 0Ty — X
z=0"X= z H]X] (aka dot product)
j=1

—_ 81X1 + HZXZ + .-+ Hme

Weighted sum m
with an z=0,+ 2 0;X;
Intercept term: =1

— 80X0 + 61X1 + 82X2 + -+ Hme Define XO =1

—oTx New X = (1, X1, Xz, e s Xom)
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Background: Sigmoid function o(z)

The sigmoid function: 1“82)
1 0.8 +
02) = Trez 06 1
0.4 A
Sigmoid squashes z to 0d 1
a humber between O and 1. '
L I 1 i }O | l l l I 7

10 8 6 4 2 0 2 4 6 8 10
Recall definition of probability:
A number between O and 1

=  g(z) can represent a probability.

Lisa Yan, C$109, 2019 Stanford University 29




Background: Chain Rule

af (x) B 0f(z) 0z Calculus
dx 9z Ox Chain Rule

aka decomposition
f(x) = f(Z(x)) of composed functions

Stanford University 30




Today's plan

4
O O 0

napter 1: Big Picture
napter 2: Details
napter 3: Philosophy
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From Naive Bayes to Logistic Regression

Classification goal: Model P(Y | X)
¥ =argmaxP(Y | X) Predict the Y that is most likely
y={0,1} given our observation X

Naive Bayes Classifier:
Estimate P(X | Y) and P(Y) because arg max P(Y | X) = arg max P(X|Y)P(Y)
Actually modeling P(X,Y) Y=o y=o
Assume P(X|Y) = P(Xy, Xy, oo, Xn|V) = [T, P(X;|Y)

Can we model P(Y | X) directly?
Welcome our friend: Logistic Regression!

Lisa Yan, C$109, 2019 Stanford University 32




Logistic Regression

Y =argmaxP(Y | X) Predict the Y that is most likely
y={0,1} given our observation X

Logistic m el
Regression P(Y =1|X=x)=0| 6, + Z Ojx; | P |X)
Model =1 directly

Lisa Yan, C$109, 2019 Stanford University 33



Logistic Regression

6 parameter

P(Y =1|X = x])
X conditional likelihood

Input features

m
P(Y= 1|X=x) =0 80+28j3€j
j=1

Lisa Yan, C$109, 2019 Stanford University 34




Logistic Regression Cartoon

6 parameter

Lisa Yan, C$109, 2019 Stanford University 35




Logistic Regression cartoon

m
P(Y= 1|X=x) =a(90+29jxj)
=1

]:

Lisa Yan, CS109, 2019 Slides courtesy of Chris Piech Stanford University 36




Logistic Regression input/output

X, input features
10,1,1]
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Components of Logistic Regression

m
0 weights P =1]X =x) = 0(00 t Z foj)
=1

(aka parameters) J=

Lisa Yan, CS109, 2019 Slides courtesy of Chris Piech Stanford University 3s




Components of Logistic Regression

weighted sum

m
P(Y= 1|X=x) =O'(HO+ZHJ'X]')
=1

]:

Lisa Yan, CS109, 2019 Slides courtesy of Chris Piech Stanford University 39




Components of Logistic Regression

P(Y =1|x) >‘)

squashing function
b/tOand 1

m
j=1
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Components of Logistic Regression

prediction

m
P(Y= 1|X=x) =0'(00+Zejxj')
=1

]:

Lisa Yan, CS109, 2019 Slides courtesy of Chris Piech Stanford University 41




Difterent predictions for different inputs

4Qﬂ
2
P(Y = 1|x)
m
- PY=1X=x)=0|06 +Z@.x.
X, input features ( 0 - j 1)

10,1,1]
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Difterent predictions for different inputs

m
| PY=1X=x) =06 +ze-x-
X, input features : =1 i

10,0,1]

Lisa Yan, C$109, 2019 Stanford University 43




Parameters affect prediction

m
P(Y= 1|X=x) =a(90+20jxj)
=1

]:

Lisa Yan, CS109, 2019 Slides courtesy of Chris Piech Stanford University 44




Parameters affect prediction

m
P(Y — 1|X — x) — O'(HO +ZHJX])
=1

]:

Lisa Yan, C$109, 2019 Stanford University 45




Logistic Regression Model

Y = arg max P(Y | X) where P(Y=1|X=x)=0| 0y + z 0ix;
y={0,1} =1

Predict the Y that is most likely

given our observation X models P(Y | X) directly

o(z) = 1+2_Z, the sigmoid function

For simplicity, define x, = 1: PY=1|X=x)=0(0"x)
Since P(Y = 1|1X = x) + P(Y = 0|X = x) = 1:
PY=0X=x)=1-—0(0"x)
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Classifying using the sigmoid function

Logistic ~ m
Model y=01) =

= Logistic Regression uses the

sigmoid function to try and
distinguish y = 1 (blue) points
from y = 0 (red) points.

-

10 8 6 4 2 0 2 4 6 8 10 “

Lisa Yan, CS109, 2019 Stanford University 47




Classifying using the sigmoid function

Logistic ~ m
Model y=01) =

0(2) When do we predict ¥ = 1?
. 1 + % 000 0000 o0 fo(8Tx) > 1 — o (8Tx)
0(2)=1—= 08 7 if ¢(8Tx) > 0.5
0.6 If0Tx > 0
0.4 4 All are valid, but C is easiest
0.2 + None/Other
-o-0—1-0—p—0e-00-0 ——

10 8 6 -4 2 0 2 4 6 8 10 % \‘?J
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Classifying using the sigmoid function

Logistic ~ m
Model y=01) =

0(2) When do we predict ¥ = 1?
. 1 + % 000 0000 o0 fo(8Tx) > 1 — o (8Tx)
0(2)=1—= 08 7 if ¢(8Tx) > 0.5
0.6 If0Tx > 0
0.4 4 All are valid, but C is easiest
0.2 + None/Other
-o-0—1-0—p—0e-00-0 ——

10 8 6 -4 2 0 2 4 6 8 10 % \‘?J
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Naming algorithms

Regression Algorithms Classification Algorithms

Linear Regression 6 Naive Bayes ¢

Logistic Regression g\ij%

L

Awesome classifier,
terrible name

If Lisa could rename it, she would call it: Sigmoidal Classification
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Training: Learning the parameters

Logistic regression gets its intelligence from its parameters 6 =
(6y, 04, ...,0,,).

Logistic Regression Model: P(Y =1|X = x) = 6(8Tx)
Want to predict training | arg max P(Y|X = x®) = y® as often
data as correctly as possible: y={0,1} as possible

Therefore, choose 6 that maximizes n
the conditional likelihood of L(6) = Hp(y = yD|x = x®, )
=1

observing i.i.d. training data:
“=» During training, find the  that

e maximizes log-conditional likelihood
of the training data. Use MLE!
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Training: Learning the parameters via MLE

Add x” = 1 to each x®

Logistic Regression model: PY=1X=x)=0(0"x)
Compute L _ | |
oglikelihood ~ LL(®) = ) yPloga(67x®) + (1 - y®)log (1 - o(67x®))

of training data:

Compute derivative of aLL(Q)

log-likelihood with respect
toeach 6;,j=0,1,..,m

Z[y@ ~a(67x0)] "

Lisa Yan, C$109, 2019 Stanford University 52




Gradient Ascent Review

Walk uphill and you will find a local maxima
(if your step is small enough).

Logistic regression LL(6)
IS convex
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Training: Gradient ascent step

4. Optimize. aLL(H)

Z[y@ G

Repeat many times:

For all thetas:
OLL(6°4)

agold

_Hold_l_n Ely(l) HoldT (1))] ](')

What does this look like in code?

Lisa Yan, C$109, 2019 Stanford University 54
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. . . Gradient =~ L l_ T i
Training: Gradient Ascent Ascent Step & = 67+ 1 Z y® — o (6°14°x®)]

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m

// compute all gradient[j]’s
// based on n training examples

6; += n * gradient[j] for all @ < jJ <m
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. . . Gradient =~ L l_ T i
Training: Gradient Ascent Ascent Step & = 67+ 1 Z y® — o (6°14°x®)]

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m
for each training example (x, y):
for each @ < jJ < m:

// update gradient[j] for
// current (x,y) example

6; += n * gradient[j] for all @ < jJ <m
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. . . Gradient =~ L l_ T i
Training: Gradient Ascent Ascent Step & = 67+ 1 Z y® — o (6°14°x®)]

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m
for each training example (x, y):

for each @ < jJ < m:
1
1+e-0"x

gradient[j] += |y-— X;

What are important

” : : : implementation
6; += n * gradient[j] for all @ < jJ <m details?

~~
o

&

Lisa Yan, CS109, 2019 Stanford University 57



o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 07 +11° Z[y“ (60147 x®)] £

initialize 6, = @ for @ < j <m x;j is j-th feature of
repeat many times: input var x = (xq, ..., Xp)

gradient[j] =0 for @ < j < m
for each training example (x, y):
for each @ < j < m:

gradient[j] += |y -

6; += n * gradient[j] for all @ < jJ <m
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. . . Gradient =~ L l_ T i
Training: Gradient Ascent Ascent Step & = 67+ 1 Z y® — o (6°14°x®)]

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m
for each training example (x, y):

Insert x, = 1 before
training

for each @ < j < m:

: : 1
gradient[j] += b"],4e—e£;2%

6; += n * gradient[j] for all @ < jJ <m

Lisa Yan, C$109, 2019 Stanford University 59




o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 07 +11° Z[y“ (60147 x®)] £

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m

for each training example (x, y): Finish computing
for each @ < j < m: gradient before
-0 T updating any part of 8
dientl 1
gradient[j] += y_1+e-9Tx] X;

6; += n * gradient[j] for all @ < j < mgi2>

Lisa Yan, C$109, 2019 Stanford University 60




o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 07 +11° Z[y“ (60147 x®)] £

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m
for each training example (x, y):

for each @ < jJ < m:
1
1+e-0"x

gradient[j] += |y-— X;

3i'“=Ei gradient[j] for all @ < jJ < m

Lisa Yan, CS109, 2019

Learning rate n is a
constant you set before
training
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o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 07 +11° Z[y“ (60147 x®)] £

initialize 6, = @ for @ < j <m x;j is j-th feature of
repeat many times: input var x = (xq, ..., X)
: : : Insert x, = 1 before
= < 9 <
gradient[j] = 0 for 0 < jJ < m training
for each training example (x, y): Finish computing
for each @ < j < m: gradient before
R . updating any part of 6
radientli7 += [ _ ]x- Learning rate n is a
g L] Y T feoTx| Y constant you set before
training

6; += n * gradient[Jj] for all @ < J < m
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Testing: Classification with Logistic Regression

Training

Testing

Learn parameters 8 = (8,, 04, ..., 0.,)

via gradient n | | |
ascent: 07 =67+ 2 ly® — o (910" x®)| £
=1

Compute y =P(Y =1|X =x) = d(87x) =
Classify instance as:

1+e-0"x

0 otherwise
I Parameters 6; are not updated during testing phase

{1 y > 0.5, equivalently 87x > 0
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Today’s plan

> - Chapter 2: Details
* Chapter 3: Philosophy
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Introducing notation y

Logistic =P =1X=x) =0(08Tx)
Regression
model: y ify=1

1 if$>0.5

Prediction: arg max P (Y| X) {0 otherwise

y={0,1}

Lisa Yan, C$109, 2019 Stanford University 65




Training: Learning the parameters via MLE

Add x” = 1 to each x®

Logistic Regression model: PY=1X=x)=J
y=0(0"x)

Compute .

log-likelihood

LL©) = ) yP1og(67x) + (1 -y ) log (1~ o(6xY))

of training data: ]

Compute derivative of

log-likelihood with respect

aLL 0
toeach 6;,j=0,1,..,m ( )

- 0 fora)
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Training: Learning the parameters via MLE

2. Compute n
log-likelihood _ 0 T (i) NG L aT )
of training data: LL(6) ;y loga(8TxW) + (1—y )log(l a(0Tx ))

(&) How did we get this likelihood function?
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Log-likelihood of data

o 5 ifv=1 .
LOgIStic pry — y1x = x) = {{ =l where § = o(67)
Regression y y=
model: — (Y (1 — \1-Y (see Bernoulli
=)A=y MLE PMF)
Likelihood

n
= — vDx = @
of training data: L(6) HP(Y yV1X = x0,0)

Notes:
Actually conditional likelihood
Still correctly gets correct 0,
since X, 6 independent
See lecture notes
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Log-likelihood of data

o 5 ifv=1 A
LOgIStic pry — y1x = x) = {{ =l where § = o(67)
Regression y y=
model: —_ (NYV(1 _ 51—y (see Bernoulli
=)A= MLE PMF)
Likelihood

- - (D) 11—y @D
_ ‘ ‘ _ oDy — 2+ — 5D (1 — o@D Y
of training data: L(6) 2 P(Y =y@IX =x%,06) U W) 1-3Y)

n
Log-likelihood:  LL(6) = z y®Dlogp® + (1 — y®)log(1 — §®)
=1

n
_ 2 y(i) logo_(eTx(i)) + (1 _ y(i)) log (1 — a(eTx(i)))
i=1
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Training: Learning the parameters via MLE

3. Compute derivative of aLL(Q)

log-likelihood with respect
toeach 6;,j=0,1,..,m

Z[y@ - o(67x0)] "

(&) How did we get this gradient?

Lisa Yan, CS109, 2019 Stanford University 70




Aside: Sigmoid has a beautiful derivative

Sigmoid function: Derivative:
(2) = 1 d B ,
0(2) = 1= EU(Z) =0(2)|1 —0o(2)]

What is 6‘_ O'(HTX)’?

a(x])[l — a(x])]x]

ag(@Tx)[1 —0(0Tx)]x

0(0"x)[1—0a(8"x)]x;

a(0Tx)x;[1 — (8T x)x;] —
None/other &/
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Aside: Sigmoid has a beautiful derivative

Sigmoid function: Derivative:
1 d
0(2) = —— —0(2) = 6(D[1 - o()
.. 0 T _ AT~ —
What is Ty o(6" x)? letz = 0" x ;Hkxk.
0 0 0z
—g(0Tx) = — — (Chain Rule)
50,70 0 = 5,7 54

0(0"x)[1—0a(8"x)]x;
=0(0"x)[1 - a(0"x)]x;

2
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Compute gradient of log-conditional likelihood

J0LL(6)

06,

Find:

where

n

Log-conditional . ; ; ;
Cikelinood:  LH©@ = ) ¥@1oga(67x®) + (1 - y©)log (1 - o(67x®))

=1
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Are you ready?

Quora Home % Answer EB']J Spaces Q Notificationso

Moments Personal Experiences Important Life Lessons +5 /’

What is your best "I've never been more ready in my life"
moment?

7/, Answer 3 Follow -2 42 Request O < B ¥ 2 oo

1 Answer

Right now!!!

3 S \A ‘& ,"".'n
Jiew Upvots

{» Upvote -1 ¥ 3 Share J 4> 000
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Compute gradient of log-likelihood

n
aLaLe(jH) _ Za%j [y 1og(§©) + (1 — yD) log(1 — 9O)] et 9O = o(67x®)
- Zn: O[O log(3®) + (1 - y©) log(1 — 9®)] - 2 -’ (Chain Rule)
i=1 09 00;
" 0 )1 5@ (1 — 5@0)® oul
;[y y(l)-l_(l_y )1_37(1')]'3’ (1-9 )Xj (calculus)

n n
_ E[ya) — 9] x® - z[y(i) — o (67x®@)] x (simplify)
' =1
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Compute gradient of log-likelihood

ILL(6)
06,

n
=Y 0 - o(oTx0)] 10 E5
=1
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Today’s plan

=) < Chapter 3: Philosophy

Lisa Yan, CS109, 2019 Stanford University 77




Intuition about Logistic Regression

Logistic i m
Regression P(Y = 1|X =x) = d(87x) where 67x= zejxj
Model j=0

Logistic Regression is trying to fit
a line that separates data instances
where y = 1 from those where y = 0:

We call such data (or functions
generating the data linearly separabile.

Naive Bayes is linear too, because there is no interaction between
different features.
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Data is often not linearly separable

Not possible to draw a line that successfully separates all the

y = 1 points (green) from the y = 0 points (red)

Despite this fact, Logistic Regression and Naive Bayes still often work
well in practice
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Many tradeoftfs in choosing an algorithm

Naive Bayes Logistic Regression
Modeling goal P(X,Y) P(Y|X)
Generative or Generative: could use joint Discriminative: just tries to
discriminative? distribution to generate new discriminate y =0vsy =1
points (! but you might not (  cannot generate new points
need this extra effort) b/cnoP(X,Y))

' Needs parametric form
Continuous input (e.g., Gaussian) or
features discretized buckets (for
multinomial features)

Yes, easily

! Multi-valued discrete data
Discrete input Yes, multi-value discrete hard (e.g., if X; € {4, B, C}, not

features data = multinomial P(X;|Y) necessarily good to encode as
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