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Multinomial MLE and MAP

2

𝑝" =
𝑛"

∑"&'( 𝑛"

Model: Multinomial with 𝑚 outcomes:
𝑝" probability of outcome 𝑖

Observe: 𝑛" = # of trials with outcome 𝑖
Total of ∑"&'( 𝑛" trials

MLE
MAP with Laplace smoothing

(Laplace estimate)

𝑝" =
𝑛" + 1

∑"&'( 𝑛" + 𝑚

Review
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Classification problem

3

…

Feature 1 Feature 2 Feature 100 Output

Patient 1 1 0 … 1 1
Patient 2 1 1 … 0 0

…
Patient 𝑛 0 0 … 1 1

… …

/𝑌 = arg max
6& 7,'

/𝑃 𝑌 | 𝑿

(Predict the 𝑌 that is most likely
given our observation 𝑿)

Review
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Training: Train set notation errata

Training data: 𝒙 ' , 𝑦 ' , 𝒙 > , 𝑦 > , …, 𝒙 ? , 𝑦 ?

Notation consistent with lecture notes (last lecture has been updated):

𝑖-th observation: 𝒙 " = 𝑥'
" , 𝑥>

" , … , 𝑥(
"

𝑗-th feature of 𝑖-th observation: 𝑥C
"

4

𝑛 datapoints

Review
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Brute force Bayes Classifier

5

= arg max
6& 7,'

/𝑃 𝑿|𝑌 /𝑃 𝑌
/𝑃 𝑿

= arg max
6& 7,'

/𝑃 𝑿|𝑌 /𝑃 𝑌

/𝑌 = arg max
6& 7,'

/𝑃 𝑌 | 𝑿

/𝑃 𝑋', 𝑋>, … , 𝑋(|𝑌

(Predict the 𝑌 that is most likely
given our observation 𝑿)

(Bayes’ Theorem)

Use MLE or Laplace estimates to find /𝑃 𝑋', 𝑋>, … , 𝑋(|𝑌 and 𝑌
• /𝑃 𝑋', 𝑋>, … , 𝑋(|𝑌 = 1 : Multinomial, 2( outcomes
• /𝑃 𝑋', 𝑋>, … , 𝑋(|𝑌 = 0 : Multinomial, 2( outcomes
• /𝑃 𝑌 : Multinomial, 2 outcomes

(eliminate normalization constant /𝑃 𝑿 )

Review

Total # 
parameters:
𝑂 2(
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The problem with our Brute force Bayes classifier

6

= arg max
6& 7,'

/𝑃 𝑿|𝑌 /𝑃 𝑌
/𝑃 𝑿

= arg max
6& 7,'

/𝑃 𝑿|𝑌 /𝑃 𝑌

/𝑌 = arg max
6& 7,'

/𝑃 𝑌 | 𝑿

/𝑃 𝑋', 𝑋>, … , 𝑋(|𝑌 too many parameters to estimate

What if we could make a simplifying (but naïve) assumption–
that 𝑋',… , 𝑋( are conditionally independent given 𝑌?

(Predict the 𝑌 that is most likely
given our observation 𝑿)

(Bayes’ Theorem)

(eliminate normalization constant /𝑃 𝑿 )

Review
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The Naïve Bayes assumption

𝑋', … , 𝑋( are conditionally independent given 𝑌.

7

= arg max
6& 7,'

/𝑃 𝑿|𝑌 /𝑃 𝑌
/𝑃 𝑿

= arg max
6& 7,'

/𝑃 𝑿|𝑌 /𝑃 𝑌

= arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌 Naïve Bayes 
Assumption

/𝑌 = arg max
6& 7,'

/𝑃 𝑌 | 𝑿 (Predict the 𝑌 that is most likely
given our observation 𝑿)

(Bayes’ Theorem)

(eliminate normalization constant /𝑃 𝑿 )



Lisa Yan, CS109, 2019

Today’s plan

Naïve Bayes

Logistic Regression

8
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Naïve Bayes Classifier

9

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌

9

/𝑃 𝑌 = 0 , /𝑃 𝑌 = 1
/𝑃 𝑋"|𝑌 = 0 , /𝑃 𝑋"|𝑌 = 1 , ∀𝑖

Testing /𝑌 = arg max
6& 7,'

log /𝑃 𝑌 +J
"&'

(

log /𝑃 𝑋"|𝑌 (for numeric 
stability)

Training Use MLE or
Laplace (MAP)

Total # params: 𝑂 𝑚



and Learn
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Naïve Bayes for TV shows

Will a user like the Pokémon TV series?

11

Input indicator variables 𝑿 = 𝑋', 𝑋> :

𝑋' = 1:
“likes Star Wars”

𝑋> = 1:
“likes Harry Potter”

Output 𝑌 indicator:

𝑌 = 1:
“likes Pokémon”
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🤔
12

Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋> :
• 𝑋': “likes Star Wars”
• 𝑋>: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

1. How many datapoints (𝑛)
are in our train data?

2. How many parameters do
we need to estimate?

3. Compute MLE estimates
for /𝑃 𝑋'|𝑌 :

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋>
𝑌 0 1

0 5 8
1 7 10

Training data counts

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌
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🤔
13

Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋> :
• 𝑋': “likes Star Wars”
• 𝑋>: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

1. How many datapoints (𝑛)
are in our train data?

2. How many parameters do
we need to estimate?

3. Compute MLE estimates
for /𝑃 𝑋'|𝑌 :

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋>
𝑌 0 1

0 5 8
1 7 10

𝑛 = 30
Training data counts

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌

• /𝑃 𝑋'|𝑌 = 0 , /𝑃 𝑋'|𝑌 = 1 : 4 params
• /𝑃 𝑋>|𝑌 = 0 , /𝑃 𝑋>|𝑌 = 1 : 4 params
• /𝑃 𝑌 : 2 params
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🤔

𝑋'
𝑌 0 1

0 /𝑃 𝑋' = 0|𝑌 = 0 /𝑃 𝑋' = 1|𝑌 = 0
1 /𝑃 𝑋' = 0|𝑌 = 1 /𝑃 𝑋' = 1|𝑌 = 1 14

Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋> :
• 𝑋': “likes Star Wars”
• 𝑋>: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

1. How many datapoints (𝑛)
are in our train data?

2. How many parameters do
we need to estimate?

3. Compute MLE estimates
for /𝑃 𝑋'|𝑌 :

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋>
𝑌 0 1

0 5 8
1 7 10

𝑛 = 30

3/13 ≈ 0.23 10/13 ≈ 0.77
4/17 ≈ 0.24 13/17 ≈ 0.76

Training data counts

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌

• /𝑃 𝑋'|𝑌 = 0 , /𝑃 𝑋'|𝑌 = 1 : 4 params
• /𝑃 𝑋>|𝑌 = 0 , /𝑃 𝑋>|𝑌 = 1 : 4 params
• /𝑃 𝑌 : 2 params
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MLE estimates of /𝑃 𝑋'|𝑌 , /𝑃 𝑋>|𝑌 , /𝑃 𝑌 :

Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋> :
• 𝑋': “likes Star Wars”
• 𝑋>: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

15

Training data counts

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋>
𝑌 0 1

0 5 8
1 7 10

𝑌
0 13/30 ≈ 0.43
1 17/30 ≈ 0.57

𝑋>
𝑌 0 1

0 5/13 ≈ 0.38 8/13 ≈ 0.62
1 7/17 ≈ 0.41 10/17 ≈ 0.59

𝑋'
𝑌 0 1

0 0.23 0.77
1 0.24 0.76

👉 Training MLE 
estimates: just 

count.

/𝑃 𝑋" = 𝑥|𝑌 = 𝑦 =
# 𝑋" = 𝑥,𝑌 = 𝑦

# 𝑌 = 𝑦
/𝑃 𝑌 = 𝑦 =

# 𝑌 = 𝑦
𝑛

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌

/𝑃 𝑋'|𝑌 /𝑃 𝑋>|𝑌 /𝑃 𝑌
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Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋> :
• 𝑋': “likes Star Wars”
• 𝑋>: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

16

𝑋'
𝑌 0 1

0 0.23 0.77
1 0.24 0.76

𝑋>
𝑌 0 1

0 0.38 0.62
1 0.41 0.59

𝑌
0 0.43
1 0.57

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌

Now that we’ve trained and found parameters,
It’s time to classify new users!

/𝑃 𝑋'|𝑌 /𝑃 𝑋>|𝑌 /𝑃 𝑌
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Testing: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋> :
• 𝑋': “likes Star Wars”
• 𝑋>: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

Suppose a new person “likes Star Wars” (𝑋' = 1) but “dislikes Harry Potter” (𝑋> = 0).
Will they like Pokemon? Need to predict 𝑌:

17

𝑋'
𝑌 0 1

0 0.23 0.77
1 0.24 0.76

𝑋>
𝑌 0 1

0 0.38 0.62
1 0.41 0.59

𝑌
0 0.43
1 0.57

/𝑌 = arg max
6& 7,'

/𝑃 𝑿|𝑌 /𝑃 𝑌 = arg max
6& 7,'

/𝑃 𝑋'|𝑌 /𝑃 𝑋>|𝑌 /𝑃 𝑌

If 𝑌 = 0: /𝑃 𝑋' = 1|𝑌 = 0 /𝑃 𝑋> = 0|𝑌 = 0 /𝑃 𝑌 = 0 = 0.77 ⋅ 0.38 ⋅ 0.43 = 0.126

If 𝑌 = 1: /𝑃 𝑋' = 1|𝑌 = 1 /𝑃 𝑋> = 0|𝑌 = 1 /𝑃 𝑌 = 1 = 0.76 ⋅ 0.41 ⋅ 0.57 = 0.178

Since term is greatest when Y = 1, predict /𝑌 = 1

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌
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Naïve Bayes Classifier

18

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌

18

We can use MLE or MAP to estimate our parameters.

Let’s try using MAP with Laplace smoothing.
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🤔
19

Training: Naïve Bayes for TV shows (MAP)
Observe indicator vars. 𝑿 = 𝑋', 𝑋> :
• 𝑋': “likes Star Wars”
• 𝑋>: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

What are our MAP estimates
using Laplace smoothing
for /𝑃 𝑋"|𝑌 and /𝑃 𝑌 ?

Training data counts

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋>
𝑌 0 1

0 5 8
1 7 10

/𝑃 𝑋" = 𝑥|𝑌 = 𝑦 : 

A. # XY&Z,[&6
# [&6

B. # XY&Z,[&6 \'
# [&6 \>

C. # XY&Z,[&6 \'
# [&6 \]

/𝑃 𝑌 = 𝑦 : 

A. # [&6
# [&6 \>

B. # [&6 \'
?

C. # [&6 \'
?\>

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌
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🤔
20

Training: Naïve Bayes for TV shows (MAP)
Observe indicator vars. 𝑿 = 𝑋', 𝑋> :
• 𝑋': “likes Star Wars”
• 𝑋>: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

What are our MAP estimates
using Laplace smoothing
for /𝑃 𝑋"|𝑌 and /𝑃 𝑌 ?

Training data counts

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋>
𝑌 0 1

0 5 8
1 7 10

/𝑃 𝑋" = 𝑥|𝑌 = 𝑦 : 

A. # XY&Z,[&6
# [&6

B. # XY&Z,[&6 \'
# [&6 \>

C. # XY&Z,[&6 \'
# [&6 \]

/𝑃 𝑌 = 𝑦 : 

A. # [&6
# [&6 \>

B. # [&6 \'
?

C. # [&6 \'
?\>

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌
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🤔
21

Training: Naïve Bayes for TV shows (MAP)
Observe indicator vars. 𝑿 = 𝑋', 𝑋> :
• 𝑋': “likes Star Wars”
• 𝑋>: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

Training data

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋>
𝑌 0 1

0 5 8
1 7 10

👉
Training MAP 

estimates: just count + 
imaginary trials.

/𝑃 𝑋" = 𝑥|𝑌 = 𝑦 =
# 𝑋" = 𝑥,𝑌 = 𝑦 + 1

# 𝑌 = 𝑦 + 2
/𝑃 𝑌 = 𝑦 =

# 𝑌 = 𝑦 + 1
𝑛 + 2

𝑌
0 14/32 ≈ 0.44
1 18/32 ≈ 0.56

𝑋'
𝑌 0 1

0 0.27 0.73
1 0.26 0.74

𝑋>
𝑌 0 1

0 0.40 0.60
1 0.42 0.58

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌
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Naïve Bayes Classifier

22

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌

22

What is the intuition behind
the Naïve Bayes assumption?
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🤔
23

Naïve Bayes Model is a Bayesian Network

𝑃 𝑿|𝑌 =F
"&'

(

𝑃 𝑋"|𝑌
Naïve Bayes 
Assumption 𝑃 𝑿, 𝑌 = 𝑃 𝑌 F

"&'

(

𝑃 𝑋"|𝑌⇒

A. B.𝑌

𝑋' 𝑋>

…

𝑋(… 𝑌

𝑋' 𝑋>

…

𝑋(…

Which Bayesian Network encodes this conditional independence?

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌
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🤔
24

Naïve Bayes Model is a Bayesian Network

Naïve Bayes 
Assumption

Which Bayesian Network encodes this conditional independence?

A. B.𝑌

𝑋' 𝑋>

…

𝑋(… 𝑌

𝑋' 𝑋>

…

𝑋(…

𝑋" are conditionally independent given parent 𝑌

/𝑌 = arg max
6& 7,'

F
"&'

(

/𝑃 𝑋"|𝑌 /𝑃 𝑌

𝑃 𝑿|𝑌 =F
"&'

(

𝑃 𝑋"|𝑌 𝑃 𝑿, 𝑌 = 𝑃 𝑌 F
"&'

(

𝑃 𝑋"|𝑌⇒



Break for jokes/
announcements

25
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Announcements

26

Problem Set 6

Due: Wednesday 12/4
(after break)

Covers: Up to end of this week

Late day reminder: No late days permitted past last day of the quarter, 12/6

CS109 Contest

Due: Monday 12/2 11:59pm
Note: All serious submissions will

get some extra credit

(Friday)
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Today’s plan

Naïve Bayes

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

27



Lisa Yan, CS109, 2019

Background: Weighted sum
If 𝑿 = 𝑋', 𝑋>, … , 𝑋( :

Weighted sum
with an
intercept term: 

28

= 𝜃'𝑋' + 𝜃>𝑋> +⋯+ 𝜃(𝑋(

Weighted sum
(aka dot product)

𝑧 = 𝜃7 +J
C&'

(

𝜃C𝑋C

𝑧 = 𝜃b𝑿 =J
C&'

(

𝜃C𝑋C

Define 𝑋7 = 1= 𝜃7𝑋7 + 𝜃'𝑋' + 𝜃>𝑋> +⋯+ 𝜃(𝑋(

= 𝜃b𝑿 New 𝑿 = 1, 𝑋', 𝑋>, … , 𝑋(
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Background: Sigmoid function 𝜎 𝑧
• The sigmoid function:

• Sigmoid squashes 𝑧 to
a number between 0 and 1.

• Recall definition of probability:
A number between 0 and 1

29

👉 𝜎 𝑧 can represent a probability.

0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

𝜎 𝑧 =
1

1 + 𝑒ef

𝜎 𝑧

𝑧



Lisa Yan, CS109, 2019

Background: Chain Rule

30

𝜕𝑓 𝑥
𝜕𝑥

=
𝜕𝑓 𝑧
𝜕𝑧

𝜕𝑧
𝜕𝑥

Calculus 
Chain Rule

aka decomposition
of composed functions𝑓 𝑥 = 𝑓 𝑧 𝑥
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Today’s plan

Naïve Bayes

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

31
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From Naïve Bayes to Logistic Regression

Classification goal: Model 𝑃 𝑌 | 𝑿

Naïve Bayes Classifier:
• Estimate 𝑃 𝑿 | 𝑌 and 𝑃 𝑌 because 
• Actually modeling 𝑃 𝑿, 𝑌
• Assume 𝑃 𝑿|𝑌 = 𝑃 𝑋', 𝑋>, … , 𝑋?|𝑌 = ∏"&'

( 𝑃 𝑋"|𝑌

Can we model 𝑃 𝑌 | 𝑿 directly?
• Welcome our friend: Logistic Regression!

32

/𝑌 = arg max
6& 7,'

𝑃 𝑌 | 𝑿 Predict the 𝑌 that is most likely
given our observation 𝑿

arg max
6& 7,'

𝑃 𝑌 | 𝑿 = arg max
6& 7,'

𝑃 𝑿|𝑌 𝑃 𝑌
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Logistic Regression

33

/𝑌 = arg max
6& 7,'

𝑃 𝑌 | 𝑿 Predict the 𝑌 that is most likely
given our observation 𝑿

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥C
Logistic 

Regression
Model

models 
𝑃 𝑌 | 𝑿
directly
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Logistic Regression

34

0.81
𝒙 = [0,1,1]

𝑃 𝑌 = 1|𝑿 = 𝒙]
conditional likelihood𝑿

input features

𝜃 parameter

Slides courtesy of Chris Piech

𝑃 𝑌 = 1|𝑿 = 𝑥 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥C
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Logistic Regression Cartoon

35

𝜃 parameter

Slides courtesy of Chris Piech
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Logistic Regression cartoon

36Slides courtesy of Chris Piech

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥C

+

x0

x1

x2

x3

✓0

✓1

✓2

✓3

𝑧 𝜎 𝑧
𝑃 𝑌 = 1|𝒙
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Logistic Regression input/output

37Slides courtesy of Chris Piech

𝑿, input features
0,1,1

/𝑌, output

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥C

+

x0

x1

x2

x3

✓0

✓1

✓2

✓3

𝑧 𝜎 𝑧
𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

38Slides courtesy of Chris Piech
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𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥C

𝑧 𝜎 𝑧

𝜃 weights
(aka parameters)

𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

39Slides courtesy of Chris Piech
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𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥C

𝑧 𝜎 𝑧

weighted sum

𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

40Slides courtesy of Chris Piech
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𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥C

𝑧 𝜎 𝑧

squashing function
b/t 0 and 1

𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

41Slides courtesy of Chris Piech

+

x0

x1

x2

x3

✓0

✓1

✓2

✓3

𝑧 𝜎 𝑧
𝑃 𝑌 = 1|𝒙

prediction

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥C
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Different predictions for different inputs

42Slides courtesy of Chris Piech
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C&'

(

𝜃C𝑥C

𝑃 𝑌 = 1|𝒙

𝑿, input features
0,1,1

𝑧 =
2.1

𝜎 𝑧
= 0

.7
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Different predictions for different inputs

43Slides courtesy of Chris Piech
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(

𝜃C𝑥C

𝑃 𝑌 = 1|𝒙

𝑿, input features
0,0,1

𝑧 =
−1.
9

𝜎 𝑧
= 0
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Parameters affect prediction

44Slides courtesy of Chris Piech
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Parameters affect prediction

45Slides courtesy of Chris Piech
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𝜃C𝑥C

𝑧 =
−1.
5

𝑃 𝑌 = 1|𝒙
𝜎 𝑧

= 0
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Logistic Regression Model

46

• 𝜎 𝑧 = '
'\mno

, the sigmoid function

• For simplicity, define 𝑥7 = 1:

• Since 𝑃 𝑌 = 1|𝑿 = 𝒙 + 𝑃 𝑌 = 0|𝑿 = 𝒙 = 1:

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃b𝒙

𝑃 𝑌 = 0|𝑿 = 𝒙 = 1 − 𝜎 𝜃b𝒙

/𝑌 = arg max
6& 7,'

𝑃 𝑌 | 𝑿 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥Cwhere

Predict the 𝑌 that is most likely
given our observation 𝑿 models 𝑃 𝑌 | 𝑿 directly
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Classifying using the sigmoid function

47

𝑧

𝜎 𝑧

𝜎 𝑧 =
1

1 + 𝑒ef

/𝑌 = arg max
6& 7,'

𝑃 𝑌 | 𝑿 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥Cwhere
Logistic 

Regression
Model

👉 Logistic Regression uses the 
sigmoid function to try and 
distinguish 𝑦 = 1 (blue) points 
from 𝑦 = 0 (red) points.
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Classifying using the sigmoid function

When do we predict /𝑌 = 1?
A. If 𝜎 𝜃b𝒙 > 1 − 𝜎 𝜃b𝒙
B. If 𝜎 𝜃b𝒙 > 0.5
C. If 𝜃b𝒙 > 0
D. All are valid, but C is easiest
E. None/Other

𝑧

𝜎 𝑧

𝜎 𝑧 =
1

1 + 𝑒ef

/𝑌 = arg max
6& 7,'

𝑃 𝑌 | 𝑿 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥Cwhere
Logistic 

Regression
Model
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Classifying using the sigmoid function

𝑧

𝜎 𝑧

𝜎 𝑧 =
1

1 + 𝑒ef

/𝑌 = arg max
6& 7,'

𝑃 𝑌 | 𝑿 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃7 +J
C&'

(

𝜃C𝑥Cwhere
Logistic 

Regression
Model

When do we predict /𝑌 = 1?
A. If 𝜎 𝜃b𝒙 > 1 − 𝜎 𝜃b𝒙
B. If 𝜎 𝜃b𝒙 > 0.5
C. If 𝜃b𝒙 > 0
D. All are valid, but C is easiest
E. None/Other
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Regression Algorithms

Linear Regression

Classification Algorithms

Naïve Bayes

Logistic Regression

50

Naming algorithms

If Lisa could rename it, she would call it: Sigmoidal Classification

Awesome classifier, 
terrible name
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Training: Learning the parameters
Logistic regression gets its intelligence from its parameters 𝜃 =
𝜃7, 𝜃', … , 𝜃( .

51

𝐿 𝜃 =F
"&'

?

𝑃 𝑌 = 𝑦 " |𝑿 = 𝒙 " , 𝜃

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃b𝒙

👉 During training, find the 𝜃 that 
maximizes log-conditional likelihood 
of the training data. Use MLE!

• Logistic Regression Model: 

• Want to predict training
data as correctly as possible:

• Therefore, choose 𝜃 that maximizes 
the conditional likelihood of
observing i.i.d. training data:

arg max
6& 7,'

𝑃 𝑌|𝑿 = 𝒙 " = 𝑦 " as often
as possible
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Training: Learning the parameters via MLE

0. Add 𝑥7
" = 1 to each 𝒙 "

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃C, 𝑗 = 0, 1, … ,𝑚:

52

𝐿𝐿 𝜃 =J
"&'

?

𝑦(") log 𝜎 𝜃b𝒙(𝒊) + 1 − 𝑦(") log 1 − 𝜎 𝜃b𝒙(")

𝜕𝐿𝐿 𝜃
𝜕𝜃C

=J
"&'

?

𝑦(") − 𝜎 𝜃b𝒙(") 𝑥C
(")

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃b𝒙
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Gradient Ascent
Walk uphill and you will find a local maxima

(if your step is small enough).

53

𝐿
𝜃

𝜃' 𝜃> Logistic regression 𝐿𝐿 𝜃
is convex

Review
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Training: Gradient ascent step
4. Optimize.

54

𝜕𝐿𝐿 𝜃
𝜕𝜃C

=J
"&'

?

𝑦(") − 𝜎 𝜃b𝒙(𝒊) 𝑥C
(")

𝜃Cvwx = 𝜃Cyz{ + 𝜂 ⋅
𝜕𝐿𝐿 𝜃yz{

𝜕𝜃Cyz{

For all thetas:

= 𝜃Cyz{ + 𝜂 ⋅J
"&'

?

𝑦(") − 𝜎 𝜃yz{b𝒙(𝒊) 𝑥C
(")

What does this look like in code?

Repeat many times:
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Training: Gradient Ascent

55

𝜃Cvwx = 𝜃Cyz{ + 𝜂 ⋅J
"&'

?

𝑦(") − 𝜎 𝜃yz{b𝒙(𝒊) 𝑥C
(")

initialize 𝜃C = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

// compute all gradient[j]’s
// based on n training examples

𝜃C += η * gradient[j] for all 0 ≤ j ≤ m

Gradient 
Ascent Step
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Training: Gradient Ascent

56

// update gradient[j] for
// current (x,y) example

initialize 𝜃C = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

𝜃C += η * gradient[j] for all 0 ≤ j ≤ m

for each 0 ≤ j ≤ m:

𝜃Cvwx = 𝜃Cyz{ + 𝜂 ⋅J
"&'

?

𝑦(") − 𝜎 𝜃yz{b𝒙(𝒊) 𝑥C
(")Gradient 

Ascent Step
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🤔
57

Training: Gradient Ascent

What are important 
implementation 
details?

initialize 𝜃C = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃C += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒e~�𝒙
𝑥C

𝜃Cvwx = 𝜃Cyz{ + 𝜂 ⋅J
"&'

?

𝑦(") − 𝜎 𝜃yz{b𝒙(𝒊) 𝑥C
(")Gradient 

Ascent Step
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Training: Gradient Ascent

58

initialize 𝜃C = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃C += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒e~�𝒙
𝑥C

• 𝑥C is 𝑗-th feature of
input var 𝑥 = 𝑥',… , 𝑥(

Gradient 
Ascent Step 𝜃Cvwx = 𝜃Cyz{ + 𝜂 ⋅J

"&'

?

𝑦(") − 𝜎 𝜃yz{b𝒙(𝒊) 𝑥C
(")
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Training: Gradient Ascent

59

initialize 𝜃C = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃C += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒e~�𝒙
𝑥C

• 𝑥C is 𝑗-th feature of
input var 𝑥 = 𝑥',… , 𝑥(

• Insert 𝑥7 = 1 before 
training

𝜃Cvwx = 𝜃Cyz{ + 𝜂 ⋅J
"&'

?

𝑦(") − 𝜎 𝜃yz{b𝒙(𝒊) 𝑥C
(")Gradient 

Ascent Step
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Training: Gradient Ascent

60

initialize 𝜃C = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃C += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒e~�𝒙
𝑥C

• 𝑥C is 𝑗-th feature of
input var 𝑥 = 𝑥',… , 𝑥(

• Insert 𝑥7 = 1 before 
training

• Finish computing
gradient before
updating any part of 𝜃

𝜃Cvwx = 𝜃Cyz{ + 𝜂 ⋅J
"&'

?

𝑦(") − 𝜎 𝜃yz{b𝒙(𝒊) 𝑥C
(")Gradient 

Ascent Step
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Training: Gradient Ascent

61

initialize 𝜃C = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃C += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒e~�𝒙
𝑥C

• 𝑥C is 𝑗-th feature of
input var 𝑥 = 𝑥',… , 𝑥(

• Insert 𝑥7 = 1 before 
training

• Finish computing
gradient before
updating any part of 𝜃

• Learning rate 𝜂 is a 
constant you set before 
training

𝜃Cvwx = 𝜃Cyz{ + 𝜂 ⋅J
"&'

?

𝑦(") − 𝜎 𝜃yz{b𝒙(𝒊) 𝑥C
(")Gradient 

Ascent Step



Lisa Yan, CS109, 2019

Training: Gradient Ascent

62

initialize 𝜃C = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃C += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒e~�𝒙
𝑥C

• 𝑥C is 𝑗-th feature of
input var 𝑥 = 𝑥',… , 𝑥(

• Insert 𝑥7 = 1 before 
training

• Finish computing
gradient before
updating any part of 𝜃

• Learning rate 𝜂 is a 
constant you set before 
training

𝜃Cvwx = 𝜃Cyz{ + 𝜂 ⋅J
"&'

?

𝑦(") − 𝜎 𝜃yz{b𝒙(𝒊) 𝑥C
(")Gradient 

Ascent Step
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Testing: Classification with Logistic Regression

63

Testing

• Compute �𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃b𝒙 =
• Classify instance as:

�1 �𝑦 > 0.5, equivalently 𝜃b𝒙 > 0
0 otherwise

⚠ Parameters 𝜃C are not updated during testing phase

Training
Learn parameters 𝜃 = 𝜃7, 𝜃', … , 𝜃(
via gradient
ascent: 𝜃Cvwx = 𝜃Cyz{ + 𝜂 ⋅J

"&'

?

𝑦(") − 𝜎 𝜃yz{b𝒙(𝒊) 𝑥C
(")

1
1 + 𝑒e~�𝒙
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Today’s plan

Naïve Bayes

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

64
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Introducing notation �𝑦

65

/𝑌 = arg max
6& 7,'

𝑃 𝑌|𝑿 = 𝒙Prediction: = �1 if �𝑦 > 0.5
0 otherwise

�𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃b𝒙Logistic 
Regression 

model: 𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = ��𝑦 if 𝑦 = 1
1 − �𝑦 if 𝑦 = 0
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Training: Learning the parameters via MLE

0. Add 𝑥7
" = 1 to each 𝒙 "

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃C, 𝑗 = 0, 1, … ,𝑚:

66

𝐿𝐿 𝜃 =J
"&'

?

𝑦(") log 𝜎 𝜃b𝒙(𝒊) + 1 − 𝑦(") log 1 − 𝜎 𝜃b𝒙(")

𝜕𝐿𝐿 𝜃
𝜕𝜃C

=J
"&'

?

𝑦(") − 𝜎 𝜃b𝒙(") 𝑥C
(")

𝑃 𝑌 = 1|𝑿 = 𝒙 = �𝑦
�𝑦 = 𝜎 𝜃b𝒙
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Training: Learning the parameters via MLE

0. Add 𝑥7
" = 1 to each 𝒙 "

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃C, 𝑗 = 0, 1, … ,𝑚:

67

𝐿𝐿 𝜃 =J
"&'

?

𝑦(") log 𝜎 𝜃b𝒙(𝒊) + 1 − 𝑦(") log 1 − 𝜎 𝜃b𝒙(")

𝜕𝐿𝐿 𝜃
𝜕𝜃C

=J
"&'

?

𝑦(") − 𝜎 𝜃b𝒙(") 𝑥C
(")

How did we get this likelihood function?🤔

𝑃 𝑌 = 1|𝑿 = 𝒙 = �𝑦
�𝑦 = 𝜎 𝜃b𝒙
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Log-likelihood of data

68

Notes:
• Actually conditional likelihood
• Still correctly gets correct 𝜃���

since 𝑿, 𝜃 independent
• See lecture notes

(see Bernoulli 
MLE PMF)

Logistic 
Regression 

model:

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = ��𝑦 if 𝑦 = 1
1 − �𝑦 if 𝑦 = 0

= �𝑦 6 1 − �𝑦 'e6

Likelihood
of training data: 𝐿 𝜃 =F

"&'

?

𝑃 𝑌 = 𝑦 " |𝑿 = 𝒙 " , 𝜃

where �𝑦 = 𝜎 𝜃b𝒙
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(see Bernoulli 
MLE PMF)

Log-likelihood of data

69

Logistic 
Regression 

model:

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = ��𝑦 if 𝑦 = 1
1 − �𝑦 if 𝑦 = 0

= �𝑦 6 1 − �𝑦 'e6

Likelihood
of training data: 𝐿 𝜃 =F

"&'

?

𝑃 𝑌 = 𝑦 " |𝑿 = 𝒙 " , 𝜃

where �𝑦 = 𝜎 𝜃b𝒙

=F
"&'

?

�𝑦 " 6 Y
1 − �𝑦 " 'e6 Y

𝐿𝐿 𝜃 =J
"&'

?

𝑦(") log �𝑦 " + 1 − 𝑦(") log 1 − �𝑦 "Log-likelihood:

=J
"&'

?

𝑦(") log 𝜎 𝜃b𝒙(𝒊) + 1 − 𝑦(") log 1 − 𝜎 𝜃b𝒙(")
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Training: Learning the parameters via MLE

0. Add 𝑥7
" = 1 to each 𝒙 "

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃C, 𝑗 = 0, 1, … ,𝑚:

70

𝐿𝐿 𝜃 =J
"&'

?

𝑦(") log 𝜎 𝜃b𝒙(𝒊) + 1 − 𝑦(") log 1 − 𝜎 𝜃b𝒙(")

𝜕𝐿𝐿 𝜃
𝜕𝜃C

=J
"&'

?

𝑦(") − 𝜎 𝜃b𝒙(") 𝑥C
(")

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃b𝒙

How did we get this gradient?🤔
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🤔
71

Aside: Sigmoid has a beautiful derivative

What is �
�~�

𝜎 𝜃b𝒙 ?

A. 𝜎 𝑥C 1 − 𝜎 𝑥C 𝑥C
B. 𝜎 𝜃b𝒙 1 − 𝜎 𝜃b𝒙 𝒙
C. 𝜎 𝜃b𝒙 1 − 𝜎 𝜃b𝒙 𝑥C
D. 𝜎 𝜃b𝒙 𝑥C 1 − 𝜎 𝜃b𝒙 𝑥C
E. None/other

Derivative:Sigmoid function:

𝜎 𝑧 =
1

1 + 𝑒ef
𝑑
𝑑𝑧
𝜎 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧
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🤔
72

Aside: Sigmoid has a beautiful derivative

What is �
�~�

𝜎 𝜃b𝒙 ?

A. 𝜎 𝑥C 1 − 𝜎 𝑥C 𝑥C
B. 𝜎 𝜃b𝒙 1 − 𝜎 𝜃b𝒙 𝒙
C. 𝜎 𝜃b𝒙 1 − 𝜎 𝜃b𝒙 𝑥C
D. 𝜎 𝜃b𝒙 𝑥C 1 − 𝜎 𝜃b𝒙 𝑥C
E. None/other

Derivative:Sigmoid function:

𝜎 𝑧 =
1

1 + 𝑒ef
𝑑
𝑑𝑧
𝜎 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

Let 𝑧 = 𝜃b𝒙

𝜕
𝜕𝜃C

𝜎 𝜃b𝒙 =
𝜕
𝜕𝑧
𝜎 𝑧 ⋅

𝜕𝑧
𝜕𝜃C

(Chain Rule)

= J
�&7

(

𝜃�𝑥� .

= 𝜎 𝜃b𝒙 1 − 𝜎 𝜃b𝒙 𝑥C
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Compute gradient of log-conditional likelihood

73

𝐿𝐿 𝜃 =J
"&'

?

𝑦(") log 𝜎 𝜃b𝒙(𝒊) + 1 − 𝑦(") log 1 − 𝜎 𝜃b𝒙(")
Log-conditional 

Likelihood:

𝜕𝐿𝐿 𝜃
𝜕𝜃C

where

Find:
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Are you ready?

74

Right now!!!
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Compute gradient of log-likelihood

75

Let �𝑦 " = 𝜎 𝜃b𝒙(𝒊)
𝜕𝐿𝐿 𝜃
𝜕𝜃C

=J
"&'

?
𝜕
𝜕𝜃C

𝑦(") log �𝑦 " + 1 − 𝑦(") log 1 − �𝑦 "

=J
"&'

?
𝜕

𝜕 �𝑦 " 𝑦(") log �𝑦 " + 1 − 𝑦(") log 1 − �𝑦 " ⋅
𝜕 �𝑦 "

𝜕𝜃C
(Chain Rule)

=J
"&'

?

𝑦(")
1
�𝑦 " + 1 − 𝑦(")

1
1 − �𝑦 " ⋅ �𝑦 " 1 − �𝑦 " 𝑥C

" (calculus)

=J
"&'

?

𝑦(") − �𝑦 " 𝑥C
(") =J

"&'

?

𝑦(") − 𝜎 𝜃b𝒙 " 𝑥C
(") (simplify)
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Compute gradient of log-likelihood

76

Let �𝑦 " = 𝜎 𝜃b𝒙(𝒊)
𝜕𝐿𝐿 𝜃
𝜕𝜃C

=J
"&'

?
𝜕
𝜕𝜃C

𝑦(") log �𝑦 " + 1 − 𝑦(") log 1 − �𝑦 "

=J
"&'

?
𝜕

𝜕 �𝑦 " 𝑦(") log �𝑦 " + 1 − 𝑦(") log 1 − �𝑦 " ⋅
𝜕 �𝑦 "

𝜕𝜃C
(Chain Rule)

=J
"&'

?

𝑦(")
1
�𝑦 " + 1 − 𝑦(")

1
1 − �𝑦 " ⋅ �𝑦 " 1 − �𝑦 " 𝑥C

" (calculus)

=J
"&'

?

𝑦(") − �𝑦 " 𝑥C
(") =J

"&'

?

𝑦(") − 𝜎 𝜃b𝒙 " 𝑥C
(") (simplify)🎉
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Today’s plan

Naïve Bayes

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

77
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Logistic Regression is trying to fit
a line that separates data instances
where 𝑦 = 1 from those where 𝑦 = 0:

• We call such data (or functions
generating the data linearly separable.

• Naïve Bayes is linear too, because there is no interaction between 
different features.

Intuition about Logistic Regression

78

𝜃b𝒙 = 0

Logistic 
Regression 

Model
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃b𝒙 𝜃b𝒙 =J

C&7

(

𝜃C𝑥Cwhere



Lisa Yan, CS109, 2019

Data is often not linearly separable

• Not possible to draw a line that successfully separates all the 
𝑦 = 1 points (green) from the 𝑦 = 0 points (red)

• Despite this fact, Logistic Regression and Naive Bayes still often work 
well in practice

79
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Many tradeoffs in choosing an algorithm

80

Naïve Bayes Logistic Regression

Modeling goal 𝑃 𝑿, 𝑌 𝑃 𝑌|𝑿

Generative: could use joint 
distribution to generate new 
points (⚠but you might not 
need this extra effort)

Generative or
discriminative?

Discriminative: just tries to 
discriminate 𝑦 = 0 vs 𝑦 = 1
( cannot generate new points 
b/c no 𝑃 𝑿, 𝑌 )

Continuous input
features

✅ Yes, easily

⚠ Needs parametric form  
(e.g., Gaussian) or 
discretized buckets (for 
multinomial features)

Discrete input
features

Yes, multi-value discrete 
data = multinomial 𝑃 𝑋"|𝑌

⚠ Multi-valued discrete data 
hard (e.g., if 𝑋" ∈ {𝐴, 𝐵, 𝐶}, not 
necessarily good to encode as 
1, 2, 3


