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Background: Sigmoid function o(z)

The sigmoid function: 1082)
1 0.8 +
o(z) =
2 1+e7* 0.6 5
0.4 /-
Sigmoid squashes z to 0.2 +
a number between O and 1. —— 0 — oy,

10 8 6 4 2 0 2 4 6 8 10

Recall definition of probability:
A number between O and 1 =  ¢g(z) can represent a probability.
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Logistic Regression Model Review

Predict the Y that is most likely

Y = arg max P(Y | X) given our observation X
y=10,1}

models

m
where P(Y=1X=x)=oa| 0y + z 0;x; P(Y | X)
=1 directly
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Logistic Regression Model Review

m
| PY=1X=x) =06 +Z€-x-
X, input features O j=1 ™

10,1,1]
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Logistic Regression Model

Y = arg max P(Y | X) where P(Y=1|X=x)=0| 0y + z 0ix;
y={0,1} =1

Predict the Y that is most likely

given our observation X models P(Y | X) directly

o(z) = 1+2_Z, the sigmoid function

For simplicity, define x, = 1: PY=1|X=x)=0(0"x)
Since P(Y = 1|1X = x) + P(Y = 0|X = x) = 1:
PY=0X=x)=1-—0(0"x)
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Today's plan

napter 1: Big Picture
napter 2: Details
napter 3: Philosophy

4
O O O

Intro to Deep Learning
 Parameters of a neural network

* Training neural networks
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Training: Learning the parameters

Logistic regression gets its intelligence from its parameters 6 =
(6y, 04, ...,0,,).

Logistic Regression Model: P(Y =1|X = x) = 6(8Tx)
Want to predict training | arg max P(Y]X = x®) = y@® as often
data as correctly as possible: y={0,1} as possible

Therefore, choose 6 that maximizes n
the conditional likelihood of L(6) = Hp(y = yD|x = x®, )
=1

observing i.i.d. training data:
“=» During training, find the 0 that

e maximizes log-conditional likelihood
of the training data. Use MLE!
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Training: Learning the parameters via MLE

Add x” = 1 to each x®

Logistic Regression model: P(Y =1|X = x) = (8T x)
Compute

log-conditional n

of training data: ; ( )+ ) ( ( ))
Compute derivative of OLL(O

log-likelihood with respect ( ) E[y(‘) — o(67x®)] x"
toeach 6;,j=0,1,..,m:

Optimize

How did we get this math?? More in Chapter 2...

Lisa Yan, C$109, 2019 Stanford University 8




Gradient Ascent Review

Walk uphill and you will find a local maxima
(if your step is small enough).

Logistic regression LL(6)
IS convex
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Training: Gradient ascent step

4. Optimize. aLL(H)

Z[y@ G

Repeat many times:

For all thetas:
OLL(6°4)

agold

_Hold_l_n Ely(l) HoldT (1))] ](')

What does this look like in code?
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. . . Gradient =~ L l_ T i
Training: Gradient Ascent pscent step & =8+ ) [y = (6947x0)] 1

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m

// compute all gradient[j]’s
// based on n training examples

6; += n * gradient[j] for all @ < jJ <m
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. . . Gradient =~ L l_ T i
Training: Gradient Ascent Ascent Step & = 67+ 1 Z y® — o (6°14°x®)]

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m
for each training example (x, y):
for each @ < jJ < m:

// update gradient[j] for
// current (x,y) example

6; += n * gradient[j] for all @ < jJ <m
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. . . Gradient =~ L l_ T i
Training: Gradient Ascent pscent step " =67+ ), [0 —a (0°47x0)] 57

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m
for each training example (x, y):

for each @ < jJ < m:
1
1+e-0"x

gradient[j] += |y - X;

What are important

” : : : implementation
6; += n * gradient[j] for all @ < jJ <m details?

~~
o

&
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o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 07 +11° Z[y“ (60147 x®)] £

initialize 6, = @ for @ < j <m x;j is j-th feature of
repeat many times: input var x = (xq, «.., X)

gradient[j] =0 for @ < j < m
for each training example (x, y):
for each @ < j < m:

gradient[j] += |y -

6; += n * gradient[j] for all @ < jJ <m
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. . . Gradient =~ L l_ T i
Training: Gradient Ascent pscent step " =67+ ), [0 —a (0°47x0)] 57

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m
for each training example (x, y):

Insert x, = 1 before
training

for each @ < j < m:

: : 1
gradient[j] += b"],4e—e£;2%

6; += n * gradient[j] for all @ < jJ <m
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o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 67 + 11 Z[y“ (60147 x®)] £

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m

for each training example (x, y): Finish computing
for each @ < j < m: gradient before
-0 T updating any part of 8
dientl 1
gradient[j] += y_1+e-9Tx] X;

6; += n * gradient[j] for all @ < j < mgi2>
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o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 67 + 11 Z[y“ (60147 x®)] £

initialize 6, = @ for @ < j <m
repeat many times:

gradient[j] =0 for @ < j < m
for each training example (x, y):

for each @ < jJ < m:
1
1+e-0"x

gradient[j] += |y-— X;

3i'“=Ei gradient[j] for all @ < jJ < m

Lisa Yan, CS109, 2019

Learning rate n is a
constant you set before
training
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o o . Gradient grew _ go ; T i l.
Training: Gradient Ascent Ascent Step " = 67 + 11 Z[y“ (60147 x®)] £

initialize 6, = @ for @ < j <m x;j is j-th feature of
repeat many times: input var x = (xq, ..., X))
: : : Insert x, = 1 before
= < 9 <
gradient[j] = 0 for 0 < jJ < m training
for each training example (x, y): Finish computing
for each @ < j < m: gradient before
R . updating any part of 8
radientli7 += [ _ ]x- Learning rate n is a
g L] Y T feoTx| Y constant you set before
training

6; += n * gradient[Jj] for all @ < J < m
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Testing: Classification with Logistic Regression

Training

Testing

J/

Learn parameters 8 = (8,, 04, ..., 0.,)

via gradient n | | |
ascent: 6 = 67 + 1 2 ly® — o (910" x®)| £
=1

Compute y =P(Y =1|X =x) = d(87x) =
Classify instance as:

1+e0'x
1 9> 0.5, equivalently 87x > 0
0 otherwise

I, Parameters @: are not updated during testing phase
j notup g gPp
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Today’s plan

= - Chapter 2: Details
* Chapter 3: Philosophy

Intro to Deep Learning
 Parameters of a neural network

* Training neural networks
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Introducing notation y

Logistic =P =1X=x) =0(08Tx)
Regression
model: y ify=1

1 if$>0.5

Prediction: arg max P (Y| X) {0 otherwise

y={0,1}
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Training: Learning the parameters via MLE

Add x” = 1 to each x®

Logistic Regression model: PY=1X=x)=J
y=0(0"x)

Compute .

'O‘;gtr'gjf]'l'r?ggg L LLE) = Z y® logs(67x®) + (1 - y®) log (1 — o(67x))

I?)%r—:]iigfier\gsgli\\//aﬂ\}/erefpect OLL() _ N\ ¢ N .0

to each 6;,j = 0,1, ..., m: 06, 2[},@) —a(07xV)] %

=1

Lisa Yan, C$109, 2019 Stanford University 22




Training: Learning the parameters via MLE

2. Compute n
log-likelihood _ 0 T (i) NG L aT )
of training data: LL(6) ;y loga(8TxW) + (1—y )log(l a(0Tx ))

() How did we get this likelihood function?

Lisa Yan, C$109, 2019 Stanford University 23




Log-likelihood of data

o 5 ifv=1 .
LOgIStic pry — y1x = x) = {{ =l where § = o(67)
Regression y y=
model: — (Y (1 — \1-Y (see Bernoulli
=)A=y MLE PMF)
Likelihood

n
= — vDx = @
of training data: L(6) HP(Y yV1X = x0,0)

Notes:
Actually conditional likelihood
Still correctly gets correct 0y £
since X, 6 independent
See lecture notes
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Log-likelihood of data

o 5 ifv=1 A
LOgIStic pry — y1x = x) = {{ =l where § = o(67)
Regression y y=
model: —_ (NYV(1 _ 51—y (see Bernoulli
=)A= MLE PMF)
Likelihood

- - (D) 11—y @D
_ ‘ ‘ _ oDy — 2+ — 5D (1 — o@D Y
of training data: L(6) 2 P(Y =y@IX =x%,06) U W) 1-3Y)

n
Log-likelihood:  LL(6) = z y®Dlogp® + (1 — y®)log(1 — §®)
=1

n
= 2 y®Dloga(8Tx®) + (1 — y®)log (1 — a(HTx(i)))
i=1
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Training: Learning the parameters via MLE

3. Compute derivative of n
log-likelihood with respect OLL(O) _ N1 — (AT (D] +@
. [y 0(0 X )]x
toeach 6;,j =0,1,...,m: 00; g

=1

(&) How did we get this gradient?
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Aside: Sigmoid has a beautiful derivative

Sigmoid function: Derivative:
(2) = 1 d B ,
0(2) = 1= EU(Z) =0(2)|1 —0o(2)]

What is 6‘_ O'(HTX)’?

a(x])[l — a(x])]x]

ag(@Tx)[1 —0(0Tx)]x

0(0"x)[1—0a(8"x)]x;

a(0Tx)x;[1 — (8T x)x;] —
None/other &/
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Aside: Sigmoid has a beautiful derivative

Sigmoid function: Derivative:
1 d
0(2) = —— —0(2) = 6(D[1 - o()
.. 0 T — AT~ —
What is Ty o(6" x)? letz = 0" x ;Hkxk.
0 0 0z
—g(0Tx) = — — (Chain Rule)
50,70 0 = 5,7 54

0(0"x)[1—0a(8"x)]x;
=0(0"x)[1 - a(0"x)]x;

2
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Compute gradient of log-conditional likelihood

J0LL(6)

06,

Find:

where

n

Log-conditional . ; ; ;
Cikelinood:  LH©@ = ) ¥@1oga(67x®) + (1 - y©)log (1 - o(67x®))

=1
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Are you ready?

Quora Home % Answer EB']J Spaces Q Notificationso

Moments Personal Experiences Important Life Lessons +5 /’

What is your best "I've never been more ready in my life"
moment?

7/, Answer 3 Follow -2 42 Request O < B ¥ 2 oo

1 Answer

Right now!!!

\ 2 A P Yoare
Jiew Upvots

4> Upvote -1 ¥ Share < 2 ooo
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Compute gradient of log-likelihood

n
ALL(O o . . | | | | |
a;_ ) — z% [y(l) log(j}(l)) + (1 — y(l)) log(l _ 5;(1))] | et y(l) _ G(HTx(‘))
J : J
n
ay®
= 2 50 [y©1log(9®) + (1 - y®@)log(1 - V)] - = 7 (Chain Rule)
n
z [y(‘) 5~ (1-y0) 5 A@)] O(1 - pD)xV (calculus)
=1

n
E[y(l) y(l)] x() _ z[y(i) _ O'(HTx(i))] xj(i) (simplify)
=1
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Compute gradient of log-likelihood

ILL(6)
06,

n
=Y 0 - o(oTx0)] 10 E5
=1
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Today’s plan

=) < Chapter 3: Philosophy
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Intuition about Logistic Regression

Logistic i m
Regression P(Y = 1|X =x) = d(87x) where 67x= zejxj
Model j=0

Logistic Regression is trying to fit
a line that separates data instances
where y = 1 from those where y = 0:

We call such data (or functions
generating the data linearly separable.

Nalve Bayes is linear too, because there is no interaction between
different features.
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Data is often not linearly separable

Not possible to draw a line that successfully separates all the

y = 1 points (green) from the y = 0 points (red)

Despite this fact, Logistic Regression and Naive Bayes still often work
well in practice
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Many tradeoftfs in choosing an algorithm

Naive Bayes Logistic Regression
Modeling goal P(X,Y) P(Y|X)
Generative or Generative: could use joint Discriminative: just tries to
discriminative? distribution to generate new discriminatey =0vsy =1
points (! but you might not ()( cannot generate new points
need this extra effort) b/cnoP(X,Y))

' Needs parametric form
Continuous input (e.g., Gaussian) or
features discretized buckets (for

multinomial features)

Yes, easily

! Multi-valued discrete data
Discrete input Yes, multi-value discrete hard (e.g., if X; € {4, B, C}, not

features data = multinomial P(X;|Y) necessarily good to encode as
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30-second
pedagogical pause

Summarize what we have learned

I ——




Break for jokes/
announcements




Announcements

~

/Problem Set 6 N
Due: Wednesday 12/4
(after break)
Note: Skip Problem 3 (neural net) for now,
\_ we will finish covering it on Friday
4 N
Office Hours Last weekly concept check
. . _ Due: Tuesday 12/3
KDurlng Thanksgiving break: None/ . (after break)
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Today's plan

= Intro to Deep Learning
 Parameters of a neural network

* Training neural networks
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One logistic regression

@)
—im—

~‘J*—ﬂ»~/€"a & —

© -

P(Y = 1|X = x)

000 30880008
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One neuron = One logistic regression

~—~— .
—>Dcndrites

x| 0eq ~qreeccess
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Biological basis for neural networks

A neuron
X 0,
X, 6, One neur.on.=
. 0 y one logistic
370, regression
X4
Your brain
X1
X5 Neural network =
X many logistic
regressions
X4 p N

N

(aCtua”y’ prObably someone else’s brain) Lisa Yan, C5109, 2019 Stanford University 43




Innovations in deep learning

Deep learning (neural networks)
IS the core idea behind the
current revolution in Al.

AlphaGO (2016)
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Computers making art
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Detecting skin cancer

Skin Lesion Image Deep Convolutional Neural Training Classes
Network (Inception-v3) (757)
Acral-lent. melanoma
i //: Amelanotic melanoma
: = | | ,, ,_ ' | | N ,:\ | Lentigo melanoma
: 0\ Halo nevus
'ﬂ Mongolian spot

e

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks."
Nature 542.7639 (2017): 115-118.
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Deep learning

def Deep learning is def A neural network is
maximum likelihood estimation (at its core) many logistic
with neural networks. regression pieces stacked on

top of each other.

LOL
[10,..,1] 7 \_"—> J,output os  Yes.
X, input Lots of Logistic P(Y|X = x)

(regressions)
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Digit recognition example

Input image Input feature vector Output label

x® =10,0,0,0, ...,1,0,0,1, ...,0,0,1,0] y® =0

x® =10,0,11,..,0,1,1,0, ...,0,1,0,0] y® =1

We make feature vectors from (digitized) pictures of numbers.
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Logistic Regression

0\
2
O
O~
o N
~ 0.
O‘: Q 6 a > 057 Predict O
Q/ y, output
o
o
4
— y =0(6"x)
X
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Logistic Regression

Indicates logistic

regression connection No
> 0.57 -
Predict O

y, output

{ OO .00Ce OOOOOC}

y = G(@Tx)
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Logistic Regression

Yes.
-
@ > 058 Predict 1

y, output

{ 000 ..000 OOOOOC}

x, input features
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Logistic Regression: not so good

Yes.
-
@ > 058 Predict 1

y, output

What can we do to increase
complexity of our model?

x, input features
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Feed neurons into other neurons

)
e
O
2 O
o O
o O
® O
No.
® O @ >0.5? .
O o Predict O
O o
. ® y, output
: O
e O
e —
O h, hidden
— layer

X, input features
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Feed neurons into other neurons

)
& hidden
;‘i neuron ,?
o ~0
o ©
'Y o No
O/ O > (0.57? T
O/ @ Predict O
- ¢ y, output
% O
O
—
h, hidden Neuron = logistic regression
\ J layer Vector of parameters

X, input features for every connection
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Feed neurons into other neurons

‘\ O
O
@
. 2 \
‘\ another O @ > 0.57 O
& nidden o Predict O
‘ oS
) neuron o Yy, output
o —~0
Q/ h, hidden Neuron = logistic regression

ayer Vector of parameters
X, input features for every connection
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Feed neurons into other neurons

)

®

O )

2 |h| logistic 8

® regression o

® | connections O

o O @ > 0.57 No. |

O o Predict O

C? ® y, output

' O

® O

‘ —

O h, hidden Neuron = logistic regression
\ ) layer Vector of parameters

X, input features for every connection
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Feed neurons into other neurons

X, input features

o output
LN neuron
- No
O— > (0.5? "
@ Predict O
y 9, output
k4
h, hidden Neuron = logistic regression

Vector of parameters

layer .
for every connection
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Feed neurons into other neurons

|h| logistic
regression
connections

|

h,

X, input features

S
8 1 logistic
o regression
O | connection
O .057 No-
@ Predict O
g y, output
O

—__

hidden ? = Neural networks are simply

|ayer — composed logistic regression units.

1 neuron = 1 logistic regression.
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Demonstration

Draw your number here

v 4
I
Downsampled drawing: @

Firstguess:@ i -

Second guess: o

Layer visibility

- v

Input layer
Convolution layer 1
Downsampling layer 1
Convolution layer 2

Downsampling layer 2
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Neural networks

A neural network (like logistic regression) gets intelligence from its
parameters 6.

Learn parameters 6
Training Find 6, that maximizes likelihood of
training data (MLE)

Testing/ For input feature vector X = x:
o Use parameters to compute y = P(Y = 1|X = x)
Prediction If ¥ > 0.5, predict 1. Else, predict O.
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Today's plan

=)> - Parameters of a neural network
* Training neural networks
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Learning Goals

Deep learning (like Logistic Regression) gets its intelligence from its
parameters, 6.

Training a neural network (like Logistic Regression) is finding 0, g -

Learning goals:
Understand Chain Rule as the heart of neural networks
Demystifying deep learning as MLE
Become experts of logistic regression
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Predict: Forward Pass

A neural network (like logistic regression) gets intelligence from its
parameters 6.

Testing/ For input feature vector X = x:
o Use parameters to compute y = P(Y = 1|X = x)
Prediction If ¥ > 0.5, predict 1. Else, predict O.
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Predict: Forward Pass

To predict, make a forward pass through the network.

o 0@ x

Neural Network

g

@ .00 =

g

Lisa Yan, CS109, 2019
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Predict: Forward Pass

)
®
O
O O
® ®
: |h| logistic O 1 logistic
regressions O | regression [ ]
® O > 0.57
O O
- O y
' O
® O
®
o h=(hy,...,hp,)
Input

X = (xl, ...,xmx)
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Predict: Forward Pass

{ COee .00e C’OOOQJ

X = (xl, ...,xmx)

P~y

!
g

{OOO OOOOéO}

—~
=
-

s himy )

Lisa Yan, CS109, 2019
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My
_ (h)
h] — Z xiei,j
1=0
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Predict: Forward Pass

)
®
O
O O
® O N
Xi : |h| logistic O
regressions O
® O > 0.57?
O O
- o y
' O
® O My
® h
O h=(hy,...,hp,) hi = 2 xigi(’j)
__ =0

X = (xl,,xmx)

v Lisa Yan, C$109, 2019 Stanford University 67




Predict: Forward Pass

°

O

O T

o N

® %

° o>

°
O— > 0.57?

O o

; hj y

° o/

o mp

O h = (hy, .., him,) s AN @
- 1

j=0
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Predict: Forward Pass

To predict, make a forward pass

)
® through the network:
O
O e Compute neurons of current
® o layer, which feed into next layer
® O
® O
® O @ > 0.57?
O O
O °
| My D, mp
_ W) D] 5 _ ()
: h] — U(E xigi,j ) — | y=0 Z hJHJy
¢ i=0 j=0
Input |

x = (X1, e, Xm, ) h = (hy, ..., hm,)

Lisa Yan, C$109, 2019 Stanford University 69
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Neural network model

Neural Network A < U -
X h % hi=o0 Exieifj) y=o0 Ehjejy)
& ) i=0 j=0
8 g 8 2162,
| = —’E] y=P( =1|X = x)
=) )
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Quick check

Neural Network ) T - Mh )
) ) i=0 j=0
8 g 8 2162,
| —’E] y=P( =1|X = x)
S =l
N Y,
Let |x| = 40 and |h| = 20.

How many parameters How many parameters How many parameters
are in 97 are in 9(M? in total?

2 2 800

20 20 20 Y

40 40 820 \\?j

800 800 16000



Quick check

o 0@ =

\_

Neural Network

h
9)
g 2162,
AN RS
)

Let |x| = 40 and |h| = 20.

1. How many parameters
are in 6)?

A 2

(B.)20

C. 40

D. 800

2. How many parameters
are in (W7
A 2

5. 20
C. 40

800

) m, mpy
~ h y
i=0 j=0
E] =P(Y = 1|X = x)

3. How many parameters

in total?
A. 800

@820

. 16000



