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Background: Sigmoid function 𝜎 𝑧
• The sigmoid function:

• Sigmoid squashes 𝑧 to
a number between 0 and 1.

• Recall definition of probability:
A number between 0 and 1

2

👉 𝜎 𝑧 can represent a probability.
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Logistic Regression Model
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)𝑌 = arg max
01 2,4

𝑃 𝑌 | 𝑿

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃2 +:
;14

<

𝜃;𝑥;where

Predict the 𝑌 that is most likely
given our observation 𝑿

models 
𝑃 𝑌 | 𝑿
directly
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Logistic Regression Model

4Slides courtesy of Chris Piech
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Logistic Regression Model
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• 𝜎 𝑧 = 4
4BCDE

, the sigmoid function

• For simplicity, define 𝑥2 = 1:

• Since 𝑃 𝑌 = 1|𝑿 = 𝒙 + 𝑃 𝑌 = 0|𝑿 = 𝒙 = 1:

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃G𝒙

𝑃 𝑌 = 0|𝑿 = 𝒙 = 1 − 𝜎 𝜃G𝒙

)𝑌 = arg max
01 2,4

𝑃 𝑌 | 𝑿 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃2 +:
;14

<

𝜃;𝑥;where

Predict the 𝑌 that is most likely
given our observation 𝑿 models 𝑃 𝑌 | 𝑿 directly

Review
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Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

Intro to Deep Learning
• Parameters of a neural network
• Training neural networks

6
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Training: Learning the parameters
Logistic regression gets its intelligence from its parameters 𝜃 =
𝜃2, 𝜃4, … , 𝜃< .

7

𝐿 𝜃 =K
L14

M

𝑃 𝑌 = 𝑦 L |𝑿 = 𝒙 L , 𝜃

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃G𝒙

👉 During training, find the 𝜃 that 
maximizes log-conditional likelihood 
of the training data. Use MLE!

• Logistic Regression Model: 

• Want to predict training
data as correctly as possible:

• Therefore, choose 𝜃 that maximizes 
the conditional likelihood of
observing i.i.d. training data:

arg max
01 2,4

𝑃 𝑌|𝑿 = 𝒙 L = 𝑦 L as often
as possible
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Training: Learning the parameters via MLE
0. Add 𝑥2

L = 1 to each 𝒙 L

1. Logistic Regression model:

2. Compute
log-conditional
likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃;, 𝑗 = 0, 1, … ,𝑚:

4. Optimize

8

𝐿𝐿 𝜃 =:
L14

M

𝑦(L) log 𝜎 𝜃G𝒙(𝒊) + 1 − 𝑦(L) log 1 − 𝜎 𝜃G𝒙(L)

𝜕𝐿𝐿 𝜃
𝜕𝜃;

=:
L14

M

𝑦(L) − 𝜎 𝜃G𝒙(L) 𝑥;
(L)

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃G𝒙

How did we get this math?? More in Chapter 2…
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Gradient Ascent
Walk uphill and you will find a local maxima

(if your step is small enough).

9

𝐿
𝜃

𝜃4 𝜃W Logistic regression 𝐿𝐿 𝜃
is convex

Review
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Training: Gradient ascent step
4. Optimize.

10

𝜕𝐿𝐿 𝜃
𝜕𝜃;

=:
L14

M

𝑦(L) − 𝜎 𝜃G𝒙(𝒊) 𝑥;
(L)

𝜃;XYZ = 𝜃;[\] + 𝜂 ⋅
𝜕𝐿𝐿 𝜃[\]

𝜕𝜃;[\]

For all thetas:

= 𝜃;[\] + 𝜂 ⋅:
L14

M

𝑦(L) − 𝜎 𝜃[\]G𝒙(𝒊) 𝑥;
(L)

What does this look like in code?

Repeat many times:
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Training: Gradient Ascent
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𝜃;XYZ = 𝜃;[\] + 𝜂 ⋅:
L14

M

𝑦(L) − 𝜎 𝜃[\]G𝒙(𝒊) 𝑥;
(L)

initialize 𝜃; = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

// compute all gradient[j]’s
// based on n training examples

𝜃; += η * gradient[j] for all 0 ≤ j ≤ m

Gradient 
Ascent Step



Lisa Yan, CS109, 2019

Training: Gradient Ascent

12

// update gradient[j] for
// current (x,y) example

initialize 𝜃; = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

𝜃; += η * gradient[j] for all 0 ≤ j ≤ m

for each 0 ≤ j ≤ m:

𝜃;XYZ = 𝜃;[\] + 𝜂 ⋅:
L14

M

𝑦(L) − 𝜎 𝜃[\]G𝒙(𝒊) 𝑥;
(L)Gradient 

Ascent Step
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🤔
13

Training: Gradient Ascent

What are important 
implementation 
details?

initialize 𝜃; = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃; += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒'ab𝒙
𝑥;

𝜃;XYZ = 𝜃;[\] + 𝜂 ⋅:
L14

M

𝑦(L) − 𝜎 𝜃[\]G𝒙(𝒊) 𝑥;
(L)Gradient 

Ascent Step
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Training: Gradient Ascent
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initialize 𝜃; = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃; += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒'ab𝒙
𝑥;

• 𝑥; is 𝑗-th feature of
input var 𝑥 = 𝑥4,… , 𝑥<

Gradient 
Ascent Step 𝜃;XYZ = 𝜃;[\] + 𝜂 ⋅:

L14

M

𝑦(L) − 𝜎 𝜃[\]G𝒙(𝒊) 𝑥;
(L)
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Training: Gradient Ascent

15

initialize 𝜃; = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃; += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒'ab𝒙
𝑥;

• 𝑥; is 𝑗-th feature of
input var 𝑥 = 𝑥4,… , 𝑥<

• Insert 𝑥2 = 1 before 
training

𝜃;XYZ = 𝜃;[\] + 𝜂 ⋅:
L14

M

𝑦(L) − 𝜎 𝜃[\]G𝒙(𝒊) 𝑥;
(L)Gradient 

Ascent Step
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Training: Gradient Ascent
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initialize 𝜃; = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃; += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒'ab𝒙
𝑥;

• 𝑥; is 𝑗-th feature of
input var 𝑥 = 𝑥4,… , 𝑥<

• Insert 𝑥2 = 1 before 
training

• Finish computing
gradient before
updating any part of 𝜃

𝜃;XYZ = 𝜃;[\] + 𝜂 ⋅:
L14

M

𝑦(L) − 𝜎 𝜃[\]G𝒙(𝒊) 𝑥;
(L)Gradient 

Ascent Step
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Training: Gradient Ascent
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initialize 𝜃; = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃; += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒'ab𝒙
𝑥;

• 𝑥; is 𝑗-th feature of
input var 𝑥 = 𝑥4,… , 𝑥<

• Insert 𝑥2 = 1 before 
training

• Finish computing
gradient before
updating any part of 𝜃

• Learning rate 𝜂 is a 
constant you set before 
training

𝜃;XYZ = 𝜃;[\] + 𝜂 ⋅:
L14

M

𝑦(L) − 𝜎 𝜃[\]G𝒙(𝒊) 𝑥;
(L)Gradient 

Ascent Step
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Training: Gradient Ascent

18

initialize 𝜃; = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃; += η * gradient[j] for all 0 ≤ j ≤ m

𝑦 −
1

1 + 𝑒'ab𝒙
𝑥;

• 𝑥; is 𝑗-th feature of
input var 𝑥 = 𝑥4,… , 𝑥<

• Insert 𝑥2 = 1 before 
training

• Finish computing
gradient before
updating any part of 𝜃

• Learning rate 𝜂 is a 
constant you set before 
training

𝜃;XYZ = 𝜃;[\] + 𝜂 ⋅:
L14

M

𝑦(L) − 𝜎 𝜃[\]G𝒙(𝒊) 𝑥;
(L)Gradient 

Ascent Step
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Testing: Classification with Logistic Regression

19

Testing

• Compute c𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃G𝒙 =
• Classify instance as:

d1 c𝑦 > 0.5, equivalently 𝜃G𝒙 > 0
0 otherwise

⚠ Parameters 𝜃; are not updated during testing phase

Training
Learn parameters 𝜃 = 𝜃2, 𝜃4, … , 𝜃<
via gradient
ascent: 𝜃;XYZ = 𝜃;[\] + 𝜂 ⋅:

L14

M

𝑦(L) − 𝜎 𝜃[\]G𝒙(𝒊) 𝑥;
(L)

1
1 + 𝑒'ab𝒙

👉
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Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

Intro to Deep Learning
• Parameters of a neural network
• Training neural networks

20
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Introducing notation c𝑦

21

)𝑌 = arg max
01 2,4

𝑃 𝑌|𝑿 = 𝒙Prediction: = d1 if c𝑦 > 0.5
0 otherwise

c𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃G𝒙Logistic 
Regression 

model: 𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = dc𝑦 if 𝑦 = 1
1 − c𝑦 if 𝑦 = 0
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Training: Learning the parameters via MLE

0. Add 𝑥2
L = 1 to each 𝒙 L

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃;, 𝑗 = 0, 1, … ,𝑚:

22

𝐿𝐿 𝜃 =:
L14

M

𝑦(L) log 𝜎 𝜃G𝒙(𝒊) + 1 − 𝑦(L) log 1 − 𝜎 𝜃G𝒙(L)

𝜕𝐿𝐿 𝜃
𝜕𝜃;

=:
L14

M

𝑦(L) − 𝜎 𝜃G𝒙(L) 𝑥;
(L)

𝑃 𝑌 = 1|𝑿 = 𝒙 = c𝑦
c𝑦 = 𝜎 𝜃G𝒙
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Training: Learning the parameters via MLE

0. Add 𝑥2
L = 1 to each 𝒙 L

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃;, 𝑗 = 0, 1, … ,𝑚:

23

𝐿𝐿 𝜃 =:
L14

M

𝑦(L) log 𝜎 𝜃G𝒙(𝒊) + 1 − 𝑦(L) log 1 − 𝜎 𝜃G𝒙(L)

How did we get this likelihood function?🤔

𝑃 𝑌 = 1|𝑿 = 𝒙 = c𝑦
c𝑦 = 𝜎 𝜃G𝒙

𝜕𝐿𝐿 𝜃
𝜕𝜃;

=:
L14

M

𝑦(L) − 𝜎 𝜃G𝒙(L) 𝑥;
(L)
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Log-likelihood of data

24

Notes:
• Actually conditional likelihood
• Still correctly gets correct 𝜃ghi

since 𝑿, 𝜃 independent
• See lecture notes

(see Bernoulli 
MLE PMF)

Logistic 
Regression 

model:

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = dc𝑦 if 𝑦 = 1
1 − c𝑦 if 𝑦 = 0

= c𝑦 0 1 − c𝑦 4'0

Likelihood
of training data: 𝐿 𝜃 =K

L14

M

𝑃 𝑌 = 𝑦 L |𝑿 = 𝒙 L , 𝜃

where c𝑦 = 𝜎 𝜃G𝒙
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(see Bernoulli 
MLE PMF)

Log-likelihood of data

25

Logistic 
Regression 

model:

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = dc𝑦 if 𝑦 = 1
1 − c𝑦 if 𝑦 = 0

= c𝑦 0 1 − c𝑦 4'0

Likelihood
of training data: 𝐿 𝜃 =K

L14

M

𝑃 𝑌 = 𝑦 L |𝑿 = 𝒙 L , 𝜃

where c𝑦 = 𝜎 𝜃G𝒙

=K
L14

M

c𝑦 L 0 j
1 − c𝑦 L 4'0 j

𝐿𝐿 𝜃 =:
L14

M

𝑦(L) log c𝑦 L + 1 − 𝑦(L) log 1 − c𝑦 LLog-likelihood:

=:
L14

M

𝑦(L) log 𝜎 𝜃G𝒙(𝒊) + 1 − 𝑦(L) log 1 − 𝜎 𝜃G𝒙(L) ✅
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Training: Learning the parameters via MLE

0. Add 𝑥2
L = 1 to each 𝒙 L

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃;, 𝑗 = 0, 1, … ,𝑚:

26

𝐿𝐿 𝜃 =:
L14

M

𝑦(L) log 𝜎 𝜃G𝒙(𝒊) + 1 − 𝑦(L) log 1 − 𝜎 𝜃G𝒙(L)

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃G𝒙

How did we get this gradient?🤔

𝜕𝐿𝐿 𝜃
𝜕𝜃;

=:
L14

M

𝑦(L) − 𝜎 𝜃G𝒙(L) 𝑥;
(L)
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🤔
27

Aside: Sigmoid has a beautiful derivative

What is k
kal

𝜎 𝜃G𝒙 ?

A. 𝜎 𝑥; 1 − 𝜎 𝑥; 𝑥;
B. 𝜎 𝜃G𝒙 1 − 𝜎 𝜃G𝒙 𝒙
C. 𝜎 𝜃G𝒙 1 − 𝜎 𝜃G𝒙 𝑥;
D. 𝜎 𝜃G𝒙 𝑥; 1 − 𝜎 𝜃G𝒙 𝑥;
E. None/other

Derivative:Sigmoid function:

𝜎 𝑧 =
1

1 + 𝑒'(
𝑑
𝑑𝑧
𝜎 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧
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🤔
28

Aside: Sigmoid has a beautiful derivative

What is k
kal

𝜎 𝜃G𝒙 ?

A. 𝜎 𝑥; 1 − 𝜎 𝑥; 𝑥;
B. 𝜎 𝜃G𝒙 1 − 𝜎 𝜃G𝒙 𝒙
C. 𝜎 𝜃G𝒙 1 − 𝜎 𝜃G𝒙 𝑥;
D. 𝜎 𝜃G𝒙 𝑥; 1 − 𝜎 𝜃G𝒙 𝑥;
E. None/other

Derivative:Sigmoid function:

𝜎 𝑧 =
1

1 + 𝑒'(
𝑑
𝑑𝑧
𝜎 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

Let 𝑧 = 𝜃G𝒙

𝜕
𝜕𝜃;

𝜎 𝜃G𝒙 =
𝜕
𝜕𝑧
𝜎 𝑧 ⋅

𝜕𝑧
𝜕𝜃;

(Chain Rule)

= :
n12

<

𝜃n𝑥n .

= 𝜎 𝜃G𝒙 1 − 𝜎 𝜃G𝒙 𝑥;



Lisa Yan, CS109, 2019

Compute gradient of log-conditional likelihood

29

𝐿𝐿 𝜃 =:
L14

M

𝑦(L) log 𝜎 𝜃G𝒙(𝒊) + 1 − 𝑦(L) log 1 − 𝜎 𝜃G𝒙(L)
Log-conditional 

Likelihood:

𝜕𝐿𝐿 𝜃
𝜕𝜃;

where

Find:
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Are you ready?

30

Right now!!!
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Compute gradient of log-likelihood

31

Let c𝑦 L = 𝜎 𝜃G𝒙(𝒊)
𝜕𝐿𝐿 𝜃
𝜕𝜃;

=:
L14

M
𝜕
𝜕𝜃;

𝑦(L) log c𝑦 L + 1 − 𝑦(L) log 1 − c𝑦 L

=:
L14

M
𝜕

𝜕 c𝑦 L 𝑦(L) log c𝑦 L + 1 − 𝑦(L) log 1 − c𝑦 L ⋅
𝜕 c𝑦 L

𝜕𝜃;
(Chain Rule)

=:
L14

M

𝑦(L)
1
c𝑦 L − 1 − 𝑦(L)

1
1 − c𝑦 L ⋅ c𝑦 L 1 − c𝑦 L 𝑥;

L (calculus)

=:
L14

M

𝑦(L) − c𝑦 L 𝑥;
(L) =:

L14

M

𝑦(L) − 𝜎 𝜃G𝒙 L 𝑥;
(L) (simplify)
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Compute gradient of log-likelihood

32

Let c𝑦 L = 𝜎 𝜃G𝒙(𝒊)
𝜕𝐿𝐿 𝜃
𝜕𝜃;

=:
L14

M
𝜕
𝜕𝜃;

𝑦(L) log c𝑦 L + 1 − 𝑦(L) log 1 − c𝑦 L

=:
L14

M
𝜕

𝜕 c𝑦 L 𝑦(L) log c𝑦 L + 1 − 𝑦(L) log 1 − c𝑦 L ⋅
𝜕 c𝑦 L

𝜕𝜃;
(Chain Rule)

=:
L14

M

𝑦(L)
1
c𝑦 L − 1 − 𝑦(L)

1
1 − c𝑦 L ⋅ c𝑦 L 1 − c𝑦 L 𝑥;

L (calculus)

=:
L14

M

𝑦(L) − c𝑦 L 𝑥;
(L) =:

L14

M

𝑦(L) − 𝜎 𝜃G𝒙 L 𝑥;
(L) (simplify)🎉
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Today’s plan

Naïve Bayes

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

33
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Logistic Regression is trying to fit
a line that separates data instances
where 𝑦 = 1 from those where 𝑦 = 0:

• We call such data (or functions
generating the data linearly separable.

• Naïve Bayes is linear too, because there is no interaction between 
different features.

Intuition about Logistic Regression

34

𝜃G𝒙 = 0

Logistic 
Regression 

Model
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃G𝒙 𝜃G𝒙 =:

;12

<

𝜃;𝑥;where
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Data is often not linearly separable

• Not possible to draw a line that successfully separates all the 
𝑦 = 1 points (green) from the 𝑦 = 0 points (red)

• Despite this fact, Logistic Regression and Naive Bayes still often work 
well in practice

35
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Many tradeoffs in choosing an algorithm

36

Naïve Bayes Logistic Regression

Modeling goal 𝑃 𝑿, 𝑌 𝑃 𝑌|𝑿

Generative: could use joint 
distribution to generate new 
points (⚠but you might not 
need this extra effort)

Generative or
discriminative?

Discriminative: just tries to 
discriminate 𝑦 = 0 vs 𝑦 = 1
(❌ cannot generate new points 
b/c no 𝑃 𝑿, 𝑌 )

Continuous input
features

✅ Yes, easily

⚠ Needs parametric form  
(e.g., Gaussian) or 
discretized buckets (for 
multinomial features)

Discrete input
features

Yes, multi-value discrete 
data = multinomial 𝑃 𝑋L|𝑌

⚠ Multi-valued discrete data 
hard (e.g., if 𝑋L ∈ {𝐴, 𝐵, 𝐶}, not 
necessarily good to encode as 
1, 2, 3



30-second
pedagogical pause
Summarize what we have learned

37

🤔



Break for jokes/
announcements

38
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Announcements

39

Problem Set 6

Due: Wednesday 12/4
(after break)

Note: Skip Problem 3 (neural net) for now,
we will finish covering it on Friday

Office Hours

During Thanksgiving break: None

Last weekly concept check

Due: Tuesday 12/3
(after break)
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Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

Intro to Deep Learning
• Parameters of a neural network
• Training neural networks

40
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One logistic regression

41

+ = +

…

σ

𝒙

c𝑦
𝑃 𝑌 = 1|𝑿 = 𝒙

> 0.5?
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One neuron

42

+

…

σ

𝒙

c𝑦
=

= One logistic regression
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Biological basis for neural networks

43

A neuron

Your brain

One neuron =
one logistic
regression

(actually, probably someone else’s brain)

x1
x2
x3
x4

θ1

θ2
θ3
θ4

y

x1
x2
x3
x4

Neural network =
many logistic
regressions 👈
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Innovations in deep learning

Deep learning (neural networks) 
is the core idea behind the 
current revolution in AI.

44AlphaGO (2016)
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Computers making art

45
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Detecting skin cancer

46

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." 
Nature 542.7639 (2017): 115-118. 
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Deep learning

def Deep learning is 
maximum likelihood estimation 
with neural networks.

47

[1,0, … , 1]
𝒙, input

c𝑦, output
𝑃 𝑌|𝑿 = 𝒙

> 0.5? Yes.
Predict 1

Lots of Logistic
(regressions)

LOL

def A neural network is
(at its core) many logistic 
regression pieces stacked on 
top of each other.
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Digit recognition example

48

Input feature vector

𝒙(L) = 0,0,0,0, … , 1,0,0,1, … , 0,0,1,0

𝒙(L) = 0,0,1,1, … , 0,1,1,0, … , 0,1,0,0

𝑦 L = 0

𝑦 L = 1

Output labelInput image

We make feature vectors from (digitized) pictures of numbers.



Lisa Yan, CS109, 2019

Logistic Regression

49

c𝑦 = σ θG𝒙

+

…

σ

𝒙

> 0.5?
No. 
Predict 0

✅c𝑦, output
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Logistic Regression

50

c𝑦 = σ θ𝑇𝒙

…

indicates logistic 
regression connection

> 0.5?
No. 
Predict 0

𝒙, input features

c𝑦, output
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Logistic Regression

51

…

> 0.5?
Yes. 
Predict 1

✅

𝒙, input features

c𝑦, output
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Logistic Regression: not so good

52

> 0.5?
Yes. 
Predict 1

…

What can we do to increase
complexity of our model?𝒙, input features

c𝑦, output
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Feed neurons into other neurons

53

…

𝒉, hidden
layer

> 0.5?
No. 
Predict 0

✅

𝒙, input features

c𝑦, output
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Feed neurons into other neurons

54

…

𝒉, hidden
layer

> 0.5?
No. 
Predict 0

✅

+ σ

hidden
neuron

• Neuron = logistic regression
• Vector of parameters

for every connection𝒙, input features

c𝑦, output
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Feed neurons into other neurons

55

…

𝒉, hidden
layer

> 0.5?
No. 
Predict 0

✅
+ σ

another
hidden
neuron

• Neuron = logistic regression
• Vector of parameters

for every connection𝒙, input features

c𝑦, output
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Feed neurons into other neurons

56

…

𝒉, hidden
layer

> 0.5?
No. 
Predict 0

|𝒉| logistic 
regression 

connections

• Neuron = logistic regression
• Vector of parameters

for every connection𝒙, input features

c𝑦, output
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Feed neurons into other neurons

57

…

𝒉, hidden
layer

> 0.5?
No. 
Predict 0

✅

+ σ

output
neuron

• Neuron = logistic regression
• Vector of parameters

for every connection𝒙, input features

c𝑦, output
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Feed neurons into other neurons

58

…

𝒉, hidden
layer

> 0.5?
No. 
Predict 0

✅

1 logistic 
regression 
connection

|𝒉| logistic 
regression 

connections

𝒙, input features

c𝑦, output

👉 Neural networks are simply
composed logistic regression units.
1 neuron = 1 logistic regression.
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Demonstration

http://scs.ryerson.ca/~aharley/vis/conv/

59

http://scs.ryerson.ca/~aharley/vis/conv/
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Neural networks

60

Testing/
Prediction

Training

A neural network (like logistic regression) gets intelligence from its 
parameters 𝜃.

• Learn parameters 𝜃
• Find 𝜃ghi that maximizes likelihood of

training data (MLE)

For input feature vector 𝑿 = 𝒙:
• Use parameters to compute c𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙
• If c𝑦 > 0.5, predict 1. Else, predict 0.
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Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

Intro to Deep Learning
• Parameters of a neural network
• Training neural networks

61
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Learning Goals

• Deep learning (like Logistic Regression) gets its intelligence from its 
parameters, 𝜃.

• Training a neural network (like Logistic Regression) is finding 𝜃ghi .

Learning goals:
1. Understand Chain Rule as the heart of neural networks
2. Demystifying deep learning as MLE
3. Become experts of logistic regression

62
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Predict: Forward Pass

63

Testing/
Prediction

Training

A neural network (like logistic regression) gets intelligence from its 
parameters 𝜃.

• Learn parameters 𝜃
• Find 𝜃ghi that maximizes likelihood of

training data (MLE)

For input feature vector 𝑿 = 𝒙:
• Use parameters to compute c𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙
• If c𝑦 > 0.5, predict 1. Else, predict 0.
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Predict: Forward Pass
To predict, make a forward pass through the network.

64

Neural Network

𝒙 𝒉

… …

c𝑦

𝜃 } 𝜃 c0
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Predict: Forward Pass

65

…

𝒉 = ℎ4,… , ℎ<�

> 0.5?

𝒙 = 𝑥4,… , 𝑥<�

c𝑦

Input

1 logistic 
regression

|𝒉| logistic 
regressions
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Predict: Forward Pass

66

…

𝒉 = ℎ4,… , ℎ<�

> 0.5?

𝒙 = 𝑥4,… , 𝑥<�

c𝑦

+ σ ℎ;𝑥L

ℎ; = 𝜎 :
L12

<�

𝑥L𝜃L,;
}
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Predict: Forward Pass

67

…

𝒉 = ℎ4,… , ℎ<�

> 0.5?

𝒙 = 𝑥4,… , 𝑥<�

c𝑦

ℎ;𝑥L

ℎ; = 𝜎 :
L12

<�

𝑥L𝜃L,;
}

✅

|𝒉| logistic 
regressions

✅
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|𝒉| logistic 
regressions

Predict: Forward Pass

68

…

𝒉 = ℎ4,… , ℎ<�

> 0.5?

𝒙 = 𝑥4,… , 𝑥<�

c𝑦ℎ;

c𝑦 = 𝜎 :
;12

<�

ℎ;𝜃;
c0

✅

+ σ

✅
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Predict: Forward Pass
To predict, make a forward pass
through the network:
Compute neurons of current 
layer, which feed into next layer

69

…

𝒉 = ℎ4,… , ℎ<�

> 0.5?

𝒙 = 𝑥4,… , 𝑥<� c𝑦
Input

ℎ; = 𝜎 :
L12

<�

𝑥L𝜃L,;
} c𝑦 = 𝜎 :

;12

<�

ℎ;𝜃;
c0
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Neural network model

70

Neural Network
𝒙 𝒉

… …

c𝑦

𝜃 } 𝜃 c0

ℎ; = 𝜎 :
L12

<�

𝑥L𝜃L,;
} c𝑦 = 𝜎 :

;12

<�

ℎ;𝜃;
c0

c𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙
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🤔
71

Quick check
Neural Network

𝒙 𝒉

… …

c𝑦

𝜃 } 𝜃 c0

ℎ; = 𝜎 :
L12

<�

𝑥L𝜃L,;
} c𝑦 = 𝜎 :

;12

<�

ℎ;𝜃;
c0

c𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙

1. How many parameters
are in 𝜃 c0 ?
A. 2
B. 20
C. 40
D. 800

Let 𝒙 = 40 and 𝒉 = 20.

2. How many parameters
are in 𝜃 } ?
A. 2
B. 20
C. 40
D. 800

3. How many parameters
in total?
A. 800
B. 20
C. 820
D. 16000
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🤔

1. How many parameters
are in 𝜃 c0 ?
A. 2
B. 20
C. 40
D. 800

2. How many parameters
are in 𝜃 } ?
A. 2
B. 20
C. 40
D. 800

3. How many parameters
in total?
A. 800
B. 20
C. 820
D. 16000

72

Quick check
Neural Network

𝒙 𝒉

… …

c𝑦

𝜃 } 𝜃 c0

ℎ; = 𝜎 :
L12

<�

𝑥L𝜃L,;
} c𝑦 = 𝜎 :

;12

<�

ℎ;𝜃;
c0

c𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙

Let 𝒙 = 40 and 𝒉 = 20.


