26: Logistic Regression + Deep Learning

Lisa Yan November 20, 2019

Background: Sigmoid function $\sigma(z)$

• The sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

 Sigmoid squashes z to a number between 0 and 1.

 Recall definition of probability: A number between 0 and 1

$$\widehat{Y} = \arg \max_{y \in \{0,1\}} P(Y \mid X)$$

Predict the *Y* that is most likely given our observation *X*

where
$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j \right)$$
 models
 $P(Y | \mathbf{X})$ directly

Logistic Regression Model

Review

Review

 \mathbf{i}

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} P(Y \mid X)$$
 where

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j \right)$$

1

Predict the *Y* that is most likely given our observation *X*

models $P(Y \mid X)$ directly

- $\sigma(z) = \frac{1}{1+e^{-z}}$, the sigmoid function
- For simplicity, define $x_0 = 1$: $P(Y = 1 | X = x) = \sigma(\theta^T x)$
- Since P(Y = 1 | X = x) + P(Y = 0 | X = x) = 1:

 $P(Y = 0 | \mathbf{X} = \mathbf{x}) = 1 - \sigma(\theta^T \mathbf{x})$

Today's plan

Logistic Regression

- Chapter O: Background
- Chapter 1: Big Picture
- Chapter 2: Details
- Chapter 3: Philosophy

Intro to Deep Learning

- Parameters of a neural network
- Training neural networks

Training: Learning the parameters

Logistic regression gets its **intelligence** from its parameters $\theta = (\theta_0, \theta_1, \dots, \theta_m)$.

- Logistic Regression Model:
- Want to predict training data as correctly as possible:
- Therefore, choose θ that maximizes the conditional likelihood of observing i.i.d. training data:

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$

$$\underset{y=\{0,1\}}{\arg \max P(Y|X = x^{(i)}) = y^{(i)}} \text{ as often}$$

$$L(\theta) = \prod_{i=1}^{n} P(Y = y^{(i)} | \mathbf{X} = \mathbf{x}^{(i)}, \theta)$$

During training, find the θ that maximizes log-conditional likelihood of the training data. Use MLE!

Training: Learning the parameters via MLE

- 0. Add $x_0^{(i)} = 1$ to each $x^{(i)}$
- **1.** Logistic Regression model:

$$P(Y = 1 | \boldsymbol{X} = \boldsymbol{x}) = \sigma(\theta^T \boldsymbol{x})$$

- 2. Compute log-conditional likelihood $LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 y^{(i)}) \log (1 \sigma(\theta^T \mathbf{x}^{(i)}))$
- 3. Compute derivative of log-likelihood with respect to each θ_j , j = 0, 1, ..., m:
- 4. Optimize

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)}$$

How did we get this math?? More in Chapter 2...

Lisa Yan, CS109, 2019

Stanford University 8

Review

Walk uphill and you will find a local maxima (if your step is small enough).

Logistic regression $LL(\theta)$ is convex

Training: Gradient ascent step

4. Optimize.
$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T x^{(i)}) \right] x_j^{(i)}$$

Repeat many times:

For all thetas:

$$\theta_{j}^{\text{new}} = \theta_{j}^{\text{old}} + \eta \cdot \frac{\partial LL(\theta^{\text{old}})}{\partial \theta_{j}^{\text{old}}}$$

$$= \theta_{j}^{\text{old}} + \eta \cdot \sum_{i=1}^{n} \left[y^{(i)} - \sigma \left(\theta^{\text{old}^{T}} \boldsymbol{x}^{(i)} \right) \right] x_{j}^{(i)}$$

What does this look like in code?

Gradient
Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

initialize $\theta_j = 0$ for $0 \le j \le m$ repeat many times:

gradient[j] = 0 for $0 \le j \le m$

// compute all gradient[j]'s
// based on n training examples

 $\theta_j += \eta * gradient[j] \text{ for all } 0 \leq j \leq m$

Gradient
Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

initialize θ_j = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (x, y):
 for each 0 ≤ j ≤ m:

// update gradient[j] for
// current (x,y) example

 $\theta_j += \eta * \text{gradient}[j] \text{ for all } 0 \leq j \leq m$

Gradient
Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

$$\begin{array}{l} \text{nitialize } \theta_j = 0 \ \text{for } 0 \le j \le m \\ \text{repeat many times:} \\ \text{gradient[j]} = 0 \ \text{for } 0 \le j \le m \\ \text{for each training example } (x, y): \\ \text{for each } 0 \le j \le m: \\ \\ \text{gradient[j]} += \left[y - \frac{1}{1 + e^{-\theta^T x}} \right] x_j \\ \\ \theta_i \ += \eta \ \text{gradient[j] for all } 0 \le j \le m \\ \end{array}$$

What are important implementation details?

Gradient
Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

initialize
$$\theta_j = 0$$
 for $0 \le j \le m$
repeat many times:

gradient[j] = 0 for $0 \le j \le m$
for each training example (x, y):
 for each $0 \le j \le m$:

gradient[j] += $\left[y - \frac{1}{1 + e^{-\theta^T x}}\right]_{x_j}^{x_j}$

 θ_j += η * gradient[j] for all $0 \le j \le$

• x_j is *j*-th feature of input var $x = (x_1, ..., x_m)$

Initialize
$$\theta_j = 0$$
 for $0 \le j \le m$
repeat many times:
gradient[j] = 0 for $0 \le j \le m$
for each training example (x, y):
for each $0 \le j \le m$:
gradient[j] += $\left[y - \frac{1}{1 + e^{-\theta^T x}}x_j\right]$
 θ_j += η * gradient[j] for all $0 \le j \le j$

• x_j is *j*-th feature of input var $x = (x_1, ..., x_m)$

• Insert
$$x_0 = 1$$
 before training

initialize $\theta_i = 0$ for $0 \le j \le m$ repeat many times: gradient[j] = 0 for $0 \le j \le m$ for each training example (x, y): for each $0 \leq j \leq m$: gradient[j] += $\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$ $\theta_i += \eta * \text{ gradient}[j] \text{ for all } 0 \leq j \leq m$

- x_j is *j*-th feature of input var $x = (x_1, ..., x_m)$
- Insert $x_0 = 1$ before training
- Finish computing gradient before updating any part of θ

initialize $\theta_i = 0$ for $0 \le j \le m$ repeat many times: gradient[j] = 0 for $0 \le j \le m$ for each training example (x, y): for each $0 \le j \le m$: gradient[j] += $\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$

 $\theta_j += \eta$ gradient[j] for all $0 \le j \le m$

- x_j is *j*-th feature of input var $x = (x_1, ..., x_m)$
- Insert $x_0 = 1$ before training
- Finish computing gradient before updating any part of θ
- Learning rate η is a constant you set before training

initialize $\theta_j = 0$ for $0 \le j \le m$ repeat many times: gradient[j] = 0 for $0 \le j \le m$ for each training example (x, y): for each $0 \le j \le m$:

gradient[j] +=
$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$$

 $\theta_j += \eta * \text{gradient[j] for all } 0 \leq j \leq m$

- x_j is *j*-th feature of input var $x = (x_1, ..., x_m)$
- Insert $x_0 = 1$ before training
- Finish computing gradient before updating any part of θ
- Learning rate η is a constant you set before training

Testing: Classification with Logistic Regression

Training

Learn parameters
$$\theta = (\theta_0, \theta_1, ..., \theta_m)$$

via gradient
ascent: $\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} x^{(i)} \right) \right] x_j^{(i)}$

- Compute $\hat{y} = P(Y = 1 | X = x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$
- Classify instance as:

Testing

 $\begin{cases} 1 \quad \hat{y} > 0.5, \text{ equivalently } \theta^T x > 0 \\ 0 \qquad \text{otherwise} \end{cases}$

figure A Parameters θ_i are <u>not</u> updated during testing phase

Today's plan

Logistic Regression

- Chapter 0: Background
- Chapter 1: Big Picture
- Chapter 2: Details
- Chapter 3: Philosophy

Intro to Deep Learning

- Parameters of a neural network
- Training neural networks

Introducing notation \hat{y}

Logistic Regression model:

$$\hat{y} = P(Y = 1 | X = x) = \sigma(\theta^T x)$$

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \hat{y} & \text{if } y = 1\\ 1 - \hat{y} & \text{if } y = 0 \end{cases}$$

Prediction:

$$\hat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} P(Y | \mathbf{X} = \mathbf{x}) = \begin{cases} 1 & \text{if } \hat{y} > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

Training: Learning the parameters via MLE

- 0. Add $x_0^{(i)} = 1$ to each $x^{(i)}$
- **1.** Logistic Regression model:

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \hat{y}$$
$$\hat{y} = \sigma(\theta^T \mathbf{x})$$

- 2. Compute log-likelihood of training data: $LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T x^{(i)}) + (1 y^{(i)}) \log (1 \sigma(\theta^T x^{(i)}))$
- 3. Compute derivative of log-likelihood with respect to each θ_j , j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)}$$

Training: Learning the parameters via MLE

- 0. Add $x_0^{(i)} = 1$ to each $x^{(i)}$
- 1. Logistic Regression model:

$$p(Y = 1 | \mathbf{X} = \mathbf{x}) = \hat{y}$$
$$\hat{y} = \sigma(\theta^T \mathbf{x})$$

- 2. Compute log-likelihood of training data: $LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 y^{(i)}) \log (1 \sigma(\theta^T \mathbf{x}^{(i)}))$
- 3. Compute derivative of log-likelihood with respect to each θ_j , j = 0, 1, ..., m:

How did we get this likelihood function? $\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n [y^{(i)} - \sigma(\theta^T x^{(i)})] x_j^{(i)}$

Log-likelihood of data

Logistic
Regression
model:
$$P(Y = y | X = x) = \begin{cases} \hat{y} & \text{if } y = 1 \\ 1 - \hat{y} & \text{if } y = 0 \end{cases}$$
where $\hat{y} = \sigma(\theta^T x)$ $= (\hat{y})^y (1 - \hat{y})^{1-y}$ (see Bernoulli
MLE PMF)

$$L(\theta) = \prod_{i=1}^{n} P(Y = y^{(i)} | \mathbf{X} = \mathbf{x}^{(i)}, \theta)$$

Notes:

- Actually conditional likelihood
- Still correctly gets correct θ_{MLE} since X, θ independent
- See lecture notes

Log-likelihood of data

Logistic
Regression
model:
$$P(Y = y | X = x) = \begin{cases} \hat{y} & \text{if } y = 1 \\ 1 - \hat{y} & \text{if } y = 0 \end{cases}$$
where $\hat{y} = \sigma(\theta^T x)$ $= (\hat{y})^y (1 - \hat{y})^{1-y}$ (see Bernoulli
MLE PMF)

Likelihood
of training data:
$$L(\theta) = \prod_{i=1}^{n} P(Y = y^{(i)} | X = x^{(i)}, \theta) = \prod_{i=1}^{n} (\hat{y}^{(i)})^{y^{(i)}} (1 - \hat{y}^{(i)})^{1-y^{(i)}}$$

Log-likelihood:
$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$
$$= \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \boldsymbol{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^T \boldsymbol{x}^{(i)})) \checkmark$$
$$IISA YAN, CS109, 2019$$
Stanford University 25

Training: Learning the parameters via MLE

- 0. Add $x_0^{(i)} = 1$ to each $x^{(i)}$
- 1. Logistic Regression model:

$$P(Y = 1 | \boldsymbol{X} = \boldsymbol{x}) = \sigma(\theta^T \boldsymbol{x})$$

- 2. Compute log-likelihood of training data: $LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} x^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta^{T} x^{(i)}))$
- 3. Compute derivative of log-likelihood with respect to each θ_j , j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)}$$

How did we get this gradient? Stanford University 26

Aside: Sigmoid has a beautiful derivative

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{d}{dz}\sigma(z) = \sigma(z)[1 - \sigma(z)$$

What is
$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T \mathbf{x})$$
?
A. $\sigma(x_j) [1 - \sigma(x_j)] x_j$
B. $\sigma(\theta^T \mathbf{x}) [1 - \sigma(\theta^T \mathbf{x})] \mathbf{x}$
C. $\sigma(\theta^T \mathbf{x}) [1 - \sigma(\theta^T \mathbf{x})] x_j$
D. $\sigma(\theta^T \mathbf{x}) x_j [1 - \sigma(\theta^T \mathbf{x}) x_j]$
E. None/other

Derivative:

Aside: Sigmoid has a beautiful derivative

Compute gradient of log-conditional likelihood

Are you ready?

Quora	Home	🖉 Answer	Con Spaces	No	otifications		Searc
Moments Per	rsonal Experience	es Important Lif	e Lessons +5	/			
What is your best "I've never been more ready in my life" moment?							
🔀 Answer	බ Follow · 2	→ Request	£	> ∿	i y	\Rightarrow	000
1 Answer							
Right no	ow!!!						
12 views · View	Upvoters						

Compute gradient of log-likelihood

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \frac{\partial}{\partial \theta_j} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \qquad \text{Let } \hat{y}^{(i)} = \sigma(\theta^T \boldsymbol{x}^{(i)})$$

$$=\sum_{i=1}^{n}\frac{\partial}{\partial\hat{y}^{(i)}}\left[y^{(i)}\log(\hat{y}^{(i)}) + (1-y^{(i)})\log(1-\hat{y}^{(i)})\right] \cdot \frac{\partial\hat{y}^{(i)}}{\partial\theta_{j}}$$

(Chain Rule)

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\hat{y}^{(i)}} - (1 - y^{(i)}) \frac{1}{1 - \hat{y}^{(i)}} \right] \cdot \hat{y}^{(i)} (1 - \hat{y}^{(i)}) x_j^{(i)} \qquad \text{(calculus)}$$
$$= \sum_{i=1}^{n} \left[y^{(i)} - \hat{y}^{(i)} \right] x_j^{(i)} \qquad = \sum_{i=1}^{n} \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)} \qquad \text{(simplify)}$$

Compute gradient of log-likelihood

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \frac{\partial}{\partial \theta_j} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \qquad \text{Let } \hat{y}^{(i)} = \sigma(\theta^T \boldsymbol{x}^{(i)})$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_j}$$
(Chain Rule)

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\hat{y}^{(i)}} - (1 - y^{(i)}) \frac{1}{1 - \hat{y}^{(i)}} \right] \cdot \hat{y}^{(i)} (1 - \hat{y}^{(i)}) x_j^{(i)}$$
(calculus)

Stanford University 32

Naïve Bayes

Logistic Regression

- Chapter O: Background
- Chapter 1: Big Picture
- Chapter 2: Details
- Chapter 3: Philosophy

Logistic Regression Model

$$P(Y = 1 | X = x) = \sigma(\theta^T x)$$
 where $\theta^T x = \sum_{j=0}^{m} \theta_j x_j$

Logistic Regression is trying to fit a <u>line</u> that separates data instances where y = 1 from those where y = 0:

- We call such data (or functions generating the data <u>linearly separable</u>.
- Naïve Bayes is linear too, because there is no interaction between different features.

Data is often not linearly separable

- Not possible to draw a line that successfully separates all the y = 1 points (green) from the y = 0 points (red)
- Despite this fact, Logistic Regression and Naive Bayes still often work well in practice

Many tradeoffs in choosing an algorithm

Modeling goal

Generative or discriminative?

Continuous input features

Discrete input features

Generative: could use joint distribution to generate new points (!but you might not need this extra effort)

Naïve Bayes

 $P(\boldsymbol{X}, \boldsymbol{Y})$

Needs parametric form (e.g., Gaussian) or discretized buckets (for multinomial features)

Yes, multi-value discrete data = multinomial $P(X_i|Y)$

Lisa Yan, CS109, 2019

Logistic Regression P(Y|X)

Discriminative: just tries to discriminate y = 0 vs y = 1(X cannot generate new points b/c no P(X, Y))

🗹 Yes, easily
30-second pedagogical pause

Summarize what we have learned

Break for jokes/ announcements

Problem Set 6Due:Wednesday 12/4
(after break)Note:Skip Problem 3 (neural net) for now,
we will finish covering it on Friday

Office Hours		Last weekly concept check	
		Due:	Tuesday 12/3
During Thanksgiving break:	None	Duc.	(after break)

Today's plan

Logistic Regression

- Chapter O: Background
- Chapter 1: Big Picture
- Chapter 2: Details
- Chapter 3: Philosophy

Intro to Deep Learning

- Parameters of a neural network
- Training neural networks

One logistic regression

One neuron = One logistic regression

Biological basis for neural networks

A neuron

One neuron = one logistic regression

Your brain

(actually, probably someone else's brain)

Neural network = many logistic regressions

Innovations in deep learning

Deep learning (neural networks) is the core idea behind the current revolution in Al.

AlphaGO (2016)

Computers making art

Detecting skin cancer

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." *Nature* 542.7639 (2017): 115-118.

Deep learning

<u>def</u> Deep learning is maximum likelihood estimation with neural networks.

def A neural network is

(at its core) many logistic regression pieces stacked on top of each other.

Digit recognition example

Input feature vector

Output label

Input image

$$\boldsymbol{x}^{(i)} = [0, 0, 0, 0, \dots, 1, 0, 0, 1, \dots, 0, 0, 1, 0] \qquad y^{(i)} = 0$$

$$\mathbf{x}^{(i)} = [0, 0, 1, 1, \dots, 0, 1, 1, 0, \dots, 0, 1, 0, 0]$$
 $y^{(i)} = 1$

We make feature vectors from (digitized) pictures of numbers.

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression: not so good

Demonstration

http://scs.ryerson.ca/~aharley/vis/conv/

Neural networks

A neural network (like logistic regression) gets intelligence from its parameters θ .

• Learn parameters &	9
----------------------	---

• Find θ_{MLE} that maximizes likelihood of training data (MLE)

Training

For input feature vector X = x:

- Use parameters to compute $\hat{y} = P(Y = 1 | X = x)$
- If $\hat{y} > 0.5$, predict 1. Else, predict 0.

Today's plan

Logistic Regression

- Chapter O: Background
- Chapter 1: Big Picture
- Chapter 2: Details
- Chapter 3: Philosophy

Intro to Deep Learning

- Parameters of a neural network
- Training neural networks

- Deep learning (like Logistic Regression) gets its intelligence from its parameters, θ .
- Training a neural network (like Logistic Regression) is finding θ_{MLE} .

Learning goals:

- 1. Understand Chain Rule as the heart of neural networks
- 2. Demystifying deep learning as MLE
- **3.** Become experts of logistic regression

A neural network (like logistic regression) gets intelligence from its parameters θ .

- Learn parameters θ
- Find θ_{MLE} that maximizes likelihood of training data (MLE)

Training

For input feature vector X = x:

- Use parameters to compute $\hat{y} = P(Y = 1 | X = x)$
- If $\hat{y} > 0.5$, predict 1. Else, predict 0.

To predict, make a **forward pass** through the network.

Stanford University 67

Neural network model

$$h_{j} = \sigma \left(\sum_{i=0}^{m_{x}} x_{i} \theta_{i,j}^{(h)} \right) \qquad \hat{y} = \sigma \left(\sum_{j=0}^{m_{h}} h_{j} \theta_{j}^{(\hat{y})} \right)$$
$$\hat{y} = P(Y = 1 | X = x)$$

Quick check

$$h_{j} = \sigma \left(\sum_{i=0}^{m_{x}} x_{i} \theta_{i,j}^{(h)} \right) \qquad \hat{y} = \sigma \left(\sum_{j=0}^{m_{h}} h_{j} \theta_{j}^{(\hat{y})} \right)$$
$$\hat{y} = P(Y = 1 | X = x)$$

Let |x| = 40 and |h| = 20.

- 1. How many parameters are in $\theta^{(\hat{y})}$?
 - **A.** 2
 - **B.** 20
 - **C.** 40
 - D. 800

2. How many parameters are in $\theta^{(h)}$?

- A. 2
- B. 20
- **C**. 40
 - D. 800

3. How many parameters

- in total?
- A. 800
- B. 20
- <mark>C.</mark> 820
 - 16000

Quick check

$$h_{j} = \sigma \left(\sum_{i=0}^{m_{x}} x_{i} \theta_{i,j}^{(h)} \right) \qquad \hat{y} = \sigma \left(\sum_{j=0}^{m_{h}} h_{j} \theta_{j}^{(\hat{y})} \right)$$
$$\hat{y} = P(Y = 1 | X = x)$$

Let |x| = 40 and |h| = 20.

- How many parameters are in θ^(ŷ)?
 A. 2
 - B. 20 C. 40 D. 800

- How many parameters are in θ^(h)?
 A. 2
 B. 20
 - <mark>C</mark>. 40
 - D.) 800

- 3. How many parameters in total?
 A. 800
 B. 20
 - B. 20 C. 820 D. 16000

