
27: Deep Learning II
Lisa Yan
November 22, 2019

1

Lisa Yan, CS109, 2019

Logistic Regression Model

2

!𝑌 = arg max
)* +,-

𝑃 𝑌 | 𝑿

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃+ +6
7*-

8

𝜃7𝑥7where

Predict the 𝑌 that is most likely
given our observation 𝑿

models
𝑃 𝑌 | 𝑿
directly

Review

sigmoid fn
𝜎 𝑧 = 1/ 1 + 𝑒=>

Lisa Yan, CS109, 2019

Logistic Regression Model

3

Testing
For input feature vector 𝑿 = 𝒙:
• Use parameters to compute

?𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃A𝒙
• If ?𝑦 > 0.5, predict 1. Else, predict 0.
⚠ Parameters 𝜃7 are not updated during testing phase

Training
Learn parameters 𝜃 = 𝜃+, 𝜃-, … , 𝜃8
via gradient
ascent + MLE: 𝜃7GHI = 𝜃7JKL + 𝜂 ⋅6

O*-

P

𝑦(O) − 𝜎 𝜃JKLA𝒙(𝒊) 𝑥7
(O)

👉

Review

Lisa Yan, CS109, 2019

Training: Logistic Regression via MLE

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃7, 𝑗 = 0, 1, … ,𝑚:

4. Optimize

5

𝐿𝐿 𝜃 =6
O*-

P

𝑦(O) log 𝜎 𝜃A𝒙(𝒊) + 1 − 𝑦(O) log 1 − 𝜎 𝜃A𝒙(O)

𝜕𝐿𝐿 𝜃
𝜕𝜃7

=6
O*-

P

𝑦(O) − 𝜎 𝜃A𝒙(O) 𝑥7
(O)

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃A𝒙

Gradient ascent

Lisa Yan, CS109, 2019

How we computed gradient for Logistic Regression

6

𝐿𝐿 𝜃 =6
O*-

P

𝑦(O) log ?𝑦 O + 1 − 𝑦(O) log 1 − ?𝑦 OLog-likelihood:

Review

sum of derivatives𝜕𝐿𝐿 𝜃
𝜕𝜃7

=6
O

P
𝜕𝐿𝐿 𝜃 O

𝜕𝜃7

Call this 𝐿𝐿 𝜃 O , contribution from 𝑖-th datapoint

𝜕𝐿𝐿 𝜃 O

𝜕𝜃7
=

𝜕
𝜕 ?𝑦 O 𝐿𝐿 𝜃 O ⋅

𝜕 ?𝑦 O

𝜕𝜃7
chain rule

?𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃A𝒙Let
𝜕 ?𝑦
𝜕𝜃7

= ?𝑦 1 − ?𝑦 𝑥7 = 𝜎 𝜃A𝒙 1 − 𝜎 𝜃A𝒙 𝑥7 sigmoid derivative

Lisa Yan, CS109, 2019

Today’s plan

Intro to Deep Learning
• Parameters of a neural network
• Training neural networks
• Extra ideas

7

Lisa Yan, CS109, 2019

Neural networks

8

…

𝒉, hidden
layer

> 0.5?
No.
Predict 0

1 logistic
regression
connection

|𝒉| logistic
regression

connections

𝒙, input features

?𝑦, output

👉 Neural networks are simply
composed logistic regression units.
1 neuron = 1 logistic regression.

Review

Lisa Yan, CS109, 2019

Neural networks

9

Testing/
Prediction

Training

A neural network (like logistic regression) gets intelligence from its
parameters 𝜃.

• Learn parameters 𝜃
• Find 𝜃]^_ that maximizes likelihood of

training data (MLE)

For input feature vector 𝑿 = 𝒙:
• Use parameters to compute ?𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙
• If ?𝑦 > 0.5, predict 1. Else, predict 0.

Review

Lisa Yan, CS109, 2019

Predict: Forward Pass

10

Testing/
Prediction

Training

A neural network (like logistic regression) gets intelligence from its
parameters 𝜃.

• Learn parameters 𝜃
• Find 𝜃]^_ that maximizes likelihood of

training data (MLE)

For input feature vector 𝑿 = 𝒙:
• Use parameters to compute ?𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙
• If ?𝑦 > 0.5, predict 1. Else, predict 0.

Review

Lisa Yan, CS109, 2019

Predict: Forward Pass

11

…

𝒉 = ℎ-,… , ℎ8a

> 0.5?

𝒙 = 𝑥-,… , 𝑥8b

?𝑦

Input

1 logistic
regression

|𝒉| logistic
regressions No.

Predict 0

Review

To predict, make a forward pass
through the network:
Compute neurons of current
layer, which feed into next layer

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c

?𝑦 = 𝜎 6
7*+

8a

ℎ7𝜃7
?)

Lisa Yan, CS109, 2019

Neural network model

12

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c ?𝑦 = 𝜎 6

7*+

8a

ℎ7𝜃7
?)

?𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙

Review

Lisa Yan, CS109, 2019

🤔
13

Quick check
Neural Network

𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c ?𝑦 = 𝜎 6

7*+

8a

ℎ7𝜃7
?)

?𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙

1. How many parameters
are in 𝜃 ?) ?
A. 2
B. 20
C. 40
D. 800

Let 𝒙 = 40 and 𝒉 = 20.

2. How many parameters
are in 𝜃 c ?
A. 2
B. 20
C. 40
D. 800

3. How many parameters
in total?
A. 800
B. 20
C. 820
D. 16000

Lisa Yan, CS109, 2019

🤔

1. How many parameters
are in 𝜃 ?) ?
A. 2
B. 20
C. 40
D. 800

2. How many parameters
are in 𝜃 c ?
A. 2
B. 20
C. 40
D. 800

3. How many parameters
in total?
A. 800
B. 20
C. 820
D. 16000

14

Quick check
Neural Network

𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c ?𝑦 = 𝜎 6

7*+

8a

ℎ7𝜃7
?)

?𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙

Let 𝒙 = 40 and 𝒉 = 20.

Lisa Yan, CS109, 2019

Today’s plan

Intro to Deep Learning
• Parameters of a neural network
• Training neural networks
• Extra ideas

15

Lisa Yan, CS109, 2019

Training: Neural networks

16

Testing/
Prediction

Training

A neural network (like logistic regression) gets intelligence from its
parameters 𝜃.

• Learn parameters 𝜃 = 𝜃 c , 𝜃 ?)

• Find 𝜃]^_ that maximizes likelihood of
training data (MLE)

For input feature vector 𝑿 = 𝒙:
• Use parameters to compute ?𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙
• If ?𝑦 > 0.5, predict 1. Else, predict 0.

Lisa Yan, CS109, 2019

🤔
17

Training: Learning the parameters via MLE

1. Neural network model

2. Compute
log-likelihood
of training data

3. Compute partial derivative of
log-likelihood with respect
to each parameter

𝑃 𝑌 = 1|𝑿 = 𝒙 = ?𝑦

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c ?𝑦 = 𝜎 6

7*+

8a

ℎ7𝜃7
?)

Quick check: Why?

Quick check: Why?

Lisa Yan, CS109, 2019

🤔
18

Training: Learning the parameters via MLE

1. Neural network model

2. Compute
log-likelihood
of training data

3. Compute partial derivative of
log-likelihood with respect
to each parameter

𝑃 𝑌 = 1|𝑿 = 𝒙 = ?𝑦

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c ?𝑦 = 𝜎 6

7*+

8a

ℎ7𝜃7
?)

Quick check: Why?

Quick check: Why?

Want to find 𝜃 that maximizes
𝐿𝐿 𝜃 of training data

Need gradient of 𝐿𝐿 𝜃
w.r.t. all parameters to optimize

(e.g., via gradient ascent)

𝜃]^_ = arg max
f

𝐿𝐿 𝜃

19Thanks to Keith Eicher

Lisa Yan, CS109, 2019

Training: Learning the parameters via MLE

1. Neural network model

2. Compute
log-likelihood
of training data

3. Compute partial derivative of
log-likelihood with respect
to each parameter

20

𝑃 𝑌 = 1|𝑿 = 𝒙 = ?𝑦

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c ?𝑦 = 𝜎 6

7*+

8a

ℎ7𝜃7
?)

Lisa Yan, CS109, 2019

(see
Bernoulli
PMF)

Same prediction, same log-likelihood

21

Neural network
model:

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = ?𝑦) 1 − ?𝑦 -=)

𝐿𝐿 𝜃 =6
O*-

P

𝑦(O) log ?𝑦 O + 1 − 𝑦(O) log 1 − ?𝑦 OLog-likelihood:

👉 Neural networks maximize the same log-
likelihood function as logistic regression.

𝑃 𝑌 = 1|𝑿 = 𝒙 = ?𝑦

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c ?𝑦 = 𝜎 6

7*+

8a

ℎ7𝜃7
?)

𝑃 𝑌 = 0|𝑿 = 𝒙 = 1 − ?𝑦
⟺

Likelihood
of training data: 𝐿 𝜃 =h

O*-

P

𝑃 𝑌 = 𝑦 O |𝑿 = 𝒙 O , 𝜃 =h
O*-

P

?𝑦 O) i
1 − ?𝑦 O -=) i

Lisa Yan, CS109, 2019

Training: Learning the parameters via MLE

1. Neural network model

2. Compute
log-likelihood
of training data

3. Compute partial derivative of
log-likelihood with respect
to each parameter

22

𝑃 𝑌 = 1|𝑿 = 𝒙 = ?𝑦

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c ?𝑦 = 𝜎 6

7*+

8a

ℎ7𝜃7
?)

𝐿𝐿 𝜃 =6
O*-

P

𝑦(O) log ?𝑦 O + 1 − 𝑦(O) log 1 − ?𝑦 O

Lisa Yan, CS109, 2019

Computing gradient

23

Goals:
𝜕𝐿𝐿 𝜃

𝜕𝜃7
?)

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

Gradient with respect
to output layer parameters

Gradient with respect
to hidden layer parameters

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c , ?𝑦 = 𝜎 6

7*+

8a

ℎ7𝜃7
?)

?𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙
𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

Lisa Yan, CS109, 2019

Bad choice

24

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c , ?𝑦 = 𝜎 6

7*+

8a

ℎ7𝜃7
?)

?𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

?𝑦 = 𝜎 6
7*+

8a

ℎ7𝜃7
?) = 𝜎 6

7*+

8a

𝜎 6
O*+

8b

𝑥O𝜃O,7
c 𝜃7

?)

Math bugs
galore𝐿𝐿 𝜃 =6

O*-

P

𝑦(O) log ?𝑦 O + 1 − 𝑦(O) log 1 − ?𝑦 O

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

Lisa Yan, CS109, 2019

Derivatives without tears

25

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

🚫

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

Lisa Yan, CS109, 2019

Big idea #1: Derivative of sum

26

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

𝐿𝐿 𝜃 =6
O*-

P

𝑦(O) log ?𝑦 O + 1 − 𝑦(O) log 1 − ?𝑦 O

𝜕𝐿𝐿 𝜃
𝜕𝜃7

=6
O*-

P
𝜕
𝜕𝜃7

𝑦(O) log ?𝑦 O + 1 − 𝑦(O) log 1 − ?𝑦 O

👉 • We only need to calculate the gradients with
respect to one training example!

• We can then sum up these gradients to get
the final answer.

For the next few slides, pretend you only have one training example 𝒙, 𝑦 :

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

𝐿𝐿 𝜃 = 𝑦 log ?𝑦 + 1 − 𝑦 log 1 − ?𝑦

sum of derivatives

Lisa Yan, CS109, 2019

Big idea #2: Chain rule

27

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

👉 Decomposing the gradient via chain rule greatly
simplifies our partial derivatives.

Chain Rule of
Calculus:

𝑓 𝑥 = 𝑓 𝑧 𝑥 𝜕𝑓
𝜕𝑥

=
𝜕𝑓
𝜕𝑧

⋅
𝜕𝑧
𝜕𝑥

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

𝐿𝐿 𝜃 = 𝑦 log ?𝑦 + 1 − 𝑦 log 1 − ?𝑦

Lisa Yan, CS109, 2019

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

Applying chain rule (Example 1)

28

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) =

𝜕𝐿𝐿
𝜕 ?𝑦

⋅
𝜕 ?𝑦

𝜕𝜃7
?)

𝐿𝐿 𝜃 = 𝑦 log ?𝑦 + 1 − 𝑦 log 1 − ?𝑦

Lisa Yan, CS109, 2019

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

Applying chain rule (Example 2)

29

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c =

𝜕𝐿𝐿
𝜕 ?𝑦

⋅
𝜕 ?𝑦
𝜕ℎ7

⋅
𝜕ℎ7
𝜕𝜃O,7

c

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) =

𝜕𝐿𝐿
𝜕 ?𝑦

⋅
𝜕 ?𝑦

𝜕𝜃7
?)

𝐿𝐿 𝜃 = 𝑦 log ?𝑦 + 1 − 𝑦 log 1 − ?𝑦

Lisa Yan, CS109, 2019

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

Chain Rule results

30

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

Gradients to
calculate:

𝜕𝐿𝐿
𝜕 ?𝑦

𝜕 ?𝑦

𝜕𝜃7
?)

𝜕 ?𝑦
𝜕ℎ7

𝜕ℎ7
𝜕𝜃O,7

c
𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c =

𝜕𝐿𝐿
𝜕 ?𝑦

⋅
𝜕 ?𝑦
𝜕ℎ7

⋅
𝜕ℎ7
𝜕𝜃O,7

c

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) =

𝜕𝐿𝐿
𝜕 ?𝑦

⋅
𝜕 ?𝑦

𝜕𝜃7
?)

𝐿𝐿 𝜃 = 𝑦 log ?𝑦 + 1 − 𝑦 log 1 − ?𝑦

Lisa Yan, CS109, 2019

Big idea #3: Derivative of sigmoid

31

Derivative:

Sigmoid function:

𝜎 𝑧 =
1

1 + 𝑒=>

𝑑
𝑑𝑧
𝜎 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

👉When taking derivatives of the sigmoid function,
just look at this slide.

Dear Past Lisa,
Write this on the board!

– Thanks, Future Lisa

Break for Friday/
announcements

32

Lisa Yan, CS109, 2019

Announcements

33

Week 10 schedule

Monday: Review lecture (TA-run)
Optional project due, 11:59pm

Tuesday: Last concept check (1pm)
Wednesday: Beyond CS109 lecture

Problem Set 6 due (1pm)
Friday: No class (Dead day)

Last day to turn in pset6 (late)

Office Hours

During Thanksgiving break: None

Lisa Yan, CS109, 2019

Chain Rule results

34

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

Gradients to
calculate:

𝜕𝐿𝐿
𝜕 ?𝑦

𝜕 ?𝑦

𝜕𝜃7
?)

𝜕 ?𝑦
𝜕ℎ7

𝜕ℎ7
𝜕𝜃O,7

c
𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c =

𝜕𝐿𝐿
𝜕 ?𝑦

⋅
𝜕 ?𝑦
𝜕ℎ7

⋅
𝜕ℎ7
𝜕𝜃O,7

c

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) =

𝜕𝐿𝐿
𝜕 ?𝑦

⋅
𝜕 ?𝑦

𝜕𝜃7
?)

Next step:
calculate these

four gradients

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

𝐿𝐿 𝜃 = 𝑦 log ?𝑦 + 1 − 𝑦 log 1 − ?𝑦

Lisa Yan, CS109, 2019

𝐿𝐿 𝜃 = 𝑦 log ?𝑦 + 1 − 𝑦 log 1 − ?𝑦

Gradient #1

35

𝐿𝐿

Gradients to
calculate:

𝜕𝐿𝐿
𝜕 ?𝑦

𝜕 ?𝑦

𝜕𝜃7
?)

𝜕 ?𝑦
𝜕ℎ7

𝜕ℎ7
𝜕𝜃O,7

c

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

𝜕𝐿𝐿 𝜃
𝜕 ?𝑦

=
𝜕
𝜕 ?𝑦

𝑦 log ?𝑦 +
𝜕
𝜕𝑦 ̂

1 − 𝑦 log 1 − ?𝑦

= 𝑦 ⋅
1
?𝑦
− 1 − 𝑦 ⋅

1
1 − ?𝑦

=
𝑦 − ?𝑦
?𝑦 1 − ?𝑦

Lisa Yan, CS109, 2019

Gradient #2

36

?𝑦 = 𝜎 6
7*+

8a

ℎ7𝜃7
?)

𝐿𝐿

Gradients to
calculate:

𝜕𝐿𝐿
𝜕 ?𝑦

𝜕 ?𝑦

𝜕𝜃7
?)

𝜕 ?𝑦
𝜕ℎ7

𝜕ℎ7
𝜕𝜃O,7

c

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

?𝑦 = 𝜎 6
7*+

8a

ℎ7𝜃7
?) = 𝜎 𝑧

𝜕 ?𝑦

𝜕𝜃7
?) =

𝜕 ?𝑦
𝜕𝑧

⋅
𝜕𝑧

𝜕𝜃7
?)

= 𝜎 𝑧 1 − 𝜎 𝑧 ⋅
𝜕𝑧

𝜕𝜃7
?)

where 𝑧 =6
7*+

8a

ℎ7𝜃7
?)

= ?𝑦 1 − ?𝑦 ⋅ ℎ7 What! That’s not scary!

Lisa Yan, CS109, 2019

Gradient #3

37

𝐿𝐿

Gradients to
calculate:

𝜕𝐿𝐿
𝜕 ?𝑦

𝜕 ?𝑦

𝜕𝜃7
?)

𝜕 ?𝑦
𝜕ℎ7

𝜕ℎ7
𝜕𝜃O,7

c

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

?𝑦 = 𝜎 6
7*+

8a

ℎ7𝜃7
?) = 𝜎 𝑧

✅

where 𝑧 =6
7*+

8a

ℎ7𝜃7
?)

Wait, is it over?

𝜕 ?𝑦
𝜕ℎ7

= ?𝑦 1 − ?𝑦 ⋅ 𝜃7
?)

?𝑦 = 𝜎 6
7*+

8a

ℎ7𝜃7
?)

Lisa Yan, CS109, 2019

Gradient #4

38

Gradients to
calculate:

𝜕𝐿𝐿
𝜕 ?𝑦

𝜕 ?𝑦

𝜕𝜃7
?)

𝜕 ?𝑦
𝜕ℎ7

𝜕ℎ7
𝜕𝜃O,7

c

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c ,

𝜕ℎ7
𝜕𝜃O,7

c = ℎ7 1 − ℎ7 𝑥O

Can…we celebrate?

ℎ7 = 𝜎 6
O*+

8b

𝑥O𝜃O,7
c ,

Lisa Yan, CS109, 2019

Put it all together: Gradient of output layer params

39

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

=
𝑦 − ?𝑦
?𝑦 1 − ?𝑦

⋅ ?𝑦 1 − ?𝑦 ⋅ ℎ7

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) =

𝜕𝐿𝐿
𝜕 ?𝑦 ⋅

𝜕 ?𝑦

𝜕𝜃7
?)

1. By Chain Rule,
multiply partial derivatives

= 𝑦 − ?𝑦 ⋅ ℎ7

grad1 grad2

Lisa Yan, CS109, 2019

Put it all together: Gradient of output layer params

40

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

1. By Chain Rule,
multiply partial derivatives

2. Sum up gradients w.r.t.
each example

(gradient of LL
w.r.t. 𝑖-th datapoint)

𝜕𝐿𝐿 𝜃 O

𝜕𝜃7
?) = 𝑦 O − ?𝑦 O ⋅ ℎ7

O

𝐿𝐿 𝜃 =6
O*-

P

𝐿𝐿 𝜃 O

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) =6

O*-

P

𝑦 O − ?𝑦 O ⋅ ℎ7
O
✋🤚

Lisa Yan, CS109, 2019

Put it all together: Gradient of hidden layer params

41

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

1. By Chain Rule,
multiply partial derivatives

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c =

𝜕𝐿𝐿
𝜕 ?𝑦

⋅
𝜕 ?𝑦
𝜕ℎ7

⋅
𝜕ℎ7
𝜕𝜃O,7

c

=
𝑦 − ?𝑦
?𝑦 1 − ?𝑦

⋅ ?𝑦 1 − ?𝑦 ⋅ 𝜃7
?) ℎ7 1 − ℎ7 𝑥O

grad1 grad3 grad4

= 𝑦 − ?𝑦 ⋅ 𝜃7
?) ℎ7 1 − ℎ7 𝑥O

Lisa Yan, CS109, 2019

Put it all together: Gradient of output layer params

42

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

1. By Chain Rule,
multiply partial derivatives

2. Sum up gradients w.r.t.
each example

(gradient of LL
w.r.t. 𝑘-th
datapoint)

𝜕𝐿𝐿 𝜃 n

𝜕𝜃O,7
c = 𝑦 n − ?𝑦 n ⋅ 𝜃7

?) ℎ7
n 1 − ℎ7

n 𝑥O
n

𝐿𝐿 𝜃 = 6
n*-

P

𝐿𝐿 𝜃 n

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c = 6

n*-

P

𝑦 n − ?𝑦 n ⋅ 𝜃7
?) ℎ7

n 1 − ℎ7
n 𝑥O

n

🙌🙌

Goals:

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) ,

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c

✅

Moment of silence

43

Lisa Yan, CS109, 2019

Congratulations 🙌🙌🙌

You now know Backpropagation.

def Using chain rule, backpropagate gradients
from later layers into earlier layers by multiplying.

44

Lisa Yan, CS109, 2019

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

Train (backward pass)

Backpropagation
Key idea of backpropagation:
Compute gradients by using chain rule.
• Compute gradients of later layers…
• To help with gradients of earlier layers.

Notice parallel to forward pass (i.e., propagation):
• Compute neurons of earlier layers…
• To help with neurons of later layers.

45

𝐿𝐿

𝐿𝐿

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

Predict (forward pass)

Lisa Yan, CS109, 2019

Training: Summary
1. Neural net model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃7, 𝑗 = 0, 1, … ,𝑚:

46

𝐿𝐿 𝜃 =6
O*-

P

𝑦(O) log ?𝑦 O + 1 − 𝑦(O) log 1 − ?𝑦 O

𝑃 𝑌 = 1|𝑿 = 𝒙 = ?𝑦
𝑃 𝑌 = 0|𝑿 = 𝒙 = 1 − ?𝑦

?𝑦 = 𝜎 6
7*+

8a

ℎ7𝜃7
?) ℎ7 = 𝜎 6

O*+

8b

𝑥O𝜃O,7
c

(we just did this)

Lisa Yan, CS109, 2019

Summary: Backpropagation

47

Neural Network
𝒙 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

𝜕𝐿𝐿 𝜃

𝜕𝜃7
?) =

𝜕𝐿𝐿
𝜕 ?𝑦

⋅
𝜕 ?𝑦

𝜕𝜃7
?) =6

O*-

P

𝑦 O − ?𝑦 O ⋅ ℎ7
O

Gradient w.r.t.
output layer
parameters

𝜕𝐿𝐿 𝜃

𝜕𝜃O,7
c =

𝜕𝐿𝐿
𝜕 ?𝑦

⋅
𝜕 ?𝑦
𝜕ℎ7

⋅
𝜕ℎ7
𝜕𝜃O,7

c = 6
n*-

P

𝑦 n − ?𝑦 n ⋅ 𝜃7
?) ℎ7

n 1 − ℎ7
n 𝑥O

n
Gradient w.r.t.

hidden layer
parameters

Lisa Yan, CS109, 2019

What would you do here?

48

Bigger Neural Network
𝒙 𝒉 𝟏

… …

𝒉 𝟏

…

✓(ŷ)✓(2)✓(1)

?𝑦

Lisa Yan, CS109, 2019

What would you do here?

49

1. Calculate partial derivatives for one data instance
2. Use chain rule
3. Sigmoid derivatives come out simple with the right decomposition
4. You don’t need to give the most reduced ansewr

Lisa Yan, CS109, 2019

Innovations in deep learning because of Chain Rule

Deep learning (neural networks)
is the core idea behind the
current revolution in AI.

Chain Rule enables us to train
parameters in neural networks.

50AlphaGO (2016)

Lisa Yan, CS109, 2019

Neural networks can learn complex functions

The classifiers shown are learned by neural networks, which can model
nonlinearly separable data.

51

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Lisa Yan, CS109, 2019

Today’s plan

Intro to Deep Learning
• Parameters of a neural network
• Training neural networks
• Extra ideas

52

Lisa Yan, CS109, 2019

Multiple outputs?
Softmax is a generalization of
the sigmoid function.

53

𝑧 ∈ ℝ:
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝑧

𝒛 ∈ ℝn:
𝑃 𝑌 = 𝑗|𝑿 = 𝒙 = softmax 𝒛 7

softmax 𝑧 : 𝑘-dimensional values in
range[0,1] that add up to 1

sigmoid 𝑧 : value in range [0, 1]

(equivalent: Bernoulli 𝑝)

(equivalent: Multinomial 𝑝-, … , 𝑝n)

Lisa Yan, CS109, 2019

Shared weights?

54

It turns out if you want to force some of your weights to be shared over
different neurons, the math isn’t much harder.
Convolution is an example of such weight-sharing and is used a lot for
vision (Convolutional Neural Networks, CNN).

Lisa Yan, CS109, 2019

Neural networks with multiple layers

55

𝒙 𝒂 𝒃 𝒄 𝒅 𝒆 𝒇 {𝒚 𝐿𝐿

Lisa Yan, CS109, 2019

GoogLeNet (2015)

56

1 Trillion Artificial Neurons
(btw human brains have 1 billion neurons)

22 layers deep!

Multiple,
Multi class output

Szegedy et al., Going Deeper With Convolutions. CVPR 2015

Lisa Yan, CS109, 2019

Neurons learn features of the dataset

57Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Neurons in later layers will respond strongly to high-level
features of your training data.
If your training data is faces, you will get lots of face neurons.

If your training data
is all of YouTube…

Top stimuli in test set Optimal stimulus found
by numerical optimization

…you get a cat
neuron.

Lisa Yan, CS109, 2019 58

Lisa Yan, CS109, 2019

Best neuron stimuli

59Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Neuron 5

Lisa Yan, CS109, 2019

Best neuron stimuli

60Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Neuron 7

Neuron 8

Neuron 6

Neuron 9

Lisa Yan, CS109, 2019

Best neuron stimuli

61Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Neuron 11

Neuron 10

Neuron 12

Neuron 13

Lisa Yan, CS109, 2019

ImageNet classification

62

22,000 categories

14,000,000 images

Hand-engineered features (SIFT, HOG, LBP),
Spatial pyramid, SparseCoding/Compression

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Lisa Yan, CS109, 2019

22,000 is a lot of categories…

63Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

…
smoothhound, smoothhound shark, Mustelus mustelus
American smooth dogfish, Mustelus canis
Florida smoothhound, Mustelus norrisi
whitetip shark, reef whitetip shark, Triaenodon obseus
Atlantic spiny dogfish, Squalus acanthias
Pacific spiny dogfish, Squalus suckleyi
hammerhead, hammerhead shark
smooth hammerhead, Sphyrna zygaena
smalleye hammerhead, Sphyrna tudes
shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo
smalltooth sawfish, Pristis pectinatus
guitarfish
roughtail stingray, Dasyatis centroura
butterfly ray
eagle ray
spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish
Atlantic manta, Manta birostris
devil ray, Mobula hypostoma
grey skate, gray skate, Raja batis
little skate, Raja erinacea
…

SHngray

Mantaray

Lisa Yan, CS109, 2019

Best neuron stimuli

64

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012
Szegedy et al., Going Deeper With Convolutions. CVPR 2015

0.005%
Random guess

1.5% ?
Pre Neural Networks GoogLe Net

(2015)

43.9%

Lisa Yan, CS109, 2019

Good ML = Generalization
Goal of machine learning: build models that generalize well
to predicting new data
Overfitting: fitting the training data too well,
so we lose generality of model

• Polynomial on the right fits training data perfectly!
• Which would you rather use to predict a new data point?

65

Lisa Yan, CS109, 2019

Prevent overfitting?

66

Dropout (training technique)
When your model is training,
randomly turn off your neurons
with probability 0.5.
It will make your network more
robust.

Lisa Yan, CS109, 2019

Making decisions?

67

Not everything is classification.

Deep Reinforcement Learning
Instead of having the output of
a model be a probability, you
make output an expectation.

http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

Lisa Yan, CS109, 2019

RL Neural Network
𝑆 𝒉

… …

?𝑦

𝜃 c 𝜃 ?)

Deep Reinforcement Learning

68

𝐸 𝑅|𝐴-, 𝑆

Input is a
representation

of current state, 𝑆

𝑆: current state
𝑅: reward
𝐴O: legal action

𝐸 𝑅|𝐴�, 𝑆

𝐸 𝑅|𝐴�, 𝑆

Output is
expected reward
for a given action

Lisa Yan, CS109, 2019

Deep Reinforcement Learning

69

http://cs.stanford.edu/people/karpathy
/convnetjs/demo/rldemo.html

Deep Mind Atari Games
Score compared to best
human

http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

What’s missing?

70

Where is your data
coming from?

71

Lisa Yan, CS109, 2019

Ethics and datasets

Sometimes machine learning feels universally unbiased.
We can even prove our estimators are “unbiased” (mathematically).
Google/Nikon/HP had biased datasets.

72

Lisa Yan, CS109, 2019

Should your data be unbiased?

73

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.

1

ar
X

iv
:1

60
7.

06
52

0v
1

 [c
s.C

L]
 2

1
Ju

l 2
01

6

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.

1

ar
X

iv
:1

60
7.

06
52

0v
1

 [c
s.C

L]
 2

1
Ju

l 2
01

6

Dataset: Google News

Bolukbasi et al., Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings. NIPS 2016

Should our unbiased data collection reflect society’s systemic bias?

Lisa Yan, CS109, 2019

How can we explain decisions?

74

If your task is image classification,
reasoning about high-level features is
relatively easy.
Everything can be visualized.

What if you are trying to classify
social outcomes?

• Criminal recidivism
• Job performance
• Policing
• Terrorist risk
• At-risk kids

Ethics in Machine Learning
is a whole new field. 🙂

75

Lisa Yan, CS109, 2019

Extra topic (optional)

Computer-generated random numbers

76

Lisa Yan, CS109, 2019

How does Python’s random()work?

Computers are deterministic, so we settle for pseudo-randomness:
sequence of numbers that looks random but is deterministically generated
Linear congruential generator (LCG)
is one of the simplest:

77

import random
for i in range(5):
return next random floating point
in the range [0.0, 1.0)
print(random.random())

0.9825275632982425
0.5625076936412139
0.1662498000287692
0.48457647809628424
0.7937438138936983

• Start with a seed number, 𝑋+ (usually UNIX time)
• Next “random” number is:

𝑋P = 𝑎𝑋P + 𝑐 mod 𝑚
• Effectiveness very sensitive to params 𝑎, 𝑐, and 𝑚
• Sequence will eventually repeat

• Uses XOR/bitshifts
• 12 parameters
• 53-bit floating point numbers
• Sequence repeats every

2**19937-1 numbers

Python (today) uses
the Marsenne Twister:

Lisa Yan, CS109, 2019

Generating a number according to a random distribution

random.random() generates a number 𝑈~Uni 0,1 .
Used on Problem Set 3 to simulate RVs:
• Bernoulli, Binomial, Geometric,

and Negative Binomial
• Approximated Poisson/Exponential

by using 60,000-step time interval

One option to precisely generate a number from any distribution:

78

def simulateBernoulli(p):
if random.random() < p:

return 1
return 0

Inverse Transform Sampling

Lisa Yan, CS109, 2019

Inverse Transform sampling
Suppose we want to simulate a continuous random variable with
cumulative distribution function 𝐹:

1. Let 𝑈~Uni 0,1
2. Define 𝑋 = 𝐹=- 𝑈
3. Then 𝑋 has CDF 𝐹.

Proof: 𝑃 𝑋 ≤ 𝑥 = 𝑃 𝐹=- 𝑈 ≤ 𝑥
= 𝑃 𝑈 ≤ 𝐹 𝑥
= 𝐹 𝑥

79

𝐹=- is inverse of 𝐹, i.e., 𝐹=- 𝑎 = 𝑏 ⟺ 𝑎 = 𝐹 𝑏

(inverse)

(CDF of Normal: 𝑃 𝑈 ≤ 𝑢 = 𝑢
for 0 < 𝑢 < 1)

Lisa Yan, CS109, 2019

Simulating the Exponential distribution
Suppose we want to generate the exponential distribution:
• 𝑋~Exp 𝜆 , with CDF 𝐹 𝑥 = 1 − 𝑒=��, where 𝑥 ≥ 0

Compute inverse: Let 𝐹 𝑋 = 1 − 𝑒=�� = 𝑈 and solve for 𝑋.

Simplify: 𝑋 = 𝐹=- 𝑈 = − log 𝑈 /𝜆

80

1. Let 𝑈~Uni 0,1
2. Define 𝑋 = 𝐹=- 𝑈
3. Then 𝑋 has CDF 𝐹.

𝑒=�� = 1 − 𝑈
−𝜆𝑋 = log 1 − 𝑈
𝑋 = − log 1 − 𝑈 /𝜆

(Note: if 𝑈~Uni 0,1 , then 1 − 𝑈 ~Uni 0,1)
𝑋 = 𝐹=- 𝑈 = − log 1 − 𝑈 /𝜆

👉 If you can compute the inverse of the CDF, you can use Inverse Transform Sampling.
(Note: Normal RV doesn’t have closed-form inverse; use Box-Muller)

Lisa Yan, CS109, 2019

Discrete inverse transform sampling

81

def inverseExpCDF(u, lamb):
return -math.log(u)/lamb

def simulateExponential(lamb):
u = random.random()
return inverseExpCDF(u, lamb) Return 𝑥 = 𝐹=- 𝑢

Pick a probability 𝑢

1. Let 𝑈~Uni 0,1
2. Define 𝑋 = 𝐹=- 𝑈
3. Then 𝑋 has CDF 𝐹.

Simulate 10,000 trials and plot distribution:

Lisa Yan, CS109, 2019

Simulating the Poisson distribution
Suppose we want to generate the Poisson distribution:

• 𝑋~Poi 𝜆 , with CDF 𝐹 𝑥 = , where 𝑥 ≥ 0

Instead of computing the inverse:
1. Generate 𝑈~Uni 0,1
2. Increase 𝑥 until 𝐹 𝑥 ≥ 𝑈
3. Return that value of 𝑥

82

1. Let 𝑈~Uni 0,1
2. Define 𝑋 = 𝐹=- 𝑈
3. Then 𝑋 has CDF 𝐹.

6
n*=�

�

𝑃 𝑋 = 𝑘 = 6
n*+

�
𝜆n

𝑘!
𝑒=�

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5 6 7 8 9 10

𝑢 = 0.7

𝑥 = 4

Lisa Yan, CS109, 2019

Discrete inverse transform sampling

83

def simulatePoisson(lamb):
u = random.random()
x = 0
CDF_so_far = pmfPoisson(lamb, x)
while CDF_so_far < u:

x += 1
CDF_so_far += pmfPoisson(lamb, x)

return x
add 𝑃 𝑋 = 𝑥 + 1

6
n*+

�

𝑃 𝑋 = 𝑘 < 𝑢while

Simulate 10,000 trials and plot distribution:

