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Homework

Contest (optional) due: Tonight, 11:59pm
PS6 on-time deadline: Wednesday 12/4, 1pm
PS6 late deadline: Friday 12/6, 1pm

Participation

Concept check: Tomorrow 1pm
Section: regularly scheduled

Lecture

Today: Course review session
Wednesday: Beyond CS109
Friday: No lecture



Lisa Yan, CS109, 2019

Final exam announcement
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Final exam

When: Wednesday, December 11th, 3:30pm-6:30pm
Where: CEMEX Auditorium

Not permitted: book/computer/calculator
Permitted: six 8.5”x11” double-sided sheets of notes

Covers: Everything (up to Lecture 27)
Practice: http://web.stanford.edu/class/cs109/exams/final.html
Review session: today

http://web.stanford.edu/class/cs109/exams/final.html


CS 109 Review
Julia Daniel, 12/3/2018

CS 109 Review

Cooper Raterink
Dec. 2, 2019

Adapted from slides by Julia Daniel



skills

CS 109

core probability fundamentals

random variables / distributions

sampling, making conclusions from data

machine learning

interpreting word problems into math analyzing and producing code

topics

problem-solving

examples

demos

stories and memes!

methodsmethods
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Solving a CS109 problem
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problem

Application 
of formulas

maybe:
numerical 

answer

Math 
expression 
of question
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Solving a CS109 problem
Word 

problem

Application 
of formulas

maybe:
numerical 

answer

Math 
expression 
of question

this is often
the hard part!

this is usually what
students focus on



Step 1: Defining Your Terms
• What’s a ‘success’? What’s the sample space?

• What does each random variable actually represent, in 
English? Every definition of an event or a random variable 
should have a verb in it. (‘ = ’ is a verb)

• Make sure units match - particularly important for λ



Translating English to 
Probability

What the problem asks: What you should immediately 
think:

“What’s the probability of _____ ” P(            )

“___ given ___”, “___ if ___” ___ | ___

“at least ___”
Flip it: could we use what we 

know about everything less than 
__?

“approximate ____.” use an approximation!

“How many ways…” combinatorics

these are just a few, and these are why practice is the best way to prepare for the exam!





(preamble)
1.1000 people
2.P(test_positive | person_has_measles) = 1
3.P(person_has_measles) = 0.01

(part a)
1.1000 independent tests
2.P(tests 1-9 negative and test 10 is positive)



(preamble)
1.1000 people
2.P(test_positive | person_has_measles) = 1
3.P(person_has_measles) = 0.01

(part a)
1.1000 independent tests
2.P(tests 1-9 negative and test 10 is positive)

What is actually important?



(part a solution)
1.Independent tests/trials
2.P(test positive) = 0.01
3.P(10 trials until “success”)
4.Implies use Geometric

5.Answer is: (0.99^9)*(0.01^1)
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Code in CS 109

Code Analysis Coding Applications
Expectation of

binary tree depth
(“recursive” expectation)

Titanic

Thompson Sampling

Peer Grading
Expectation of

recursive die roll game

Biometric KeystrokesBloom Filter Analysis

Dithering

CO2 Levels



Code in CS 109



Code in CS 109

1. Need to prove P(fairR() = 1) = 0.5
2. We know the function returns, so we break into cases:

3. Case 1: r1 = 1 and r2 = 0 => likelihood p*(1-p) 
4. Case 2: r1 = 0 and r2 = 1 => likelihood p*(1-p) 
5. These are equal => equally likely for r2 to be 0 or 1



CS 109

core probability fundamentals

random variables / distributions

sampling, making conclusions from data

machine learning

topics

counting

probability principles

conditional probability



Sum Rule Inclusion-Exclusion 
Principle

I can choose to dress up as 
one of 5 superheroes or 

one of 4 farm animals. How 
many costume choices?

I can choose to dress up as one 
of 5 superheroes or one of 6 

strong female movie leads. 2 of 
the superheroes are female 

movie leads.
How many costume choices?

Counting

Product Rule Pigeonhole Principle

if all outcomes of B are possible 
regardless of the outcome of A

If m objects are placed into n 
buckets, then at least one bucket 
has at least ceiling(m / n) objects.

I can choose to go to one of 
3 parties and then trick-or-

If you have an infinite number of 
red, white, blue, and green 
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the divider method!

Combinatorics:
Arranging Items

Permutations
(ordered)

Combinations
(unordered)

Distinct

Indistinct
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Probability basics

Probability =
Event space

Sample space

if all outcomes
are equally likely!

in the general case

(use counting with
distinct objects)
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Probability basics

Probability =
Event space

Sample space

if all outcomes
are equally likely!

(use counting with
distinct objects)

in the general case

Axioms:



Probability basics

Part a:



Probability basics

Part a:

1.Hand rearrangement OK => use unordered sample space
2.Sample space => 52C5
3.For event space: choose suit, choose cards => 4C1 * 13C5
4.Put it together: P(a flush) = 4C1 * 13C5 / 52C5



Conditional Probability
definition:

Chain Rule:
*



Law of Total Probability

Event W = we walk to class. Event B = we bike = W^C. 
Event L = we are late to class.
P(L | W) = 0.5, P(L | B) = 0.1.
P(W) = 0.3.
P(L) = ?

bike

walk

50%

10%

total shaded = ?%
of whole
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Law of Total Probability

Event W = we walk to class. Event B = we bike = W^C. 
Event L = we are late to class.
P(L | W) = 0.5, P(L | B) = 0.1.
P(W) = 0.3.
P(L) = ?

what if we can bike, walk, or
take the Marguerite (> 2 options)?

events must be:
- mutually exclusive, and
- exhaustive bike

walk

bike

walk

50%

10%



Bayes’ Rule



Bayes’ Rule
posterior priorlikelihood

normalization 
constant



Bayes’ Rule

divide the event F into all the possible ways it can happen; use LoTP



Old Principles, New Tricks



Independence



Mutual Exclusion

“OR”

Independence
Independence

“AND”



Independence

“AND”

Independence
Conditional 

Independence

“AND [if]”

If E and F are independent…..

…..that does not mean they’ll be
independent if another event happens!

& vice versa



Beyond the basics



Beyond the basics

How do you begin to break down this problem?
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Define events



Beyond the basics

How do you begin to break down this problem?

Define events

What is the question 
asking?

Use LOTP



CS 109

core probability fundamentals

random variables / distributions

sampling, making conclusions from data

machine learning

topics

properties of RVs

continuous RVsdiscrete RVs

multivariate distributions



Probability Distributions



Probability Distributions

P(X <= 6) P(X <= 1)

P(X <= x) P(X <= x)

CDF(1)CDF(6)



Expectation & Variance
Discrete definition Continuous definition
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Expectation & Variance
Discrete definition Continuous definition

Properties of Expectation Properties of Variance

(mu) (mu)

(mu)



Extras



All our (discrete) friends
Ber(p) Bin(n, p) Poi(λ) Geo(p) NegBin(r, 

p)

P(X) = p

E[X] = p E[X] = np E[X] = λ E[X] =1 / p E[X] =r / p

Var(X) = 
p(1-p)

Var(X) = 
np(1-p) Var(X) = λ

Getting candy or 
not at a random 

house
# houses out of 20 
that give out candy

# houses in an 
hour that give out 

candy

# houses to visit 
before getting 

candy

# houses to visit 
before getting 
candy 3 times
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All our (continuous) friends
Uni(α, β) Exp(λ) N(μ, σ)

E[x] = 1 / λ E[x] = μ

thickness of sidewalk 
pavement between houses

time until feet get too sore 
to trick or treat

weight of filled candy 
baskets
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Approximations
When can we approximate a binomial?

p is small

Binomial

PoissonNormal
p is moderate

n is large

Var > 10 Var < 10



Approximations
When can we approximate a binomial?

p is small

Binomial

PoissonNormal
p is moderate

n is large

Var > 10 Var < 10

Continuity Correction



Continuity Correction

Only applies to continuous RVs approximating discrete RVs - why?



Extras



Distribution onslaught!

Coin flip is heads



Distribution onslaught!

Number of heads in 10 coin flips



Distribution onslaught!

Coin flips until a heads



Distribution onslaught!

Chance of CS109 student sleeping in class is 70%

Number of CS109 students sleeping in class right now?



Distribution onslaught!

Chance of CS109 student sleeping is 70%

Number of CS109 students sleeping right now? 
(approximate)



Distribution onslaught!

You look around and see 120 out of 150 CS109 students 
asleep.

What is your belief distribution for P(CS109 student asleep)?



Distribution onslaught!

CS109 students fall asleep on average once a minute.

Time until a CS109 student falls asleep?



Distribution onslaught!

CS109 students fall asleep on average once a minute.

Number of CS109 students who fall asleep in the next 10 
minutes?



Joint Distributions
• Discrete case: 

- Marginalize a variable out:

• Continuous case:

- Marginalize a variable out: 

• For joint distributions to be independent, both their joint
probability density functions must be factorable and the
bounds of the variables must be separable.



Joint Distributions
• Discrete case: 

- Marginalize a variable out:

• Continuous case:

- Marginalize a variable out: 

• For joint distributions to be independent, both their joint
probability density functions must be factorable and the
bounds of the variables must be separable.



Sums of Indep.  RVs

(general case)



Sums of Indep.  RVs

(general case)

Caveat: These rules only work for 
independent X and Y!



Relationships Between 
Random Variables

if two random variables are independent, they have a covariance of 0
(but not necessarily true the other way around!)

Covariance
the extent to which the deviation of one variable from its mean 

matches the deviation of the other from its mean

Correlation
covariance normalized by the variance of each variable

(cancels the units out)



CS 109

core probability fundamentals

random variables / distributions

sampling, making conclusions from data

machine learning

topics

unbiased estimators

CLTbootstrapping

general inference



Beta
Our first look at the concept of estimating parameters by observing data!

https://seeing-theory.brown.edu/bayesian-inference/index.html#section3



Beta
Our first look at the concept of estimating parameters by observing data!

Bern(p) 100101010100010101001010100 ………

Updating belief about Bernoulli parameter p



Sampling From Populations
Challenge: we want to know what the distribution of 

happiness looks like in Bhutan, but we have limited time and 
resources and the landscape looks like this:

climb every mountain….

uh no



Sampling – Conceptual 
principles

Take a representative sample as large as you can
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Sampling – Conceptual 
principles

Take a representative sample as large as you can

Sample statistics can be helpful in understanding the population

Be careful in assuming things about population from sample statistics  
(you can bootstrap to better understand your population and statistics)



Taking One Sample
Pick a random sample

if sample size is large enough and sampling methodology is good 
enough, you can consider it representative of the population!

We have handy equations for the sample mean and sample variance, 
which are unbiased estimators of the population mean and variance

makes the estimate 
unbiased



Taking Many Samples
Unbiased Estimators

the expected value of the estimated statistic is the value of the 
true population statistic (if many samples were to be taken)

Central Limit Theorem
if you sample from the same population a bunch of times, the mean and sum 

of all your samples (or any IID RVs) will be normally distributed no matter what 
your distribution looks like!

https://seeing-theory.brown.edu/probability-distributions/index.html#section3



Central Limit Theorem



Extras



Bootstrapping: Simulating Many Samples 
From One

challenge
we want to find the probability that the data results we saw were due to 

chance, but we only have one sample of data

insight
since our sample represents our population, we can sample from the 

data we have and it’s as if we had gone out and collected more

We sample with replacement from our data and calculate our statistic of interest each 
time, ending up with many estimates for our statistic of interest. We can even use this 
data to assess whether our observations are due to chance based on our p-value of 

choice.

more 
extreme?

4 1 2 2 2.1 no

3 3 3 0 0.8 no

2 1 1 5 2.6 yes

… … … … … …

1 2 3
4 31 2 4
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General Inference: Sampling from a 
Bayesian Network to Find Joint Probability

Joint Sampling
generate many “particles” by tracing through 
the network, generating values for children 

based on their parents

we can also generate samples where we hold some values fixed (MCMC)

Calculate Conditional Probability
we can calculate any conditional probability of 

specific variable assignments by simply counting 
the particles that match what we’re looking for



Think: What is reasonable to ask on a test 
about these topics?

Remember the ideas of the algorithms, and practice turning 
them into high-level pseudocode:

Computing sample statistics
Boot-strapping p values

Joint Sampling
Rejection Sampling
Thompson Sampling



CS 109
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sampling, making conclusions from data
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parameter estimation classifiers deep learning

random variables / distributions



Classifiers

Untrained 
Classifier

Trained Classifier

&



Parameter Estimation
Maximum Likelihood Estimation

1. Find likelihood: product of likelihoods of each 
sample/datapoint given theta

2. Take the log of that expression
3. Take the derivative of that with respect to the parameters
4. Either set to 0 and solve

(if it’s a simple case with closed form solution)
or plug into gradient ascent to find a value for theta that 
maximizes your likelihood

Maximum A Posteriori

1. Find likelihood: product of likelihoods of each 
sample/datapoint given theta, times your prior likelihood of 
that theta

2. - 4. same as above



Gradient Ascent

0  1  2  3  4  5  6  7  8  9  10 11 12
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Classifier Algorithms

(general case)

Naïve Bayes Algorithm Logistic Regression

All features in x are 
conditionally independent 

given classification
Assumption Sigmoid gives us the 

probability of class 1

At train: Best estimates 
for prior on y and 

conditional likelihood of 
data

What are we 
optimizing/figuring out?

At test: Whether y=0 or y=1 is the 
best guess

At train: The value(s) for θ
such that the probability 
of our data is maximized

Learn (from data) 
estimates for

: 

How do we do that 
mathematically?

Probability of 1 datapoint

Use data & gradient 
ascent to improve thetas



Logistic Regression
one neuron (logistic regression model)

What weights do we have to learn for θ1, θ2, θ3 to perfectly classify 
data of the form (A OR B)?

1

A

B

(A OR B)



Logistic Regression
one neuron (logistic regression model)

What weights do we have to learn for θ1, θ2, θ3 to perfectly classify 
data of the form (A OR B)?

1

A

B

(A OR B)



Logistic Regression
one neuron (logistic regression model)

What weights do we have to learn for θ1, θ2, θ3 to perfectly classify 
data of the form (A AND B)?
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A
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(A AND B)



Logistic Regression
one neuron (logistic regression model)

What weights do we have to learn for θ1, θ2, θ3 to perfectly classify 
data of the form (A AND B)?

1

A

B

(A AND B)



Neural Networks

1. Make deep learning assumption:
2. Calculate log likelihood for all data:
3. Find partial derivative of LL with

respect to each theta:
use the chain rule!



Neural Networks

1. Make deep learning assumption:
2. Calculate log likelihood for all data:
3. Find partial derivative of LL with

respect to each theta:
use the chain rule!



Good luck on the final!


