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1 Linearity of Expectation: Hat-Check
Preamble: Typically, it is easier to use linearity of expectation for sums of random variables, then
to manually compute the PMF and apply the definition.

Problem: n people go to a party and drop off their hats to a hat-check person. When the party is
over, a different hat-check person is on duty, and returns the n hats randomly back to each person.
Let X be the random variable representing the number of people who get their own hat back.

a. For n = 3, find E[X] by first computing the probability mass function pX , and then applying
the definition of expectation.

b. Find a general formula for E[X], for any positive integer n.

a. The number of people X who could get their hat back is in {0,1,3} (why not 2?). One
can enumerate the possibilities:

123→ 3

132→ 1

213→ 1

231→ 0

312→ 0

321→ 1

Hence, pX(0) = P(X = 0) = 1/3, pX(1) = P(X = 1) = 1/2, and pX(3) = P(X = 3) =
1/6, since outcomes are equally likely, and

E[X] =
∑

x

xpX(x) = 0 · (1/3) + 1 · (1/2) + 3 · (1/2) = 1.
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b. For i = 1, . . . ,n, let Xi be the indicator variable of whether person i gets their hat back.
That is, Xi = 1 if person i gets their hat back, and Xi = 0 otherwise. Then, X =

∑n
i=1 Xi.

For a particular person i, the probability they get their hat back is exactly 1/n (why?),
and so E[Xi] = 1 · (1/n) + 0 · (1 − 1/n) = 1/n.
By linearity of expectation,

E[X] = E

[
n∑

i=1
Xi

]
=

n∑
i=1

E[Xi] =

n∑
i=1

1
n
= n · (1/n) = 1.

Now imagine finding the PMF for this random variable with n people/hats. There was no
nice catch-all formula in part a) for n = 3, and so it would be extremely difficult/impossible
to come up with one for general P(X = k). Even if you could, evaluating the sum might
be difficult. This is the power of linearity of expectation - though we don’t know the PMF,
we can still compute it easily by breaking it down into smaller pieces. Notice that people
getting their hat backs are not independent events either!

2 Taking Expectation: Breaking Vegas
Preamble: When a random variable fits neatly into a family we’ve seen before (e.g. Binomial), we
get its expectation for free. When it does not, we have to use the definition of expectation.

Problem: If you bet on “Red" in Roulette, there is p = 18/38 that you with win $Y and a (1 − p)
probability that you lose $Y. Consider this algorithm for a series of bets:

1. Let Y = $1.
2. Bet Y.

3. If you win, then stop.
4. If you lose, set Y to be 2Y, goto step (2).

What are your expected winnings when you stop? It will help to recall that the sum of a geometric
series a0 + a1 + a2 + · · · = 1

1−a if 0 < a < 1. Vegas breaks you: Why doesn’t everyone do this?
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Let X be the number of dollars that your earn.

The possible values of x are from the outcomes of: winning on your first bet, winning on your
second bet, and so on.

E[X] =
18
38
+

20
38

18
38
(2 − 1) +

(20
38

)2 18
38
(4 − 2 − 1) + . . .

=

∞∑
i=0

(20
38

) i (18
38

) (
2i −

i−1∑
j=0

2 j
)

=
(18
38

) ∞∑
i=0

(20
38

) i

=
(18
38

) 1
1 − 20

38
= 1

Real games have maximum bet amounts. You have finite money and casinos can kick you out.
But, if you had no betting limits and infinite money, then go for it! (and tell me which planet
you are living on).

3 Binomial Distribution: Sending Bits to Space

When sending binary data to satellites (or really over any noisy channel) the bits can be flipped
with high probabilities. In 1947 Richard Hamming developed a system to more reliably send data.
By using Error Correcting Hamming Codes, you can send a stream of 4 bits with 3 redundant bits.
If zero or one of the seven bits are corrupted, using error correcting codes, a receiver can identify
the original 4 bits.

Let’s consider the case of sending a signal to a satellite where each bit is independently flipped with
probability p = 0.1

a. If you send 4 bits, what is the probability that the correct message was received (i.e. none of
the bits are flipped).

b. If you send 4 bits, with 3 Hamming error correcting bits, what is the probability that a
correctable message was received?

c. Instead of using Hamming codes, you decide to send 100 copies of each of the four bits. If
for every single bit, more than 50 of the copies are not flipped, the signal will be correctable.
What is the probability that a correctable message was received?
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Hamming codes are super interesting. It’s worth looking up if you haven’t seen them before!
All these problems could be approached using a binomial distribution (or from first principles).

a. Let Y be the number of bits corrupted. Y ∼ Bin(n = 4, p = 0.1).

P(Y = 0) =
(
4
0

)
0.94 = 0.656

b. Let Z be the number of bits corrupted. Z ∼ Bin(n = 7, p = 0.1). A correctable message
is received if Z equals 0 or 1:

P(correctable) = P(Z = 0) + P(Z = 1)

=

(
7
0

)
(0.1)0(0.9)7 +

(
7
1

)
(0.1)1(0.9)6 = 0.850

That is a 30% improvement!

c. Let Xi be the number of copies of bit i which are not corrupted. We can represent each
as a Binomial Random Variable: Xi ∼ Bin(n = 100, p = 0.9).

P(correctable) =
4∏

i=1
P(Xi > 50)

=

4∏
i=1

100∑
j=51

P(Xi = j)

=

4∏
i=1

100∑
j=51

(
100

j

)
(0.9) j(0.1)100− j

=
( 100∑

j=51

(
100

j

)
(0.9) j(0.1)100− j

)4
> 0.999

But now you need to send 400 bites, instead of the 7 required by hamming codes :-).

4 Conditional Probabilities: Passing Exams

Preamble: We have three big tools for manipulating conditional probabilities:

• Definition of conditional probability: P(EF) = P(E |F)P(F)

• Law of Total Probability: P(E) = P(EF) + P(EFC) = P(E |F)P(F) + P(E |FC)P(FC)
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• Bayes Rule: P(E |F) =
P(F |E)P(E)

P(F)
=

P(F |E)P(E)
P(F |E)P(E) + P(F |EC)P(EC)

This is a good time to commit these three to memory and start thinking about when each of them
is useful.

Problem: Corrupted by their power, the judges running the popular game show America’s Next
Top Hot Dog Eater have been taking bribes from many of the contestants. During each of two
episodes, a given contestant is either allowed to stay on the show or is kicked off. If the contestant
has been bribing the judges, she will be allowed to stay with probability 1. If the contestant has
not been bribing the judges, she will be allowed to stay with probability 1/3, independent of what
happens in earlier episodes. Suppose that 1/4 of the contestants have been bribing the judges. The
same contestants bribe the judges in both rounds.

a. If you pick a random contestant, what is the probability that she is allowed to stay during the
first episode?

b. If you pick a random contestant, what is the probability that she is allowed to stay during
both episodes?

c. If you pick a random contestant who was allowed to stay during the first episode, what is the
probability that she gets kicked off during the second episode?

d. If you pick a random contestant who was allowed to stay during the first episode, what is the
probability that she was bribing the judge?

a. Let S1 be the event she stayed during the first episode, and B the event she bribed the
judges.

P(S1) = P(S1 |B)P(B) + P(S1 |BC)P(BC) = 1 · (1/4) + (1/3)(3/4) = 1/2

b. Let S2 be the event she stayed during the second episode. Since staying in episodes are
conditionally independent given whether she bribed the judges,

P(S1 ∩ S2) = P(S1 ∩ S2 |B)P(B) + P(S1 ∩ S2 |BC)P(BC)

= P(S1 |B)P(S2 |B)P(B) + P(S1 |BC)P(S2 |BC)P(BC) = 12(1/4) + (1/3)2(3/4) = 1/3

c.
P(S1 ∩ SC

2 ) = P(S1 |B)P(SC
2 |B)P(B) + P(S1 |BC)P(SC

2 |B
C)P(BC)

= 1 · 0 · (1/4) + (1/3) · (2/3) · (3/4) = 1/6

P(SC
2 |S1) =

P(S1 ∩ SC
2 )

P(S1)
=

1/6
1/2
= 1/3

d.
P(B|S1) =

P(S1 |B)P(B)
P(S1)

=
(1)(1/4)

1/2
= 1/2
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