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CS 109
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Oct 30-Nov 1, 2019

Section 5 Solution
Adapted for Autumn 2019 by Alex Tsun

Congratulations on making it through the midterm! :)

1. Binary Tree: Consider the following function for constructing binary trees:

struct Node {
Node *left;
Node *right;

};

Node *randomTree(float p) {
if (randomBool(p)) { // returns true with probability p

Node *newNode = new Node;
newNode->left = randomTree(p);
newNode->right = randomTree(p);
return newNode;

} else {
return nullptr;

}
}

The if branch is taken with probability p (and the else branch with probability 1 − p). A
tree with no nodes is represented by nullptr; so a tree node with no left child has nullptr
for the left field (and the same for the right child).
Let X be the number of nodes in a tree returned by randomTree. You can assume 0 < p < 0.5.
What is E[X], in terms of p?

Let X1 and X2 be number of nodes the left and right calls to randomTree.
E[X1] = E[X2] = E[X].

E[X] = p · E[X | if] + (1 − p)E[X | else]
= p · E[1 + X1 + X2] + (1 − p) · 0
= p · (1 + E[X] + E[X])
= p + 2pE[X]

(1 − 2p)E[X] = p

E[X] =
p

1 − 2p
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2. Hat-Check Again?? Recall the hat-check problem from section 2: n people go to a party
and drop off their hats to a hat-check person. When the party is over, a different hat-check
person is on duty, and returns the n hats randomly back to each person. Let X be the random
variable representing the number of people who get their own hat back. We showed last time
that E[X] = 1 for any n. What is Var(X)? Hint: Be careful when taking the variance of a
sum of random variables.

Similarly to last time, let Xi ∼ Bernoulli(p = 1/n) be the indicator variable for whether
the ith person gets their hat back, so that X =

∑n
i=1 Xi. Then,

Var(X) = Var

(
n∑

i=1
Xi

)
=

n∑
i=1

Var(Xi) + 2
∑
i< j

Cov(Xi,X j)

The first term is simply np(1−p) = n
(
1
n

) (
1 −

1
n

)
=

n − 1
n

since each individual variance

is p(1 − p).
To compute Cov(Xi,X j) for i , j, we note that Cov(Xi,X j) = E[Xi X j] − E[Xi]E[X j].
The random variable Xi X j is also Bernoulli, with parameter 1/n · 1/(n − 1) since both
have to get their hat back. So

Cov(Xi,X j) = E[Xi X j] − E[Xi]E[X j] =
1

n(n − 1)
−

(
1
n

)2
=

1
n2(n − 1)

Noting that there are
(n
2
)
=

n(n − 1)
2

identical terms in the summation over i < j and
putting this all together gives

Var(X) =
n − 1

n
+ 2

(
n
2

)
1

n2(n − 1)
=

n − 1
n
+

1
n
= 1.

So E[X] = Var(X) = 1. What a coincidence!

3. Timing Attack:
In this problemwe are going to show you how to crack a password in linear time, bymeasuring
how long the password check takes to execute (see code below). Assume that our server takes
T ms to execute any line in the code where T ∼ N(µ = 5, σ2 = 0.5) seconds. The amount of
time taken to execute a line is always independent of other values of T .

# An insecure string comparison
def stringEquals(guess, password):
nGuess = len(guess)
nPassword = len(password)
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if nGuess != nPassword:
return False # 4 lines executed to get here

for i in range(nGuess):
if guess[i] != password[i]:
return False # 6 + 2i lines executed to get here

return True # 5 + 2n lines executed to get here

On our site all passwords are length 5 through 10 (inclusive) and are composed of lower case
letters only. A hacker is trying to crack the root password which is “gobayes" by carefully
measuring how long we take to tell them that her guesses are incorrect.

a. What is the distribution of time that it takes our server to execute k lines of code? Recall
that each line independently takes T ∼ N(µ = 5, σ2 = 0.5) ms.

Let Y be the amount of time to execute k lines. Y =
∑k

i=1 Xi where Xi is the amount
of time to execute line i. Xi ∼ N(µ = 5, σ2 = 0.5).
Since Y is the sum of independent normals:

Y ∼ N(µ =
k∑

i=1
5, σ2 =

k∑
i=1

0.5)

∼ N(µ = 5k, σ2 = 0.5k)

b. First the hacker needs to find out the length of the password. What is the probability that
the time taken to test a guess of correct length (server executes 6 lines) is longer than
the time taken to test a guess of an incorrect length (server executes 4 lines)? Assume
that the first letter of the guess does not match the first letter of the password. Hint:
P(A > B) is the same as P(A − B > 0).

From last problem:
Time to run 6 lines of code A ∼ N(µ = 30, σ2 = 3)
Time to run 4 lines of code B ∼ N(µ = 20, σ2 = 2)

−B ∼ N(µ = −20, σ2 = 2)
A − B ∼ N(µ = 10, σ2 = 5)

P(A > B) = P(A − B > 0)
= 1 − FA−B(0)

= 1 − Φ
(0 − 10
√

5

)
≈ 1.0
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c. Now that our hacker knows the length of the password, to get the actual string she is
going to try and figure out each letter one at a time, starting with the first letter. The
hacker tries the string “aaaaaaa" and it takes 27s. Based on this timing, how much more
probable is it that first character did not match (server executes 6 lines) than the first
character did match (server executes 8 lines)? Assume that all letters in the alphabet are
equally likely to be the first letter.

Let M be the event that the first letter matched.

P(MC |T = 27)
P(M |T = 27)

=
f (T = 27|MC)P(MC)

f (T = 27|M)P(M)

=
f (T = 27|MC)25

26

f (T = 27|M) 1
26

= 25 ·
f (T = 27|MC)

f (T = 27|M)

= 25 ·
1√
6π

e−
(27−30)2

6

1√
8π

e−
(27−40)2

8

= 25 ·
√

8
√

6
·

e−
9
6

e−
169
8

≈ 9.6 million

d. If it takes the hacker 6 guesses to find the length of the password, and 26 guesses
per letter to crack the password string, how many attempts does she need to crack our
password, “gobayes"? Yikes!

7 · 26 + 6 = 188


