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Section 8: Solution

Formula reference for Logistic Regression:

σ(z) =
1

1 + e−z

LL(θ) =
n∑

i=0
y(i) log σ(θTx(i)) + (1 − y(i)) log [1 − σ(θTx(i))]

∂LL(θ)
∂θ j

=

n∑
i=0

[
y(i) − σ(θTx(i))

]
x(i)j

1. Vision Test
You decide that the vision tests given by eye doctors would be more precise if we used
an approach inspired by logistic regression. In a vision test a user looks at a letter with a
particular font size and either correctly guesses the letter or incorrectly guesses the letter.
You assume that the probability that a particular patient is able to guess a letter correctly is:

p = σ(θ + f )

Where θ is the user’s vision score and f is the font size of the letter.
Explain how you could estimate a user’s vision score (θ) based on their 20 responses
( f (1), y(1)) . . . ( f (20), y(20)), where y(i) is an indicator variable for whether the user correctly
identified the ith letter and f (i) is the font size of the ith letter. Solve for any and all partial
derivatives required by the approach you describe in your answer.

We are going to solve this problem by finding the MLE estimate of θ. To find the MLE
estimate, we are going to find the argmax of the log likelihood function. To calculate
argmax we are going to use gradient ascent, which requires that we know the partial
derivative of the log likelihood function with respect to theta.
First we write the log likelihood:

L(θ) =
20∏
i=1

py(i)(1 − p)[1−y
(i)]

LL(θ) =
20∑
i=1
(y(i) log(p) + (1 − y(i)) log(1 − p))
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Then we find the derivative of log likelihood with respect to θ for one datapoint:

∂LL
∂θ
=
∂LL
∂p
·
∂p
∂θ

We can calculate both the smaller partial derivatives independently:

∂LL
∂p
=

y(i)

p
−

1 − y(i)

1 − p
and

∂p
∂θ
= p[1 − p]

Putting it all together for one letter:

∂LL
∂θ
=
∂LL
∂p
·
∂p
∂θ
=

[ y(i)
p
−

1 − y(i)

1 − p
]
p[1 − p]

= y(i)(1 − p) − p(1 − y(i)) = y(i) − p = y(i) − σ(θ − f )

For all twenty examples:

∂LL
∂θ
=

20∑
i=1

y(i) − σ(θ + f (i))

Multiclass Bayes
In this problem we are going to explore how to write Naive Bayes for multiple output classes.
We want to predict a single output variable Y which represents how a user feels about a book.
Unlike in your homework, the output variable Y can take on one of the four values in the
set {Like,Love,Haha,Sad}. We will base our predictions off of three binary feature variables
X1,X2, and X3 which are indicators of the user’s taste. All values Xi ∈ {0,1}.
We have access to a dataset with 10,000 users. Each user in the dataset has a value for
X1,X2,X3 and Y . You can use a special query method count that returns the number of users
in the dataset with the given equality constraints (and only equality constraints). Here are
some example usages of count:

count(X1 = 1,Y = Haha) returns the number of users where X1 = 1 and Y = Haha.
count(Y = Love) returns the number of users where Y = Love.
count(X1 = 0,X3 = 0) returns the number of users where X1 = 0, and X3 = 0.

You are given a new user with X1 = 1, X2 = 1, X3 = 0. What is the best prediction for how the
user will feel about the book (Y )? You may leave your answer in terms of an argmax function.
You should explain how you would calculate all probabilities used in your expression. Use
Laplace estimation when calculating probabilities.
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We can make the Naive Bayes assumption of independence and simplify argmax of
P(Y |X) to get an expression for Ŷ , the predicted output value, and evaluate it using the
provided count function.

Ŷ = arg max
y

P(X1 = 1,X2 = 1,X3 = 0|Y = y)P(Y = y)

P(X1 = 1,X2 = 1,X3 = 0)
= arg max

y
P(X1 = 1,X2 = 1,X3 = 0|Y = y)P(Y = y)

= arg max
y

P(X1 = 1|Y = y)P(X2 = 1|Y = y)P(X3 = 0|Y = y)P(Y = y), where:

P(X1 = 1|Y = y) = [count(X1 = 1,Y = y) + 1]/count(Y = y) + 2
P(X2 = 1|Y = y) = [count(X2 = 1,Y = y) + 1]/count(Y = y) + 2
P(X3 = 1|Y = y) = [count(X3 = 1,Y = y) + 1]/count(Y = y) + 2
P(X1 = 0|Y = y) = [count(X1 = 0,Y = y) + 1]/count(Y = y) + 2
P(X2 = 0|Y = y) = [count(X2 = 0,Y = y) + 1]/count(Y = y) + 2
P(X3 = 0|Y = y) = [count(X3 = 0,Y = y) + 1]/count(Y = y) + 2

you don’t need to use MAP to estimate P(Y ): P(Y = y) = count(Y = y)/10,000

The Most Important Features
Let’s explore saliency, a measure of how important a feature is for classification. We define
the saliency of the ith input feature for a given example (x, y) to be the absolute value of the
partial derivative of the log likelihood of the sample prediction, with respect to that input
feature

�� ∂LL
∂xi

��. In the images below, we show both input images and the corresponding saliency
of the input features (in this case, input features are pixels):

First consider a trained logistic regression classifierwithweights θ. Like the logistic regression
classifier that you wrote in your homework it predicts binary class labels. In this question we
allow the values of x to be real numbers, which doesn’t change the algorithm (neither training
nor testing).
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a. What is the Log Likelihood of a single training example (x, y) for a logistic regression
classifier?

LL(θ) = y · log σ
(
θT · x

)
+

(
1 − y

)
log

[
1 − σ

(
θT · x

)]
b. Calculate is the saliency of a single feature (xi) in a training example (x, y).

We can calculate the saliency for a single feature as follows.

LL(θ) = y log z +
(
1 − y

)
log

(
1 − z

)
where z = σ

(
θT · x

)
∂LL
∂xi
=
∂LL
∂z
·
∂z
∂xi

chain rule

=
( y

z
−

1 − y

1 − z

)
·

(
z(1 − z)θi

)
partial derivatives

saliency =
��� ( y

z
−

1 − y

1 − z

)
z(1 − z)θi

���
Show that the ratio of saliency for features i and j is the ratio of the absolute value of
their weights |θi |

|θ j |
.

We can take the ratio as follows using our expression above.

saliency for feature i,Si =

��� ( y
z
−

1 − y

1 − z

)
z(1 − z)θi

��� , and same for Sj

Si

Sj
=

��� ( yz − 1−y
1−z

)
z(1 − z)θi

������ ( yz − 1−y
1−z

)
z(1 − z)θi

��� = Si

Sj
=

��� θi

������ θ j

��� by elimination


