
– 1 –

David Varodayan
CS109

Lecture Notes #10
January 29, 2020

The Normal Distribution
Based on a chapter by Chris Piech

Normal Random Variable
The single most important random variable type is the Normal (aka Gaussian) random variable, parameterized by a
mean (µ) and variance (σ2). If X is a normal variable we write X ∼ N(µ, σ2). The normal is important for many
reasons: it is generated from the summation of independent random variables and as a result it occurs often in nature.
Many things in the world are not distributed normally but data scientists and computer scientists model them as Normal
distributions anyways. Why? Because it is the most entropic (conservative) distribution that we can apply to data with
a measured mean and variance.

Properties
The Probability Density Function (PDF) for a Normal is:
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σ
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By definition a Normal has E[X] = µ and Var(X) = σ2.

If X is a Normal such that X ∼ N(µ, σ2) and Y is a linear transform of X such that Y = aX + b then Y is also a Normal
where Y ∼ N(aµ + b, a2σ2).

There is no closed form for the integral of the Normal PDF, however since a linear transform of a Normal produces
another Normal we can always map our distribution to the “Standard Normal" (mean 0 and variance 1) which has a
precomputed Cumulative Distribution Function (CDF). The CDF of an arbitrary normal is:

F(x) = Φ
( x − µ

σ

)
Where Φ is a precomputed function that represents that CDF of the Standard Normal.

Projection to Standard Normal
For any Normal RV X we can find a linear transform from X to the Standard Normal N(0, 1). That is, if you subtract
the mean (µ) of the normal and divide by the standard deviation (σ), the result is distributed according to the standard
normal (also called the unit Normal). We can prove this mathematically. Let Z = X−µ

σ :

Z =
X − µ
σ

Transform X: subtract µ and divide by σ

=
1
σ

X −
µ

σ
Use algebra to rewrite the equation

= aX + b define a =
1
σ
, b = −

µ

σ

∼ N(aµ + b, a2σ2) The linear transform of a normal is another normal

∼ N(
µ

σ
−
µ

σ
,
σ2

σ2 ) Substitute values in for a and b

∼ N(0, 1) The Standard Normal



– 2 –

An extremely common use of this transform is to express FX (x), the CDF of X , in terms of the CDF of Z , FZ (x). Since
the CDF of the Standard Normal is so common, it gets its own Greek symbol, Φ(x).

FX (x) = P(X ≤ x)

= P
(

X − µ
σ
≤

x − µ
σ

)
= P

(
Z ≤

x − µ
σ

)
= Φ

( x − µ
σ

)
Why is this useful? Well, in the days when we couldn’t call scipy.stats.norm.cdf (or on exams, when one doesn’t
have a calculator), people would look up values of the CDF in a table (see the last page of these notes). Using the
Standard Normal means you only need to build a table of one distribution, rather than an indefinite number of tables
for all the different values of µ and σ!

We also have an online calculator on the CS 109 website. You should learn how to use the Standard Normal table for
the exams, however!

Example 1
Let X ∼ N(3, 16), what is P(X > 0)?

P(X > 0) = P
(

X − 3
4

>
0 − 3

4

)
= P

(
Z > −

3
4

)
= 1 − P

(
Z ≤ −

3
4

)
= 1 − Φ

(
−

3
4

)
= 1 −

(
1 − Φ

(
3
4

))
= Φ

(
3
4

)
≈ 0.7734

An alternative approach uses the idea that if F is the CDF of X ∼ N(µ, σ2), then F(x) = P
(
Z <

x−µ
σ

)
= Φ

( x−µ
σ

)
:

P(X > 0) = 1 − F(0) = 1 − Φ(−3/4)
= 1 − (1 − Φ(3/4)) = Φ(3/4) ≈ 0.7734.

What is P(2 < X < 5)?

P(2 < X < 5) = P
(
2 − 3

4
<

X − 3
4

<
5 − 3

4

)
= P

(
−

1
4
< Z <

2
4

)
= Φ

(
2
4

)
− Φ

(
−

1
4

)
= Φ

(
1
2

)
−

(
1 − Φ

(
1
4

))
≈ 0.2902

Alternative solution:

P(2 < X < 5) = F(5) − F(2) = Φ
(
5 − 3

4

)
− Φ

(
2 − 3

4

)
= Φ(1/2) − (1 − Φ(1/4)) ≈ 0.2902.

What is P(|X − 3| < 6)?

P(|X − 3| > 6) = P(X < −3) + P(X > 9) = F(−3) + (1 − F(9)) = Φ
(
−3 − 3

4

)
+

(
1 − Φ

(
9 − 3

4

))
= Φ(−3/2) + (1 − Φ(3/2)) = 2(1 − Φ(3/2)) ≈ 0.1337.
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Example 2
You send voltage of 2 or -2 on a wire to denote 1 or 0. Let X = voltage sent and let R = voltage received. R = X + Y ,
where Y ∼ N(0, 1) is noise. When decoding, if R ≥ 0.5 we interpret the voltage as 1, else 0.

What is P(error after decoding|original bit = 1)?

Given that we sent a 1, X = 2 and therefore R = 2 + Y . A decoding error occurs if we incorrectly interpret the signal
as 0; this occurs if R < 0.5. Note that Y is the Standard Normal and therefore has CDF Φ:

P(R < 0.5|X = 2) = P(X + Y < 0.5|X = 2) = P(2 + Y < 0.5)
= P(Y < −1.5) = Φ(−1.5) = 1 − Φ(1.5) ≈ 0.0668

What is P(error after decoding|original bit = 0)?

Given that we sent a 0, X = −2 and therefore R = −2+Y . A decoding error occurs if we incorrectly interpret the signal
as 1; this occurs if R ≥ 0.5.

P(R ≥ |X = −2) = P(X + Y ≥ 0.5|X = −2) = P(−2 + Y ≥ 0.5)
= P(Y ≥ 2.5) = 1 − Φ(2.5) ≈ 0.0062.

This example demonstrates an asymmetric decoding boundary, where there is lower probability of erroneously decoding
a 0 as a 1 than vice versa. Inmany engineering circumstances, wemay suffer stronger consequences if we turn something
“on” when it was supposed to stay turned off. By setting the boundary of our decoding process asymmetrically, we can
decrease the probability of this undesirable error.

Binomial Approximation
You can use a Normal distribution to approximate a Binomial X ∼ Bin(n, p). To do so define a normal Y ∼
N(E[X],Var(X)). Using the Binomial formulas for expectation and variance, Y ∼ N(np, np(1 − p)). This approx-
imation holds for large n. Since a Normal is continuous and Binomial is discrete we have to use a continuity correction
to discretize the Normal.

P(X = k) ≈ P
(
k −

1
2
< Y < k +

1
2

)
= Φ

(
k − np + 0.5√

np(1 − p)

)
− Φ

(
k − np − 0.5√

np(1 − p)

)

Example 3
100 visitors to your website are given a new design. Let X = # of people who were given the new design and spend more
time on yourwebsite.YourCEOwill endorse the newdesign if X ≥ 65.What isP(CEO endorses change|it has no effect)?

E[X] = np = 50. Var(X) = np(1 − p) = 25. σ =
√

Var(X) = 5. We can thus use a Normal approximation:
Y ∼ N(50, 25).

P(X ≥ 65) ≈ P(Y > 64.5) = P
(
Y − 50

5
>

64.5 − 50
5

)
= 1 − Φ(2.9) = 0.0019

Example 4
Stanford accepts 2480 students and each student has a 68% chance of attending. Let X = # students who will attend.
X ∼ Bin(2480, 0.68). What is P(X > 1745)?

E[X] = np = 1686.4. Var(X) = np(1 − p) = 539.7. σ =
√

Var(X) = 23.23. We can thus use a Normal approximation:
Y ∼ N(1686.4, 539.7).

P(X > 1745) ≈ P(Y > 1745.5) = P
(
Y − 1686.4

23.23
>

1745.5 − 1686.4
23.23

)
= 1 − Φ(2.54) = 0.0055


