o2: Combinatorics

David Varodayan January 8, 2020 Adapted from slides by Lisa Yan

Takeaways from last time

Inclusion-Exclusion Principle (generalized Sum Rule)

If the outcome of an experiment can be either from Set A or set B, where A and B may overlap, then the total number of outcomes of the experiment is

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

General Principle of Counting (generalized Product Rule)

If an experiment has r steps, such that step i has n_i outcomes for all $i=1,\ldots,r$, then the total number of outcomes of the experiment is

 $n_1 \times n_2 \times \cdots \times n_r = \prod_{i=1}^r n_i$.

Multi-step experiment

Essential information

Website

cs109.stanford.edu

Teaching Staff

Today's plan

Permutations (sort objects)

Combinations (choose objects)

Put objects into buckets

Summary of Combinatorics

Today's plan

Permutations (sort objects)

Combinations (choose objects)

Put objects into buckets

Summary of Combinatorics

Sort *n* indistinct objects

Sort *n* distinct objects

Permutations

A permutation is an <u>ordered</u> arrangement of <u>distinct</u> objects.

The number of unique orderings (permutations) of n distinct objects is

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$
.

Order *n* distinct objects

n!

All distinct

Some indistinct

Irina

Coke

Joey

Sort semi-distinct objects

How do we find the number of permutations considering some objects are indistinct?

By the product rule, permutations of <u>distinct</u> objects is a two-step process:

permutations of distinct objects

permutations considering some objects are indistinct

Permutations of just the indistinct objects

Sort semi-distinct objects

How do we find the number of permutations considering some objects are indistinct?

By the product rule, permutations of <u>distinct</u> objects is a two-step process:

permutations of distinct objects

permutations considering some objects are indistinct

Permutations of just the indistinct objects

General approach to counting permutations

```
When there are n objects such that
    n_1 are the same (indistinguishable or indistinct), and
    n_2 are the same, and
    n_r are the same,
The number of unique orderings (permutations) is
```

How many permutations?

Coke

Coke0

Coke

Coke0

Coke0

How many orderings of letters are possible for the following strings?

1. BOBA

2. MISSISSIPPI

Summary of Combinatorics

Today's plan

Permutations (sort objects)

Put objects into buckets

Summary of Combinatorics

There are n = 20 people. How many ways can we choose k = 5 people to get cake?

There are n = 20 people.

How many ways can we choose k = 5 people to get cake?

n people get in line

n! ways

There are n=20 people.

How many ways can we choose k = 5 people to get cake?

- n people get in line
- 2. Put first *k* in cake room

n! ways

1 way

There are n=20 people. How many ways can we choose k = 5 people to get cake?

- n people get in line
- 2. Put first *k* in cake room

n! ways

1 way

There are n=20 people. How many ways can we choose k = 5 people to get cake?

- n people get in line
 - n! ways

2. Put first k 3. Allow cake in cake room

1 way

group to mingle

k! different permutations lead to the same mingle

There are n=20 people. How many ways can we choose k = 5 people to get cake?

- n people get in line
 - n! ways

2. Put first *k* 3. Allow cake in cake room

1 way

k! different permutations lead to the same mingle

4. Allow non-cake group to mingle group to mingle

There are n=20 people. How many ways can we choose k = 5 people to get cake?

- n people get in line
 - n! ways

2. Put first *k* in cake room

1 way

3. Allow cake group to mingle

> k! different permutations lead to the same mingle

4. Allow non-cake group to mingle

> (n-k)! different permutations lead to the same mingle Stanford University 26

Combinations

A combination is an <u>unordered</u> selection of *k* objects from a set of n distinct objects.

The number of ways of making this selection is

1. How many ways are there to choose 3 books from a set of 6 distinct books?

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$\binom{6}{3} = \frac{6!}{3! \, 3!} = 20 \, \text{ways}$$

2. What if we do not want to read both the 9th and 10th edition of Ross?

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$\binom{6}{3} = \frac{6!}{3! \, 3!} = 20 \,\text{ways}$$

What if we do not want to read both the 9th and 10th edition of Ross?

Break

Announcements

PS#1

today Out:

Due: Friday 1/17, 1:00pm

through Friday Covers:

Staff help

Piazza policy: student discussion

Office hours: start today

cs109.stanford.edu/staff.html

Python tutorial

Friday 3:30-4:20pm When:

420-041 Location:

Recorded? maybe

to be posted online Notes:

Section sign-ups

Preference form: today

Saturday 1/11 Due:

latest Monday Results:

Handout: Calculation Reference

Week	Monday	Wednesday	Friday
1	JAN 6	JAN 8	JAN 10
	1: Counting	2: Permutations and Combinations	3: Axioms of Probability
	Lecture Notes	Lecture Notes	Lecture Notes
	Administrivia		Python for ProbabilitySerendipity Demo
	Read: Ch 1.1-1.2	Read: Ch 1.3-1.6 Out: PSet #1	Read: Ch 2.1-2.5, 2.7
2	JAN 13	JAN 15	JAN 17
	4: Conditional Probability and Bayes	5: Independence	6: Random Variables and Expectation
	Lecture Notes	Lecture Notes	
	► Medical Bayes Demo		Lecture Notes

Geometric series:

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$$

$$\sum_{i=m}^{n} x^{i} = \frac{x^{n+1} - x^{m}}{x-1}$$

$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \text{ if } |x| < 1$$

Integration by parts (everyone's favorite!):

Choose a suitable u and dv to decompose the integral of interest:

$$\int u \cdot dv = u \cdot v - \int v \cdot du$$

Summary of Combinatorics

General approach to combinations

The number of ways to choose r groups of n distinct objects such that

For all i = 1, ..., r, group i has size n_i , and

 $\sum_{i=1}^{r} n_i = n$ (all objects are assigned), is

Datacenters

Choose k of n distinct objects into r groups of size $n_1, \dots n_r$ n_1, \dots, n_r

13 different computers are to be allocated to 3 datacenters as shown in the table:

How many different divisions are possible?

Datacenter	# machines
Α	6
В	4
С	3

Datacenters (solution 2)

Choose k of n distinct objects finto r groups of size n_1 , ... n_r

Datacenter

В

machines

13 different computers are to be allocated to
3 datacenters as shown in the table:

How many different divisions are possible?

1. Choose 6 computers for A

2. Choose 2 computers for B

3. Choose 3 computers for C

Summary of Combinatorics

A trick question

Choose k of n distinct objects finto r groups of size $n_1,...n_r$ $\binom{n}{n_1,n_2,\cdots,n_r}$

How many ways are there to group 6 indistinct (indistinguishable) objects into 3 groups, where group A, B, and C have size 1, 2, and 3, respectively?

Today's plan

Permutations (sort objects)

Combinations (choose objects)

Put objects into buckets

Summary of Combinatorics

Hash tables and distinct strings

How many ways are there to hash n distinct strings to r buckets?

Steps:

Bucket 1st string

Bucket 2nd string

n. Bucket nth string

Summary of Combinatorics

Hash tables and indistinct strings

How many ways are there to distribute n indistinct strings to r buckets?

Goal

Bucket 1 has x_1 strings,

Bucket 2 has x_2 strings,

...

Bucket r has x_r strings (the rest)

Simple example: n = 3 strings and r = 2 buckets

Bicycle helmet sales

How many ways can we assign n=5 indistinguishable children to r=4distinct bicycle helmet styles?

Consider the following generative process...

Bicycle helmet sales: 1 possible assignment outcome

How many ways can we assign n=5 indistinguishable children to r=4distinct bicycle helmet styles?

n = 5 indistinct objects

r = 4 distinct buckets

Bicycle helmet sales: 1 possible assignment outcome

How many ways can we assign n=5 indistinguishable children to r=4distinct bicycle helmet styles?

r=4 distinct buckets

Goal Order n indistinct objects and r-1 indistinct dividers.

n = 5 indistinct objects

How many ways can we assign n=5 indistinguishable children to r=4distinct bicycle helmet styles?

Goal Order n indistinct objects and r-1 indistinct dividers.

Make objects and dividers distinct

How many ways can we assign n=5 indistinguishable children to r=4distinct bicycle helmet styles?

Goal Order n indistinct objects and r-1 indistinct dividers.

O. Make objects and dividers distinct

1. Order *n* distinct objects and r-1distinct dividers

$$(n + r - 1)!$$

How many ways can we assign n=5 indistinguishable children to r=4distinct bicycle helmet styles?

Goal Order n indistinct objects and r-1 indistinct dividers.

O. Make objects and dividers distinct

1. Order *n* distinct objects and r-1distinct dividers

$$(n+r-1)!$$

2. Make *n* objects indistinct

$$\frac{1}{n!}$$

How many ways can we assign n=5 indistinguishable children to r=4distinct bicycle helmet styles?

Goal Order n indistinct objects and r-1 indistinct dividers.

O. Make objects and dividers distinct

1. Order *n* distinct objects and r-1distinct dividers

$$(n + r - 1)!$$

2. Make *n* objects indistinct

$$\frac{1}{n!}$$

3. Make r-1 dividers indistinct

$$\frac{1}{(r-1)!}$$
Stanford University 52

Divider method

The number of ways to distribute n indistinct objects into r buckets is equivalent to the number of ways to permute n + r - 1 objects such that n are indistinct objects, and r-1 are indistinct dividers:

Integer solutions to equations

Divider method
$$\binom{n+r-1}{r-1}$$
 (n indistinct objects, r buckets)

How many integer solutions are there to the following equation:

$$x_1 + x_2 + \dots + x_r = n,$$

where for all i, x_i is an integer such that $0 \le x_i \le n$?

Venture capitalists

Divider method
$$\binom{n+r-1}{r-1}$$

You have \$10 million to invest in 4 companies (in \$1 million increments).

1. How many ways can you fully allocate your \$10 million?

Venture capitalists

Divider method
$$\binom{n+r-1}{r-1}$$

You have \$10 million to invest in 4 companies (in \$1 million increments).

- 1. How many ways can you fully allocate your \$10 million?
- What if you want to invest at least \$3 million in company 1?

Venture capitalists

Divider method
$$\binom{n+r-1}{r-1}$$
 (n indistinct objects, r buckets)

You have \$10 million to invest in 4 companies (in \$1 million increments).

- 1. How many ways can you fully allocate your \$10 million?
- 2. What if you want to invest at least \$3 million in company 1?
- What if you don't invest all your money?

Summary of Combinatorics

Unique 6-digit passcodes with six smudges

How many unique 6-digit passcodes are possible if a phone password uses each of six distinct numbers?

Unique 6-digit passcodes with five smudges distinct objects $\frac{n!}{n_1! \, n_2! \cdots n_r!}$

How many unique 6-digit passcodes are possible if a phone password uses each of five distinct numbers?

Unique 6-digit passcodes with four smudges distinct objects $\frac{n!}{n_1! \, n_2! \cdots n_r!}$

How many unique 6-digit passcodes are possible if a phone password uses each of four distinct numbers?

Unique 6-digit passcodes with three smudges

How many unique 6-digit passcodes are possible if a phone password uses each of three distinct numbers?

Unique 6-digit passcodes with two smudges

How many unique 6-digit passcodes are possible if a phone password uses each of two distinct numbers?

Unique 6-digit passcodes with one smudge

How many unique 6-digit passcodes are possible if a phone password uses one number?