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Monty Hall Problem from Let’s Make a Deal

Behind one door is a car (equally likely to be any door).
Behind the other two doors are goats

1. You choose a door

2. Host opens 1 of other 2 doors, revealing a goat

3. You are given an option to change to the other door. Doors A B C -
Should you switch?
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What happens if you switch

You picked:

|

A = prize
* Host opens
* You switch to

B = prize
* Host opens
* You switch to

1/3

* Result * Result
P(win | A prize, P(win | B prize,
you picked ___, you picked __,
switch) = switch) =
P(win | you picked ___, switched) =

C = prize
* Host opens
* You switch to
* Result

P(win | C prize,
you picked ___,
switch) =
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Monty Hall, 1000 envelope version

Start with 1000 envelopes

(of which 1 is the prize). 1 ‘o i
o0 = P(envelope is prize)
You choose 1 envelope. % = P(other 999 envelopes have prize)
999

o —— = P(998 empty envelopes had prize)
| open 998 of remaining 999 | 1000 .
(showing they are empty) + P(last other envelope has prize)

= P(last other envelope has prize)

1
original # envelopes

Should you switch? P(you win without switching) =

— original # envelopes - 1
original # envelopes
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This class going forward

Last week
Equally likely
events

@ .
(&l

P(ENF) P(EUF)

(counting, combinatorics)

For most of this course

Not equally likely events

P (E given some evidenoe)
has been observed
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Two Dice Review

* Roll two 6-sided dice, yielding values D; and D,.
* LeteventE: D; =5
event F: D, =5

1. Roll a 5 on one of the rolls or both A. P(F)

2. Roll a 5 on both rolls B. P(EUF)
3. Neither roll is 5 C. P(ECUFC)
4. Rolla 5 on roll 2 D. P(EF)

5. Do not roll a 5 on one of the rolls or E. p(ECFC)

both
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Probability of events

Mutually
exclusive? \ndependent?

Inclusion-
Just add! Exclusion Just multiply! Chain Rule
Principle
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Inclusion-Exclusion

P(student programs in Java) = 0.28 P(E)
P(student programs in Python) = 0.07 P(F)
P(student programs in Java and Python) = 0.05. P(ENF) = P(EF)

What is P(student does not program in (Java or Python))?

Solve
Let:  E: Student programs P((E U F)C) =1—-P(E£UF)
in Java 1 _ _
F: Student programs =1-[P(E) +P(UF) - P(ENF)]
in Python =1-[0.28+ 0.07 — 0.05]

Want: P((E U F)C) = 0.70
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Chain Rule Review

Definition of conditional probability:

P(EF)
P(F)

P(E|F) =

The Chain Rule:
P(EF) = P(E|F)P(F)
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Generalized Chain Rule

P(E,E,E; ...E,)
= P(E1)P(E3|E1)P(E3|E{E>) ... P(En|E1E5 .. En_q)
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Probability of events

Mutually
exclusive?

Inclusion-
Just add! Exclusion
Principle

P(E) + P(F) P(E)+P(F)—P(ENF)

EandF
P(EF)

Chain Rule

P(E)P(F|E)
P(F)P(E|F)
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Today’s plan

=) Independence
Independent trials
De Morgan’s Laws

Conditional independence (if time)

In C' O NG R E S & Fuh 4 - 17%6.

A DECLARATION

the REPRESENTATIVES o th

UnNITED STATES OF - AMERICA;
In GENERAL CONGRESS AsszmBrLip.

.‘ 5? HE N in the Courfe of human Uvents, it beom=y  necellepy For quanieiing lirge Bodic of armed Troops amang
5 b 3 I ne For proy hee M mi for any M
ers  ders which | 4 en of thefe '
of 1hz | i y ]
pad @ o
Wla ¥ ¥
ta the o

Stanford University 12



Independence

Two events E and F are defined as independent if:
P(EF) = P(E)P(F)

Otherwise E and F are called dependent events.

An equivalent definition:
P(E|F) = P(E)
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. . Independent P(EF) = P(E)P(F)
Intuition through proof events E and F P(EIF) = P(E)

Statement:

If E and F are independent, then P(E|F) = P(E).

Proof:
P(E|F) = P(EF) Definition of
P(F) conditional probability
_ P(E)P(F) Independence of E and F
P(F)
= P(E)

Knowing that ' happened does not

change our belief that E happened.
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. . . Independent P(EF) = P(E)P(F)
Dice, our misunderstood friends events E and F PEIF) = P(E)

* Roll two 6-sided dice, yielding values D; and D,. —
° LeteventE: D; =1 e
event F: D, =6

eventG: D;+D, =5 G ={(1,4),(2,3),(3,2),(41)}

1. Are E and F independent? 2. Are E and ( independent?
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Independent P(EF) = P(E)P(F)

Independence? events E and F P(EIF) = P(E)
r N r ) R
A AB A
B N Y
B
" S " J S
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Independent P(EF) = P(E)P(F)
Independence of complements events £ and F P(EIF) = P(E)

Statement:

If E and F are independent, then E and F¢ are independent.

Proof:
P(EF‘) = P(E) — P(EF) ntersection
= P(E) — P(E)P(F) ndependence of E and F
= P(E)[1 - P(F)] -actoring
= P(E)P(F%) Complement
E and F¢ are independent Definition of independence

Knowing that F' didn’t happen does not

change our belief that E happened.
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Today’s plan

™) Independent trials
De Morgan’s Laws

Conditional independence (if time)
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Generalizing independence

P(EFG) = P(E)P(F)P(G), and
Three events E, F,and G P(EF) = P(E)P(F), and

are independent if: P(EG) = P(E)P(G), and
P(FG) = P(F)P(G)

forr=1,...,n:

_n events £y, EZ_’ e, By are for every subset Ey, E, ..., E..:
Independent If: P(Ey, Ey, .., Er) = P(E))P(E,) -+ P(Ey)

Independent trials:

Outcomes of n separate flips of a coin are all independent of one another.
Each flip in this case is a trial of the experiment.
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Dice, increasingly misunderstood (still our friends)

* Each roll of a 6-sided die is an independent trial.
* Two rolls: D; and D,.

* LeteventE: Dy =1
event F: D, =6

eventG: Dy+D, =7 G ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
1. Are E and F 2. Are E and G 3. Are Fand G 4. Are E,F,G
iIndependent? iIndependent? independent? iIndependent?
P(E)=1/6
P(F)=1/6
P(EF) =1/36

Pairwise independence is not sufficient to prove independence of >2 events!
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Network reliability

Consider the following parallel network: A
* n independent routers, each with

probability p; of functioning (where1 <i<n) [
« E = functional path from A to B exists.

What is P(E)?
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(Biased) Coin Flips

Suppose we flip a coin n times.

A coin comes up heads with probability p.

Each coin flip is an independent trial.

P(n heads on n coin flips)
P(n tails on n coin flips)
P(first k heads, then n — k tails)

P(exactly k heads on n coin flips)
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Announcements

Section A /This quarter A
Starts: today Beginning: fast-paced
Late signups/changes: by end of day Later: deep into concepts
Solutions: end of week Counting: the hardest part!
\ o \(Lounting Part
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Today's plan

=> De Morgan’s Laws

Conditional independence
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De Morgan's Laws

S (ENF)* =E“UF® |8 (EUF)¢ =ECNnFC

C C
n n n n
ﬂ E; | = U Ef U E; | = ﬂ Ef
=1 =1 =1 =1

In probability:
P(E{E,+E,) =1—P(ES UE§ U---UES)  Greatif EC mutually exclusive!
P(E,UE,U--UE,) =1—P(E{E5-+-ES) Greatif E; independent!

De Morgan’s: AND < OR
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Hash table fun

m strings are hashed (unequally) into a hash table with n buckets.
Each string hashed is an independent trial w.p. p; of getting hashed into bucket i.

E =Dbucket 1 has = 1 string hashed into it.

: Define S; =string i is
P, l
What is P(E) ' hashed into bucket 1
S§ = string i is not
hashed into bucket 1

P(S;) =py
P(Sf):l—pl
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Hash table fun

m strings are hashed (unequally) into a hash table with n buckets.
Each string hashed is an independent trial w.p. p; of getting hashed into bucket i.

E =Dbucket 1 has = 1 string hashed into it.

: Define S; =string i is
? l
What is P(E)" hashed into bucket 1
S§ = string i is not

hashed into bucket 1
P(E)=P(S5;US,U--US,)
=1— P((51 usS,u--u Sm)C) Complement P(S) = py
=1-— P(SlcSZC S,%) De Morgan’s Law PE) =1-p
=1- P(Sf)P(SZC) P(S,,%) S; independent trials
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More hash table fun

m strings are hashed (unequally) into a hash table with n buckets.
Each string hashed is an independent trial w.p. p; of getting hashed into bucket i.

E = at least 1 of buckets 1 to k has = 1 string hashed into it.

- o) Define  §; =stringiis
What is P(E)" hashed into bucket 1
P(E) =P(S;US,U--US,,) S{ = string i is not

hashed into bucket 1
=1- P((S1 US, U U Sm)C)

=1—P(S{S5 - S5)
=1-P(S7)P(Sz) - P(Sm)
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The fun never stops with hash tables

m strings are hashed (unequally) into a hash table with n buckets.
Each string hashed is an independent trial w.p. p; of getting hashed into bucket i.

E = each of buckets 1 to k has = 1 string hashed into it.

What is P(E)?
Define  F; = bucket i has at

least one string in it
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The fun never stops with hash tables

m strings are hashed (unequally) into a hash table with n buckets.
Each string hashed is an independent trial w.p. p; of getting hashed into bucket i.

E = each of buckets 1 to k has = 1 string hashed into it.

What is P(E)?
Define  F; = bucket i has at

P(E) = p(Fle Fk) least one string in it
=1-— P((F1F2 Fk)C) Complement
= 1—P(F16UF2CU-~UFRC) De Morgan’s Law
=1-P (igl Fic) =1- 21@=1(_1)(r+1) Zil<---<i,~P(Ficll:'ic2 Fii)
where P(FEF{ .. FE ) = (1 —pi, — Pipe =01, )™
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Today's plan

=) Conditional independence (if time)
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Conditional Paradigm

For any events A, B, and E, you can condition consistently on E,
and all formulas still hold:

Axiom 1 0<P(AlE) <1
Corollary 1 (complement) P(AIE) =1 - P(AC|E)
Commutativity P(AB|E) = P(BA|E)
Chain Rule P(AB|E) = P(B|E)P(A|BE)
P(B|AE)P(A|E)
Bayes’ Theorem P(A|BE) = P(BIE)
A and B
Independence relationships - AandB | does NOT always | jndependent
can change with conditioning. [ 'ndependent mean given E.
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. . Independent P(EF) = P(E)P(F)
Conditional Independence events E and F P(EIF) = P(E)

Two events A and B are defined as conditionally independent given E if:
P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A. P(A|B) = P(A)
B. P(A|BE) = P(A)
C. P(A|BE) = P(A|E)
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Netflix and Condition

Let E = a user watches Life is Beautiful.
Let F = a user watches Amelie.
What is P(E)?

# people who have watched movie _ 10,234,231 ~
# people on Netflix 50,923,123

P(E) =

What is the probability that a user watches
Life is Beautiful, given they watched Amelie?

P(EF) _ # people who have watched both
P(F)  # people who have watched Amelie

P(E|F) = ~ 0.42
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Netflix and Condition Review

Let £ be the event that a user watches the given movie.
Let FF be the event that the same user watches Amelie.

NETFLIX

& ~ ~ ~.: 2

— Ldlov‘s

P(E)=0.19  P(E) =0.32 P(E) =020 | P(E)=009 P(E)=0.20
P(E|F) =0.14 P(E|F)=035 |P(E|F)=020) P(E|F)=0.72 P(E|F) = 0.42
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Netflix and Condition

Watched:

Es

What if E{E,E3E, are not independent? (e.g., all international emotional comedies)

# people who have watched all 4

P(E1E2E3E4) # people on Netflix
# people who have watched those 3
P(E,E,E3) i _
# people on Netflix

P(E4|E1E253) —
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Netflix and Condition

K: likes international emotional comedies

Watched:

What if E1E,E5E, are conditionally independent K?

P(E4|E1E2E3K) = P(E4|K)
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Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of
decomposing hard probability guestions.

“Exploiting conditional independence to generate fast
probabilistic computations is one of the main

contributions CS has made to probability theory.”

—Judea Pearl wins 2011 Turing Award,
“For fundamental contributions to artificial intelligence
through the development of a calculus for probabilistic and causal reasoning”
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Netflix and Condition

K: likes international emotional comedies

NAIRGBI HALF LIFE

y W

i i MRS
# R W)
3 idiots T¢I

Pl

E,E,E3E, are E, E,E;E, are
dependent conditionally independent
given K

Dependent events can become

conditionally independent.
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