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Probability of events

/ De Morgan’s N
e -
Mutually
exclusive? \ndependeﬂt?
Inclusion-
Just add! Exclusion Just multiply! Chain Rule
Principle P(E)P(F|E)
P(E)+ P(F)—P(ENF
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Hash table fun

m strings are hashed (unequally) into a hash table with n buckets.
Each string hashed is an independent trial w.p. p; of getting hashed into bucket i.

E =Dbucket 1 has = 1 string hashed into it.

: Define S; =string i is
f? l
What is P(E) hashed into bucket 1

S§ = string i is not

hashed into bucket 1
P(E)=P(S5;US,U--US,)

=1-— P((51 usS,u--u Sm)c) Complement P(S;) = ps
=1-— P(SlcSZC S,%) De Morgan’s Law PE) =1-p
=1—-P(SF)P(S5) - P(S5) =1— (P(Sf))m S; independent trials
=1-1Q-p)™
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The fun never stops with hash tables

m strings are hashed (unequally) into a hash table with n buckets.
Each string hashed is an independent trial w.p. p; of getting hashed into bucket i.

E = each of buckets 1 to k has = 1 string hashed into it.

What is P(E)?
Define  F; = bucket i has at

least one string in it
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The fun never stops with hash tables

m strings are hashed (unequally) into a hash table with n buckets.
Each string hashed is an independent trial w.p. p; of getting hashed into bucket i.

E = each of buckets 1 to k has = 1 string hashed into it.

What is P(E)?
Define  F; = bucket i has at

P(E) = p(Fle Fk) least one string in it
=1-— P((F1F2 Fk)C) Complement
= 1—P(F16UF2CU-~UFRC) De Morgan’s Law
=1-P (igl Fic) =1- 21@=1(_1)(r+1) Zil<---<i,~P(Ficll:'ic2 Fii)
where P(FEF{ .. FE ) = (1 —pi, — Pipe =01, )™
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Today’s plan

=) Conditional Independence
Random Variables

PMFs and CDFs

Expectation
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Conditional Paradigm

For any events A, B, and E, you can condition consistently on E,
and all formulas still hold:

Axiom 1

Corollary 1 (complement)
Commutativity

Chain Rule

Bayes’ Theorem

0<P(A|E) <1

P(A|E) =1—P(A“|E)
P(AB|E) = P(BA|E)

P(AB|E) = P(B

P(B
P(A|BE) =

E)P(A|BE)

AE)P(A|E)

P(B|E)
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. . Independent P(EF) = P(E)P(F)
Conditional Independence events E and F P(EIF) = P(E)

Two events A and B are defined as conditionally independent given E if:
P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A. P(A|B) = P(A)
B. P(A|BE) = P(A)
C. P(A|BE) = P(A|E)
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Netflix and Condition

Let E = a user watches Life is Beautiful.
Let F = a user watches Amelie.
What is P(E)?

# people who have watched movie _ 10,234,231 ~
# people on Netflix 50,923,123

P(E) =

What is the probability that a user watches
Life is Beautiful, given they watched Amelie?

P(EF) _ # people who have watched both
P(F)  # people who have watched Amelie

P(E|F) = ~ 0.42
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Netflix and Condition Review

Let £ be the event that a user watches the given movie.
Let FF be the event that the same user watches Amelie.

NETFLIX

& ~ ~ ~.: 2

— Ldlov‘s

P(E)=0.19  P(E) =0.32 P(E) =020 | P(E)=009 P(E)=0.20
P(E|F) =0.14 P(E|F)=035 |P(E|F)=020) P(E|F)=0.72 P(E|F) = 0.42
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Netflix and Condition

Watched:

What if E{E,E3E, are not independent? (e.g., all international emotional comedies)

P(E{E;E3E,)
P(E{E;E53)

P(E4|E1E2E3) —
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Netflix and Condition

K: likes international emotional comedies

Watched:

What if E1E,E5E, are conditionally independent K?

P(E4|E1E2E3K) = P(E4|K)
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Netflix and Condition

K: likes international emotional comedies

NAIRGBI HALF LIFE

y W

i i MRS
# R W)
3 idiots T¢I

Pl

E,E,E3E, are E, E,E;E, are
dependent conditionally independent
given K

Dependent events can become

conditionally independent.
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. . Cond. independent P(EF|G) = P(E|G)P(F|G)
Not—so-mdependent dice E and F given G © P(E|FG) = P(E|G)

Roll two 6-sided dice, yielding values D; and D,.

LeteventE: D; =1
event F: D, =6

eventG: Dy +D, =7 G ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
1. Are E and F independent?
P(E)=1/6 P(F)=1/6 P(EF) =1/36

2. Are E and F independent given G?

Independent events can become

conditionally dependent.
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The beauty of conditional independence

Generalized Chain Rule:
P(E1E2E3 EnF) —
P(F)P(E1|F)P(E2|E1F)P(E3|E1E2F) ...P(En|E1E2 ...En_lF)

If £, E,, ..., E,, are all conditionally independent given F:
P(E1EE3 ... ExF) = P(F)P(E1|F)P(Ez|F) -+ P(Ey|F)

More on this in a future lecture!
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Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of
decomposing hard probability guestions.

“Exploiting conditional independence to generate fast
probabilistic computations is one of the main

contributions CS has made to probability theory.”

—Judea Pearl wins 2011 Turing Award,
“For fundamental contributions to artificial intelligence
through the development of a calculus for probabilistic and causal reasoning”

Independence relationships
can change with conditioning.

A and B
independent

does NOT
necessarily
mean

A and B
independent
given E.
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Today's plan

=> Random Variables
PMFs and CDFs

Expectation
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Random Variable

A random variable is a real-valued function defined on a sample space.

) Outcome > X =x

1. What is the value of X for the outcomes:
* (T,T,T)?

3 coins are flipped. © (HRAT)?
Let X = # of heads. 2. What is the event (set of outcomes) where X = 2?

X IS a random variable.

Example:

3. Whatis P(X = 2)?
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Random variables are NOT events!

It is confusing that random variables and events use the same notation.
Random variables # events.

We can define an event to be a particular assignment
of a random variable.

X=x PX=x) Setofoutcomes Possible event E
Example: X=0 1/8 {(T, T, T} Flip O heads
X=1 3/8 {(H, T, T), (T, H, T), .
| | (T.T. H)} Flip exactly 1 head
Let X = # of heads. (T, H, H)}
X Is arandom variable. X=3 1/8 {(H, H, H)} Flip O tails
X =4 0] {} Flip 4 or more heads
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Example random variable

Consider 5 flips of a coin which comes up heads with probability p.
Each coin flip is an independent trial.

Recall P(2 heads) = (;) p?(1 —p)3, P(3heads) = (g) p>(1—p)?

Let Y = # of heads on 5 flips.

What is the range of Y?
In other words, what are the values that Y
can take on with non-zero probability?

What is P(Y = k), where k is
in the range of Y?
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Today's plan

=> PMFs and CDFs

Expectation
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Probability Mass Function (PMF)

Y =2 P(Y = 2)

event probability
Y (number b/t 0 and 1)
random variable
(e.g., # of heads in variable
5 coin flips, <
unbiased coin) P(Y — k)

function on k with
range O and 1
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Discrete RVs and Probability Mass Functions

A random variable X is discrete if its range has countably many values.
* X = x, where x € {xq,x,, %3, ...}

The probability mass function (PMF) of a discrete random variable is
P(X = x) = p(x) = px(x)
\ Y ) \ Y )

shorthand notation

* Probabilities must sum to 1: z p(x;) =1
i=1

This last bullet is a good way to
verify any PMF you create.
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PMF for the sum of two dice

Let Y be a random variable that represents the sum of
two independent dice rolls.

6/36
Range of Y:{2,3,...,11,12} 5/36
,  4/36
y—1
—— YEL2<y<6 13/36
p(y) =1 ﬁ—;nyZJSySlZ & 2/36 ?
.0 otherwise 1/36 % / %
0
12 2 3 4 5 10 11 12

Check: z D(y) =
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Announcements

/Prob|em Set 1 \ /Problem Set 2 \
Due: an hour ago Out: today
On-time grades:  next Friday Due: Monday 1/27

i : i Covers: through toda

G:olutlons. next Frlday/ - g y/

Stanford University 26




Cumulative Distribution Functions

For a random variable X, the cumulative distribution function (CDF) is
defined as

F(a) =Fy(a) =P(X <a),where —0o<a< o
For a discrete RV X, the CDF is:

F@=PX<a)= ) pi)

all x<a
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CDF (cumulative

CDFsas graphs distribution function) © (@) = PX < a)

Let X be a random variable that
represents the result of a single

dice roll. CDF of X
1 -~ <
5/6 —
~ 46 — P(X<6)=1
S 3/6 —
Fx,
2/6 —
1/6 —_—
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Today's plan

™) Expectation
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Expectation

The expectation of a discrete random variable X is defined as:

* Note: sum over all values of X = x that have non-zero probability.

* Other names: mean, expected value, weighted average,
center of mass, first moment
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E[X] = Z p(x) - x Expectation

Expectation of a die roll of X

x:p(x)>0

What is the expected value of a 6-sided die roll?

1. Define random X = RV for value of roll
variables
1/6 x€({1,..,6)
P(X =x) = ’
( x) { 0 otherwise

2. Solve

s ()55 +0) <) <)
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Lying with statistics

“There are three kinds of lies:
lies, damned lies, and statistics”
—popularized by Mark Twain, 1906

Stanford University
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Lying with statistics

A school has 3 classes with 5, 10, and 150 students.
What is the average class size?
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Lying with statistics

A school has 3 classes with 5, 10, and 150 students.
What is the average class size?

Interpretation #1 Interpretation #2
Randomly choose a class Randomly choose a student
with equal probability. with equal probability.
X = size of chosen class Y = size of chosen class
1 1 1 E[Y
=5—|+10(— |+ 150 —
165 165 165 165
=3 =90 22635

~

165
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Important properties of expectation

1. Linearity:
ElaX + bl = aE|X]|+ b

2. Expectation of a sum = sum of expectation:

ElX+Y]|=E[X]|+E|Y]

3. Law of the unconscious statistician (LOTUS):

Elg00] = ) g@p)

 Let X = 6-sided dice roll,

Y =2X —1.
. E[X] = 3.5
- E[Y]=6

Sum of two dice rolls:
* Let X =roll of die 1
Y = roll of die 2
- E[X+Y]=354+35=7
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Elg(0] = ) gGop(x) Expectation

Being a statistician unconsciously of g(X)

Let X be a discrete random variable.
P(X = x) = %forx € {—1,0,1)

Let Y = |X|. What is E[Y]?
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