# o6: Random Variables

David Varodayan January 17, 2020 Adapted from slides by Lisa Yan

#### Probability of events



Stanford University 2

#### Hash table fun

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p.  $p_i$  of getting hashed into bucket i.
- 1. E = bucket 1 has  $\geq 1$  string hashed into it.



#### The fun never stops with hash tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p.  $p_i$  of getting hashed into bucket i.
- 1. E = bucket 1 has  $\geq$  1 string hashed into it.2. E = at least 1 of buckets 1 to k has  $\geq$  1 string hashed into it.3. E = each of buckets 1 to k has  $\geq$  1 string hashed into it.What is P(E)?

Define  $F_i$  = bucket *i* has at least one string in it

#### The fun never stops with hash tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p.  $p_i$  of getting hashed into bucket i.

1. E = bucket 1 has  $\ge 1$  string hashed into it. 2. E = at least 1 of buckets 1 to k has  $\ge 1$  string hashed into it. 3. E = each of buckets 1 to k has  $\ge 1$  string hashed into it. What is P(E)?

$$P(E) = P(F_1F_2 \cdots F_k)$$
  

$$= 1 - P((F_1F_2 \cdots F_k)^C)$$
 Complement  

$$= 1 - P(F_1^C \cup F_2^C \cup \cdots \cup F_k^C)$$
 De Morgan's Law  

$$= 1 - P\left(\bigcup_{i=1}^k F_i^c\right) = 1 - \sum_{r=1}^k (-1)^{(r+1)} \sum_{i_1 < \cdots < i_r} P\left(F_{i_1}^c F_{i_2}^c \ldots F_{i_r}^c\right)$$
  
where  $P\left(F_{i_1}^c F_{i_2}^c \ldots F_{i_r}^c\right) = (1 - p_{i_1} - p_{i_2} \ldots - p_{i_r})^m$ 

Conditional Independence

**Random Variables** 

PMFs and CDFs

Expectation

## **Conditional Paradigm**

For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

Axiom 1 Corollary 1 (complement) Commutativity Chain Rule

Bayes' Theorem

 $0 \le P(A|E) \le 1$   $P(A|E) = 1 - P(A^{C}|E)$  P(AB|E) = P(BA|E)P(AB|E) = P(B|E)P(A|BE)

$$P(A|BE) = \frac{P(B|AE)P(A|E)}{P(B|E)}$$

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

#### Two events *A* and *B* are defined as <u>conditionally independent given *E*</u> if: P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A. P(A|B) = P(A)B. P(A|BE) = P(A)C. P(A|BE) = P(A|E)

Let E = a user watches Life is Beautiful. Let F = a user watches Amelie. What is P(E)?  $P(E) \approx \frac{\# \text{ people who have watched movie}}{\# \text{ people on Netflix}} = \frac{10,234,231}{50,923,123} \approx 0.20$ 

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

 $P(E|F) = \frac{P(EF)}{P(F)} = \frac{\# \text{ people who have watched both}}{\# \text{ people who have watched Amelie}} \approx 0.42$ 

Let *E* be the event that a user watches the given movie. Let *F* be the event that the same user watches Amelie.

| <image/>      |               |               | ARUKUMAR HIRANI FÅN<br>BLALDADARA PORTARIO<br>A VDRIV VINOD CHORRA Portario |                        |
|---------------|---------------|---------------|-----------------------------------------------------------------------------|------------------------|
| P(E) = 0.19   | P(E) = 0.32   | P(E) = 0.20   | P(E) = 0.09                                                                 | P(E) = 0.20            |
| P(E F) = 0.14 | P(E F) = 0.35 | P(E F) = 0.20 | P(E F) = 0.72                                                               | P(E F) = 0.42          |
|               |               | Independent!  |                                                                             | Stanford University 10 |

INREY TAUTOR



What if  $E_1E_2E_3E_4$  are not independent? (e.g., all international emotional comedies)

$$P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)}$$



$$P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)} \qquad I$$

$$P(E_4|E_1E_2E_3K) = P(E_4|K)$$



 $E_1E_2E_3E_4$  are dependent

#### $E_1E_2E_3E_4$ are conditionally independent given K

Dependent events can become conditionally independent. Stanford University 13 Roll two 6-sided dice, yielding values  $D_1$  and  $D_2$ .

- Let event *E*:  $D_1 = 1$ event F:  $D_2 = 6$ event *G*:  $D_1 + D_2 = 7$
- **1.** Are *E* and *F* independent?
  - P(E) = 1/6P(F) = 1/6P(EF) = 1/36
- 2. Are *E* and *F* independent given *G*?



P(EF|G) = P(E|G)P(F|G)P(E|FG) = P(E|G)

 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$ 

*E* and *F* given *G* 



Generalized Chain Rule:  $P(E_1E_2E_3 ... E_nF) =$  $P(F)P(E_1|F)P(E_2|E_1F)P(E_3|E_1E_2F) ... P(E_n|E_1E_2 ... E_{n-1}F)$ 

If  $E_1, E_2, \dots, E_n$  are all <u>conditionally independent</u> given F:  $P(E_1E_2E_3 \dots E_nF) = P(F)P(E_1|F)P(E_2|F) \cdots P(E_n|F)$ 

More on this in a future lecture!

Stanford University 15

### Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of decomposing hard probability questions.

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory."

> –Judea Pearl wins 2011 Turing Award, "For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

Independence relationships can change with conditioning.

A and B<br/>independentdoes NOT<br/>necessarily<br/>meanA and B<br/>independent<br/>given E.Stanford University

**Conditional Independence** 

Random Variables

PMFs and CDFs

Expectation

#### Random Variable

A random variable is a real-valued function defined on a sample space.



Example:

3 coins are flipped. Let X = # of heads. X is a random variable.

- **1**. What is the value of *X* for the outcomes:
- (T,T,T)?
- (H,H,T)?
- 2. What is the event (set of outcomes) where X = 2?

3. What is P(X = 2)?

#### Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.

- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable.

|                                               | X = x        | P(X=x) | Set of outcomes                      | Possible event E        |
|-----------------------------------------------|--------------|--------|--------------------------------------|-------------------------|
| Example:                                      | X = <b>0</b> | 1/8    | {(T, T, T)}                          | Flip 0 heads            |
|                                               | X = <b>1</b> | 3/8    | {(H, T, T), (T, H, T),<br>(T, T, H)} | Flip exactly 1 head     |
| 3 coins are flipped.<br>Let $X = #$ of heads. | X = 2        | 3/8    | {(H, H, T), (H, T, H),<br>(T, H, H)} | The event where $X = 2$ |
| X is a random variable.                       | X = <b>3</b> | 1/8    | {(H, H, H)}                          | Flip 0 tails            |
|                                               | $X \ge 4$    | 0      | { }                                  | Flip 4 or more heads    |

#### Example random variable

Consider 5 flips of a coin which comes up heads with probability p.

- Each coin flip is an independent trial.
- Recall  $P(2 \text{ heads}) = {5 \choose 2} p^2 (1-p)^3$ ,  $P(3 \text{ heads}) = {5 \choose 3} p^3 (1-p)^2$
- Let Y = # of heads on 5 flips.
- 1. What is the range of *Y*? In other words, what are the values that *Y* can take on with non-zero probability?
- 2. What is P(Y = k), where k is in the range of Y?

**Conditional Independence** 

**Random Variables** 



Expectation

Stanford University 21

#### Probability Mass Function (PMF)



Y = 2

event

P(Y = 2)

probability (number b/t 0 and 1)

P(Y = k)

function on k with range 0 and 1

#### Discrete RVs and Probability Mass Functions

A random variable X is discrete if its range has countably many values. • X = x, where  $x \in \{x_1, x_2, x_3, ...\}$ 

The probability mass function (PMF) of a discrete random variable is

 $\sim$ 

$$P(X = x) = p(x) = p_X(x)$$

shorthand notation

Probabilities must sum to 1:

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

This last bullet is a good way to verify any PMF you create.

Stanford University 23

Let *X* be a random variable that represents the result of a single dice roll.

- Range of X : {1, 2, 3, 4, 5, 6}
- Therefore *X* is a discrete random variable.

• PMF of X:  $p(x) = \begin{cases} 1/6 & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$ 





Stanford University 25

Check:

# Range of *Y*: {2, 3, ..., 11, 12}

$$p(y) = \begin{cases} \frac{y-1}{36} & y \in \mathbb{Z}, 2 \le y \le 6\\ \frac{13-y}{36} & y \in \mathbb{Z}, 7 \le y \le 12\\ 0 & \text{otherwise} \end{cases}$$

12

Let *Y* be a random variable that represents the sum of two independent dice rolls.





| Prob | lem | Set | 1 |
|------|-----|-----|---|
|      |     |     | _ |

Due:an hour agoOn-time grades:next FridaySolutions:next Friday

Problem Set 2

Out: Due: Covers: today Monday 1/27 through today For a random variable *X*, the cumulative distribution function (CDF) is defined as

$$F(a) = F_X(a) = P(X \le a)$$
, where  $-\infty < a < \infty$ 

For a discrete RV *X*, the CDF is:

$$F(a) = P(X \le a) = \sum_{\text{all } x \le a} p(x)$$

#### CDFs as graphs

CDF of X

Let *X* be a random variable that represents the result of a single dice roll.





Stanford University 28

**Conditional Independence** 

**Random Variables** 

PMFs and CDFs



Stanford University 29

#### Expectation

The expectation of a discrete random variable *X* is defined as:

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

- Note: sum over all values of X = x that have non-zero probability.
- Other names: mean, expected value, weighted average, center of mass, first moment





What is the expected value of a 6-sided die roll?

1. Define random variables

$$X = RV$$
 for value of roll

$$P(X = x) = \begin{cases} 1/6 & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$$

2. Solve

$$E[X] = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{7}{2}$$

### Lying with statistics

#### "There are three kinds of lies: lies, damned lies, and statistics" –popularized by Mark Twain, 1906



#### Lying with statistics



A school has 3 classes with 5, 10, and 150 students. What is the average class size?

#### Lying with statistics



A school has 3 classes with 5, 10, and 150 students. What is the average class size?

- **1.** Interpretation #1
- Randomly choose a <u>class</u> with equal probability.
- X =size of chosen class

$$E[X] = 5\left(\frac{1}{3}\right) + 10\left(\frac{1}{3}\right) + 150\left(\frac{1}{3}\right)$$
$$= \frac{165}{3} = 55$$

- 2. Interpretation #2
- Randomly choose a <u>student</u> with equal probability.

• 
$$Y =$$
 size of chosen class

$$E[Y] = 5\left(\frac{5}{165}\right) + 10\left(\frac{10}{165}\right) + 150\left(\frac{150}{165}\right) = \frac{22635}{165} \approx 137$$

#### Important properties of expectation

1. Linearity:

$$E[aX + b] = aE[X] + b$$

2. Expectation of a sum = sum of expectation: E[X + Y] = E[X] + E[Y]

- Let X = 6-sided dice roll, Y = 2X - 1.
- E[X] = 3.5• E[Y] = 6

Sum of two dice rolls:

Let X = roll of die 1 Y = roll of die 2

• 
$$E[X + Y] = 3.5 + 3.5 = 7$$

3. Law of the unconscious statistician (LOTUS):

$$E[g(X)] = \sum_{x} g(x)p(x)$$

#### Being a statistician unconsciously

Let *X* be a discrete random variable.

• 
$$P(X = x) = \frac{1}{3}$$
 for  $x \in \{-1, 0, 1\}$ 

Let Y = |X|. What is E[Y]?

Expectation

of g(X)

 $E[g(X)] = \sum g(x)p(x)$