07: Variance,
Bernoulli, Binomial

Adapted from slides by Lisa Yan




Discrete random variables Review

Experiment
outcomes

Note: Random Variables
also called distributions

Discrete
Random
Variable, X
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Review

Sum of 2 dice rolls

Sum of 2 dice rolls

2 3 4 5 6 7 8 9 10 11 12

Discrete
Random
Variable, X
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Important properties of expectation

1. Linearity:
ElaX + bl = aE|X]|+ b

2. Expectation of a sum = sum of expectation:

ElX+Y]|=E[X]|+E|Y]

3. Law of the unconscious statistician (LOTUS):

Elg00] = ) g@p)

 Let X = 6-sided dice roll,

Y =2X —1.
. E[X] = 3.5
- E[Y]=6

Sum of two dice rolls:
* Let X =roll of die 1
Y = roll of die 2
- E[X+Y]=354+35=7

These properties let you avoid
defining difficult PMFs.
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Elg(0] = ) gGop(x) Expectation

Being a statistician unconsciously of g(X)

Let X be a discrete random variable.
P(X = x) = %forx € {—1,0,1)

Let Y = |X|. What is E[Y]?
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Today's plan

=) Variance
Bernoulli (Indicator) RVs

Binomial RVs
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Average annual weather

Stanford, CA
Elhigh] = 68°F
Ellow] = 52°F

Washington, DC
Elhigh] = 67°F
Ellow] = 51°F
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Is E|X] enough?
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Average annual weather

Stanford, CA
Elhigh] = 68°F

Stanford high temps

0.4 -
68°F
~ 0.3 -
><
Il 9o -
o
AL 0.1 -
0 — 1
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P(X =x)

0.4
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0.2

0.1

Washington, DC
Elhigh] = 67°F

Washington high temps

67°F

35

50 65 80 90
Normalized histograms are

approximations of PMFs.
Stanford University s



Variance = “spread”

Consider the following three distributions (PMFs):

0.6 0.6 0.6
04 04 04
0.2 - 0.2 II:I:II 02 -
ALERLT T, .
1 5 1 2 3 4 5 1 2 3 4 5

- Expectation:  E|[X] = 3 for all distributions
* But the “spread” in the distributions is different!
» Variance, Var(X) : a formal quantification of “spread”
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Variance

The variance of a random variable X with mean E[X] = u is

Var(X) = E[(X — p)?]

Also written as: E[(X — E[X])?]
Note: Var(X) =0
Other names: 2" central moment, or square of the standard deviation

An easier way to compute variance: Var(X) = E[X?] — (E[X])?

we’ll come
back to this
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. _ _ Variance
Variance of Stanford weather terd) = Blec=BEDA) -

Stanford, CA
Elhigh] = 68°F

X (X — 1)?
| 57°F 124 (°F)2
o Stanford high temps 71°F 9 (°F)2
5 ElX] = = 68 75°F 49 (°FP
2 0.3 1 69°F 1 (°F)2
Il 9o -
e
AL 0.1 1 .
Variance E[(X — u)?] = 39 (°F)?
0 — I
35 50 65 80 90 Standard deviation =06.2°F
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Var(X) = E[(X — E[X])z] Variance

Comparing variance of X
Stanford, CA Washington, DC
Elhigh] = 68°F Elhigh] = 67°F
Stanford high temps Washington high temps
0.4 - 0.4 -
68°F 67°F
~ 0.3 - ~ 0.3 -
= =
I 0.2 - I 0.2 -
= =
A, 0.1 - AL 0.1 -
ol e 0
35 50 65 80 90 35 50 65 80 90

Var(X) = 39 (°F)?

Var(X) = 248 (°F)?
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. . Var(X) = E[(X — E[X])?] Variance
Computing variance, a proof — E[X2] —(E[X])? Of X

Var(X) = E[(X — E[X])?] = E[(X — w)*] Let E[X] = u

=) (-

= Z(x2 — 2ux + p?)p(x)

= z x*p(x) — Z,uZ xp(x) + p? Z p(x)

Everyone, X
please _ rrv2a2il _ 2
welcome the X2 = 2uE[X] + p“-1
second — ‘XZ‘ _ Z,Ltz + ,LLZ
moment! : :
— _XZ_ _ 'u2
= E[X*] — (E[X])?
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. . . Var(X) = E[(X — E[X])?] Variance
Variance of a 6-sided die — E[X2] —(E[X])2 of X

Let Y = outcome of a single die roll. Recall E|Y] =7/2.
Calculate the variance of Y.

1. Approach #1: Definition 2. Approach #2: A property
Var(Y) = 1<1 —Z)Z +1(2 —Z)Z E[Y?] = %[12 +22 + 32 + 42 + 52 + 6?]
° - 2 ° - 2 =91/6
1 7 1 7
TR
(1) +x(s-2) (1) = 91/6 — (72
6 2 6 2

= 35/12 = 35/12

Stanford University 14



Properties of variance

Definition Var(X) = E[(X — E[X])?] Units of X2
def standard deviation SD(X) = +/Var(X) Units of X

Often easier to compute
PrOperty 1 Var(X) — E[XZ] _(E [X])Z than definition.
Property 2 Var(aX + b) = a*Var(X) Unlike expectation,

variance is NOT linear!!
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Properties of variance

Property 2 Var(aX + b) = a*Var(X) Unlike expectation,
variance is NOT linear!!
Proof: Var(aX + b)
= E[(aX + b)?] — (E[aX + b])? Property 1
= E[a?X? + 2abX + b?] — (aE[X] + b)? Factoring/
= a’E[X?] + 2abE[X] + b? — (a*(E[X])? + 2abE[X] + b?) [ Linearity of
Expectation

— @?E[X?] - ?(E[X])
= a’(E[X?] — (E[X]D?)
= a*Var(X) Property 1
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Discrete random variables

Experiment
outcomes

Note: PMF also called
P(X =x) =p(x) “probability distribution”

Discrete
Random
Variable, X

S SD(X)
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Today's plan

=) Bernoulli (Indicator) RVs

Binomial RVs
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Bernoulli Random Variable

Consider an experiment with two outcomes: “success” and “failure.”

def A Bernoulli random variable X maps “success” to 1 and “failure” to O.
Other names: indicator random variable, boolean random variable

PMF PX=1)=p(1)=p
X~Ber(p) PX=0)=p(0)=1-p
Expectation E[X] =P
Range: {0,1} Variance Var(X) = p(1 — p)
Examples:

Coin flip _ . Bernoulli/indicator RVs are

Random binary digit often used for this nice

Whether a disk drive crashed property of expectation.
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Defining Bernoulli RVs

X~Ber(p) px(1)=p
E[X]=p px(0)=1-p

Run a program

¢ Crashes w.p. p
* Worksw.p.1—p

Let X: 1 if crash

X~Ber(p)
PX=1)=p
PX=0)=1-p

Serve an ad.

* Clicked w.p. p
* Ignoredw.p.1—p

Let X: 1 if clicked

X~Ber(p)
PX=1)=p
PX=0)=1-p

Roll two dice.

* Success: roll two 6’s
* Failure: anything else

Let X : 1 if success

X~Ber(p)
P(X=1)=

Stanford University 20



Announcements

/Problem Set 2 A
Out: last Friday
Due: Monday 1/27
Covers: through last Frida

\ & Y

/Section Resources \

Handout (and python notebook):
posted Monday/Tuesday

Solutions:
\ posted Friday evening/
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Today's plan

=) Binomial RVs
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Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables.
def A Binomial random variable X is the number of successes in n trials.

PMF k=0,1,.,n
X~Bin(n, p) PO = 1) = p(k) = (1) p*(1 - pyn
Expectation E|[X]| = np
Range: {0,1, ..., n} Variance Var(X) = np(1 — p)

Examples:
# heads in n coin flips
# of 1’s in randomly generated length n bit string By Binomial Theorem,
# of disk drives crashed in 1000 computer cluster we can prove
(assuming disks crash independently) Y PX=k)=1
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Reiterating notation

1. The random
variable

X ~ Bin(n, p)
3. Binomial @hparam@

2. is distributed

dasS da

The parameters of a Binomial random variable:
* n: number of independent trials

* p: probability of success on each trial
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Reiterating notation

X ~Bin(n,p)

If X is a binomial with parameters n and p, the PMF of X is

n
PX=k)=(,)p"Q-p)""
k
\ } \ }
| |
Probability that X Probability Mass Function for a Binomial

takes on the value k
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Three coin tlips X~Bin(n,p) p(k) = (7)p*( - p)"*

Three fair (“heads” with p = 0.5) coins are flipped.
X is number of heads

X~Bin(3,0.5)
Compute the following event probabilities:
P(X = 0)
P(X =1)
P(X =2)
P(X =3)
P(X =7)

P(eve nt) PMF Stanford University 26




Three coin tlips X~Bin(n,p) p(k) = (7)p*( - p)"*

Three fair (“heads” with p = 0.5) coins are flipped.
X is number of heads

X~Bin(3,0.5)
Compute the following event probabilities:
P(x=0) =p0) = (g) p°(1-p)3 = %
PX=1) =p() =C)pra-p? =3
PX=2) =p2) = (2) p2(1 —p)t = %
PX=3) =p(3) - (g) p(1—p)° =
PX=7) =p) =0

P(eve nt) PMF Stanford University 27




Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials
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Binomial RV is sum of Bernoulli RVs

Bernoulli

» X~Ber(p)

Binomial n

. Y~Bin(n, p) Y= X,
* The sum of n independent t=1

Bernoulli RVs

X; ~Ber(p)

Ber(p) = Bin(1, p)
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Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials.

Expectation E[X] = np
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Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials

Variance Var(X) = np(1 — p) %
We'll prove

this later In
the course
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Galton Board X~Bin(n,p) p(k) = (;)p* 1~ p)"*
A O Let B = the bucket index a ball drops into.
B is distributed as a Binomial RV,
B~Bin(n = 5,p = 0.5)
n =& If B is a sum of Bernoulli RVs,
what defines the ith trial, R;?
\ 4
http://web.stanford.edu/class/cs109/
0] 1 demos/galton.html
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Galton Board

X~Bin(n,p) p(k) = () p*(1 —p)"*

Let B = the bucket index a ball drops into.
B is distributed as a Binomial RV,
B~Bin(n = 5,p = 0.5)

If B is a sum of Bernoulli RVs,
what defines the ith trial, R;?

When a marble hits a pin, it has an equal
chance of going left or right

Each pin is an independent trial

One decision made for level i = 1,2,..,5
R; = 1 if ball went right on level i

Bucket index B = # times ball went right
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Galton Board x~Bin(n,p) p(k) = () p (L~ p)n*

O Let B = the bucket index a ball drops into.
B is distributed as a Binomial RV,
B~Bin(n = 5,p = 0.5)

Calculate the probability of a ball landing in

bucket k.
P(B=0) = ((5)) 0.5° = 0.03
P(B=1) = G) 0.55 ~ 0.16
oy O 5
P(B =2) = (2) 0.55 ~ 0.31

0 1 2 3 4 3)
PMF of Binomial RV! Stanford University 34




E[X] =np
Visualizing Binomial PMFs X~Bin(n,p) p® = () p*( - p)"*

012345678910
k

C. 03 -
Match the distribution =

: |
to the graph: <01 |

\—/

1. Bin(10,0.5) m
2. Bin(10,0.3)
3. Bin(10,0.7)
4. Bin(5,0.5)

&)
N

V““ | E—
01 2 3 456 7 8 910

k
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NBA Finals x~Bin(n,p) pk) = (7)p*(1 - p)*

Let’s say the Golden State Warriors are going to play the Toronto Raptors in
a 7-game series during the 2020 NBA finals.

* The Warriors have a probability of 58% of
winning each game, independently.

* Ateam wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?

1. Define events/ — Desired probability? (select all that apply)
RVs & state goal A. P(X>4)
X: # games Warriors win B P(X = 4)
X~Bin(7,0.58) C. P(X>3)
D. 1-P(X<3)
Want: £ 1—-P(X <3)
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NBA Finals X~Bin(n,p) p(k) = (7)p*(1 - p)*

Let’s say the Golden State Warriors are going to play the Toronto Raptors in
a 7-game series during the 2020 NBA finals.

The Warriors have a probability of 58% of
winning each game, independently.

A team wins the series if they win at least 4 games
(we play all 7 games).

What is P(Warriors winning)?
Solve

PX24)=» PX=k = » (/)0.58%(0.42)"*
=9=), 2. (i)

Want: P(X = 4) Cool Algebra/Probability Fact: this is identical to the probability

of winning if we define winning = first to win 4 games
Stanford University 37
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