o9: Continuous RVs

David Varodayan

January 27, 2020

Adapted from slides by Lisa Yan

Grid of random variables

	Number of successes	Time until success	
One trial	Ber(p)	Geo(p)	One success
Several trials	n = 1 Bin(n, p)	r = 1 NegBin(r, p)	Several successes
Interval of time	Poi(λ)	Today!	Interval of time to first success

Kickboxing with RVs

How would you model the following?

- **1.** *#* of snapchats you receive in a day
- 2. # of children until the first one with brown eyes
- 3. Whether stock went up or down
- 4. # of probability problems you try until you get 5 correct (if you are randomly correct)
- 5. # of years in some decade with more than 6 Atlantic hurricanes

Choose from:C. $Poi(\lambda)$ A.Ber(p)D.Geo(p)B.Bin(n,p)E.NegBin(r,p)

Berghuis v. Smith (2010)

If a group is underrepresented in a jury pool, how do you tell?

- Article by Erin Miller Friday, January 22, 2010
- Thanks to (former CS109er) Josh Falk for this article

Justice Breyer [Stanford Alum] opened the questioning by invoking the binomial theorem. He hypothesized a scenario involving **"an urn with a thousand balls, and sixty are red, and nine hundred forty are black, and then you select them at random... twelve at a time."** According to Justice Breyer and the binomial theorem, if the red balls were black jurors then **"you would expect... something like** <u>a third to a half</u> of juries would have at least one black person" on them.

Justice Scalia's rejoinder: "We don't have any urns here."

Review

Approximation using the Binomial distribution (even though it's not)

- Urn with 1000 balls, 60 red, 940 black.
- Assume each draw happens with replacement: $P(draw red) = \frac{60}{1000}$
- 12 independent trials

What is $P(\geq 1 \text{ red ball drawn})$?

1. Define events/
RVs & state goal2. Solve

X~Bin(12,60/1000) $P(X \ge 1) = 1 - P(X = 0)$ ≈ 1 - 0.4769 = 0.5240 Want: $P(X \ge 1)$

> In Breyer's description, you should actually expect just <u>over</u> <u>half</u> of juries to have ≥ 1 non-white person in them.

> > <u>demo</u>

CS109 Learning Goal: Use new RVs

Review

Let's say you are learning about servers/networks.

You read about the M/D/1 queue:

"The service time busy period is distributed as a Borel with parameter $\mu = 0.2$."

Goal: You can recognize terminology and understand experiment setup.

🖲 🔍 👿 🛛 W Borel di	stribution - Wikipedia 🗙 🕂						
\leftrightarrow \rightarrow C \square en	.wikipedia.org/wiki/Borel_distribution			<u>6</u> 2	☆	Incognito	🖨 :
Beer as		💄 Not	logged	in Talk Contrib	utions	Create account	Log in
	Article Talk	Read	Edit	View history	Sear	rch Wikipedia	Q
WIKIPEDIA The Free Encyclopedia	Borel distribution						
Main page	The Borel distribution is a discrete	Borel distribution					
Contents Featured content Current events Random article Donate to Wikipedia	probability distribution, arising in contexts	Parameters $\mu \in [0,1]$					
	queueing theory. It is named after the	Supp	ort	$n \in \{$	[1, 2, 3]	3,}	
	French mathematician Émile Borel.		pmf $\frac{e^{-\mu n}(\mu n)^{n-1}}{n!}$				
Wikipedia store	If the number of offspring that an organism has is Poisson-distributed, and if the		Mean $\frac{1}{1-\mu}$				
Help average number of offspring of each		Variance $\frac{\mu}{(1-\mu)^3}$					
About Wikipedia Community portal Recent changes Contact page	descendants of each individual will ultimately become extinct. The number of de situation is a random variable distributed act	$(1 - \mu)^{-}$ escendants that an individual ultimately has in that cording to a Borel distribution.					
Tools	Contents [hide]						
What links here	1 Definition						
Related changes	2 Derivation and branching process interpret	ation					
Special pages	3 Queueing theory interpretation						
Permanent link	4 Properties						
Page information Wikidata item	6 References						
Cite this page	7 External links						
Print/export							
Create a book	Definition [edit] A discrete random variable X is said to have a Borel distribution ^{[1][2]} with parameter $\mu \in [0,1]$ if the probability mass function of X is given by						
Printable version						l] if	
Languages 🔅 Português	$P_\mu(n)=\Pr(X=n)=rac{e^{-\mu n}(\mu n)^{n-1}}{n!}$						
	for <i>n</i> = 1, 2, 3						

Continuous RVs

Uniform RV

Exponential RV

CDFs in detail

Stanford University 7

Not all values are discrete

import numpy as np
np.random.random()

People heights

You are volunteering at the local elementary school.

- You are excited to get the perfect Halloween costume for your new 6th grade buddy, Jordan.
- However, you don't know exactly how tall Jordan is.
- What is the probability that your buddy is 54.0923857234 inches tall? Essentially 0
- 2. What is the probability that your buddy is between 52-56 inches tall?

Continuous RV definition

A random variable X is continuous if there is a function $f(x) \ge 0$ such that for $-\infty < x < \infty$:

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

The function *f* is a probability density function (PDF) if:

$$P(-\infty \le X \le \infty) = \int_{-\infty}^{\infty} f(x) \, dx = 1$$

support: set of xwhere f(x) > 0

- Often written as: $f_X(x)$
- Units: probability per units of X
- f(x) is <u>not a probability</u>. Integrate to get probabilities.

Today's main takeaway

What do you get if you integrate over a probability density function (PDF)?

PDF Properties

For a continuous RV X with PDF f,

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

True/False:

In the graphed PDF above,

1. $P(x_1 \le X \le x_2) > P(x_2 \le X \le x_3)$

2. P(X = c) = 0

- 3. $P(a \le X \le b) = P(a < X < b)$
- 4. f(x) is a probability

f(x) is <u>NOT</u> a probability

Which of the following functions are valid PDFs?

Consider a random 5000x5000 matrix, where each element in the matrix is Uniform(0,1). What is the probability that a selected eigenvalue (λ) of the matrix is greater than 0?*

* With help from Wigner's Semicircle Law, David is going to rephrase this problem.

$$P(X > 0) = \int_0^{100} f(x) dx$$

What is P(X > 0)? $P(\lambda)$ 1. Approach 1 2. Approach 2 0.006 Integrate over PDF Simulate + discrete 0.005 0.004 approximation 0.003 100 0.002 $P(X > 0) = \int_{0}^{100} f(x) dx \qquad P(X > 0) \approx \sum_{k=1}^{100} P(X = k)$ 0.001 -5050 100

Another example

Let *X* be a continuous RV with PDF:

$$f_X(x) = \begin{cases} Cx & \text{if } 0 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

What is the constant *C* that makes *f* a valid PDF?

A. Know triangles and
$$y = mx + b$$

B. Solve for C:
$$\int_{-\infty}^{\infty} f(x) dx = C \int_{0}^{3} x dx = 0$$

C. Solve for
$$C: \int_{-\infty}^{\infty} f(x) dx = C \int_{0}^{3} x dx = 1$$

- D. f(x) is <u>not</u> a probability
- E. None/other

Another example

Let *X* be a continuous RV with PDF:

$$f_X(x) = \begin{cases} Cx & \text{if } 0 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

What is the constant *C* that makes *f* a valid PDF?

C. Solve for
$$\int_{-\infty}^{\infty} f(x) dx = C \int_{0}^{3} x dx = 1$$

$$C \int_{0}^{3} x \, dx = C \left(\frac{1}{2}x^{2}\right) \Big|_{0}^{3} = C \left(\frac{9}{2} - 0\right) = 1 \implies C = \frac{2}{9}$$

Continuous RVs

Exponential RV

CDFs in detail

Stanford University 20

Uniform Random Variable

<u>def</u> A Uniform random variable *X* is defined as follows:

PDF
$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha \le x \le \beta \\ 0 & \text{otherwise} \end{cases}$$
Support: $[\alpha, \beta]$ Expectation $E[X] = \frac{\alpha + \beta}{2}$
(sometimes defined over (α, β)) Variance $Var(X) = \frac{(\beta - \alpha)^2}{12}$

Stanford University 21

Quick check

What is $\frac{1}{\beta-\alpha}$ if the following graphs are PDFs of Uniform RVs X?

Riding the Marguerite Bus

You want to get on the Marguerite bus.

- The bus stops at the Gates building at 15-minute intervals (2:00, 2:15, etc.).
- You arrive at the stop uniformly b/t 2:00-2:30pm.

P(you wait < 5 minutes for bus)?

1. Define events/ RVs & state goal X: time passenger arrives after 2:00 X~Uni(0,30) wait < 5 min Want: 2:00pm 15

2. Solve

30

Problem S	<u>Set 3</u>
Out:	today
Due:	Wednesday 2/5
Covers:	through this Wednesday

Late days	
Free:	2 free class days
<u>No late da</u>	<u>ys after last day of</u>
<u>quar</u>	<u>ter (Fri 3/13)</u>
(note PS#	#6 due Wed 3/11)

$$\underline{\text{Discrete}} \text{ RV } X$$

$$E[X] = \sum_{x} x p(x)$$

$$E[g(X)] = \sum_{x} g(x) p(x)$$

$$\underline{\text{Continuous}} \text{ RV } X$$

$$E[X] = \int_{-\infty}^{\infty} xf(x) dx$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) dx$$

Both continuous and discrete RVs E[aX + b] = aE[X] + b $Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$ $Var(aX + b) = a^2Var(X)$ Linearity of Expectation Properties of variance

Uniform Random Variable

<u>def</u> An **Uniform** random variable *X* is defined as follows:

$$PDF \qquad f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha \le x \le \beta \\ 0 & \text{otherwise} \end{cases}$$

$$Support: [\alpha, \beta] \\ (sometimes defined over (\alpha, \beta)) & Expectation \qquad E[X] = \frac{\alpha + \beta}{2} \\ Variance & Var(X) = \frac{(\beta - \alpha)^2}{12} \end{cases}$$

Stanford University 26

Uniform RV expectation

Stanford University 27

Today's plan

Continuous RVs

Uniform RV

Exponential RV

CDFs in detail

Exponential Random Variable

Consider an experiment that lasts a duration of time until success occurs. <u>def</u> An **Exponential** random variable *X* is the amount of time until success.

$X \sim Fyn(\lambda)$	PDF	$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$
Support: $[0, \infty)$	Expectation	$E[X] = \frac{1}{\lambda}$ (in extra slides)
Support. [0, ∞)	Variance	$Var(X) = \frac{1}{\lambda^2}$
		1

Examples:

- Time until next earthquake
- Time for request to reach web server
- Time until end of cell phone contract

Interpreting $Exp(\lambda)$

<u>def</u> An Exponential random variable *X* is the amount of time until success.

1

$$X \sim \text{Exp}(\lambda)$$
 Expectation $E[X] = \frac{1}{\lambda}$

Based on the expectation E[X], what are the units of λ ?

- A. Probability
- B. Probability⁻¹
- C. Time
- D. Time⁻¹
- E. Not sure, but f(x) is <u>not</u> a probability

Earthquakes

$$X \sim \mathsf{Exp}(\lambda) \quad \begin{array}{l} E[X] = 1/\lambda \\ f(x) = \lambda e^{-\lambda x} & \text{if } x \ge 0 \end{array}$$

Major earthquakes (magnitude 8.0+) occur once every 500 years.*

1. What is the probability of a major earthquake in the next 30 years?

Define events/ RVs & state goal

X: when next earthquake happens $X \sim \text{Exp}(\lambda = 0.002)$ $\lambda: \text{year}^{-1} = 1/500$ Want: P(X < 30)

Solve

Recall $\int e^{cx} dx = \frac{1}{c} e^{cx}$

Earthquakes

Major earthquakes (magnitude 8.0+) occur once every 500 years.*1. What is the probability of a major earthquake in the next 30 years?2. What is the standard deviation of years until the next earthquake?

Define events/ RVs & state goal Solve

X: when next earthquake happens $X \sim \text{Exp}(\lambda = 0.002)$ λ : year⁻¹ Want: P(X < 30)

Today's plan

Continuous RVs

Uniform RV

Exponential RV

Cumulative Distribution Function (CDF)

For a random variable *X*, the cumulative distribution function (CDF) is defined as

$$F(a) = F_X(a) = P(X \le a)$$
, where $-\infty < a < \infty$

For a discrete RV *X*, the CDF is:

$$F(a) = P(X \le a) = \sum_{\text{all } x \le a} p(x)$$

For a continuous RV *X*, the CDF is:

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx$$

If you learn to use CDFs, you can avoid integrals. Stanford University 34

CDF of an Exponential RV

 $X \sim \text{Exp}(\lambda) \quad f(x) = \lambda e^{-\lambda x} \quad \text{if } x \ge 0$

. .

 $X \sim \text{Exp}(\lambda) \qquad \begin{array}{c} \text{CDF} \quad F(x) = 1 - e^{-\lambda x} \\ \text{if } x \ge 0 \end{array}$

Proof:

$$F(x) = P(X \le x) = \int_{y=-\infty}^{x} f(y) dy = \int_{y=0}^{x} \lambda e^{-\lambda y} dy \qquad \int e^{cx} dx = \frac{1}{c} e^{cx}$$
$$= \lambda \frac{1}{-\lambda} e^{-\lambda y} \Big|_{0}^{x}$$
$$= -1 \left(e^{-\lambda x} - e^{-\lambda 0} \right)$$
$$= 1 - e^{-\lambda x}$$

PDF/CDF $X \sim Exp(\lambda = 1)$

 $X \sim \text{Exp}(\lambda)$ $F(x) = 1 - e^{-\lambda x}$

Stanford University 36

Using the CDF

For a continuous random variable X with PDF f(x), the CDF of X is

$$P(X \le a) = F(a) = \int_{-\infty}^{a} f(x) dx$$

Matching (choices are used 0/1/2 times)

1. P(X < a)A. F(a)2. P(X > a)B. 1 - F(a)3. $P(X \ge a)$ C. F(a) - F(b)4. $P(a \le X \le b)$ D. F(b) - F(a)

Using the CDF

For a continuous random variable X with PDF f(x), the CDF of X is

$$F(a) = \int_{-\infty}^{a} f(x) dx$$

$$4. \quad P(a \le X \le b) = F(b) - F(a)$$

Proof:

$$F(b) - F(a) = \int_{-\infty}^{b} f(x)dx - \int_{-\infty}^{a} f(x)dx$$
$$= \left(\int_{-\infty}^{a} f(x)dx + \int_{a}^{b} f(x)dx\right) - \int_{-\infty}^{a} f(x)dx$$
$$= \int_{a}^{b} f(x)dx$$

Earthquakes with CDFs

Major earthquakes (magnitude 8.0+) occur once every 500 years.*

- 1. What is the probability of a major earthquake in the next 30 years?
- 2. What is the standard deviation of years until the next earthquake?

Define events/
RVs & state goalSolveX: when next
earthquake happens
 $X \sim Exp(\lambda = 0.002)$
 $\lambda: year^{-1} = 1/500$ $P(X < 30) = \int_{0}^{30} 0.002e^{-0.002x} dx$ $P(X < 30) = F(30) = 1 - e^{-\lambda x}$
 $= 1 - e^{-0.002 \cdot 30}$
 ≈ 0.058

Earthquakes

Major earthquakes (magnitude 8.0+) occur once every 500 years.*1. What is the probability of a major earthquake in the next 30 years?2. What is the standard deviation of years until the next earthquake?

3. What is the probability of zero major earthquakes next year?

Strategy:

- A. Bayes' Theorem
- **B.** Total Probability
- C. Uniform RV
- D. Poisson RV
- E. Exponential RV

Earthquakes

Major earthquakes (magnitude 8.0+) occur once every 500 years.*

- 1. What is the probability of a major earthquake in the next 30 years?
- 2. What is the standard deviation of years until the next earthquake?
- 3. What is the probability of zero major earthquakes next year?

Strategy: D. Poisson RV

Define events/RVs & state goal

X: # earthquakes next year $X \sim \text{Poi}(\lambda = 0.002)$ Want: P(X = 0)Solve $P(X = 0) = \frac{\lambda^0 e^{-\lambda}}{0!} = e^{-\lambda} \approx 0.998$ Strategy: E. Exponential RV

Define events/RVs & state goal

X: when first earthquake happens $X \sim \text{Exp}(\lambda = 0.002)$

Want:
$$P(X > 1) = 1 - F(1)$$

Solve

 $P(X > 1) = 1 - (1 - e^{-\lambda \cdot 1}) = e^{-\lambda}$

*In California, according to historical data form USGS, 2015

Today's main takeaway

What do you get if you integrate over a probability density function (PDF)?

Continuous random variables

Extra slides

Expectation of the Exponential

Extra problems

Proof:

$$X \sim \text{Exp}(\lambda) \quad f(x) = \lambda e^{-\lambda x} \quad \text{if } x \ge 0$$

Stanford University 45

Website visits

$$\begin{array}{ll} X \sim \mathsf{Exp}(\lambda) & E[X] = 1/\lambda \\ F(x) = 1 - e^{-\lambda x} \end{array}$$

Suppose a visitor to your website leaves after *X* minutes.

- On average, visitors leave the site after 5 minutes.
- The length of stay, *X*, is exponentially distributed.
- **1.** P(X > 10)?

Define

X: when visitor leaves X ~ $Exp(\lambda = 1/5 = 0.2)$

2. P(10 < X < 20)?

P(X > 10) = 1 - F(10)= 1 - (1 - e^{-10/5}) = e⁻² \approx 0.1353

Define

X: when visitor leaves $X \sim \text{Exp}(\lambda = 1/5 = 0.2)$

Solve

Solve

$$P(10 < X < 20) = F(20) - F(10)$$

= $(1 - e^{-4}) - (1 - e^{-2}) \approx 0.1170$

Replacing your laptop

$$X \sim \text{Exp}(\lambda) \quad \begin{array}{l} E[X] = 1/\lambda \\ F(x) = 1 - e^{-\lambda x} \end{array}$$

Let X = # hours of use until your laptop dies.

- *X* is distributed as an Exponential RV, where
- On average, laptops die after 5000 hours of use.
- You use your laptop 5 hours a day.

What is *P*(your laptop lasts 4 years)?

Define

Solve

X: # hours until laptop death $X \sim \text{Exp}(\lambda = 1/5000)$

Want: $P(X > 5 \cdot 365 \cdot 4)$

$$P(X > 7300) = 1 - F(7300)$$

= 1 - (1 - e^{-7300/5000}) = e^{-1.46} \approx 0.2322

Better plan ahead if you're co-terming!

• 5-year plan:

$$P(X>9125)=e^{-1.825}\approx 0.1612$$

• 6-year plan:

 $P(X > 10950) = e^{-2.19} \approx 0.1119$

Stanford University 47