13: Independent RVs

David Varodayan February 5, 2020 Adapted from slides by Lisa Yan

Probabilities from joint CDFs

Stanford University 2

Gaussian blur

In a Gaussian blur, for every pixel:

- Weight each pixel by the probability that X and Y are both within the pixel bounds
- The weighting function is a Gaussian joint PDF with a standard deviation parameter σ .

Center pixel: $(0, 0)$ $\frac{Y}{-1.5}$ Pixel bounds: $-0.5 < x \leq 0.5$ $-0.5 < y \leq 0.5$ Gaussian blurring with $\sigma = 3$ Joint PDF: $f_{X,Y}(x, y) =$ 1 $\frac{1}{2\pi \cdot 3^2} e^{-(x^2+y^2)/2 \cdot 3^2}$ Joint CDF: $F_{X,Y}(x, y) = \Phi$ $\left(\frac{x}{3}\right)$ $\Phi\left(\frac{y}{3}\right)$ Weight matrix:

 $F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2) - F_{X,Y}(a_2,b_1) + F_{X,Y}(a_1,b_1)$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$

Gaussian blur

In a Gaussian blur:

 ≈ 0.206

• Weight each pixel by the probability that X and Y are both within the pixel bounds

What is the weight of the center pixel?

$$
P(-0.5 < X \le 0.5, -0.5 < Y \le 0.5)
$$
\n
$$
= F_{X,Y}(0.5, 0.5) - F_{X,Y}(-0.5, 0.5)
$$
\n
$$
-F_{X,Y}(0.5, -0.5) + F_{X,Y}(-0.5, -0.5)
$$
\n
$$
= \Phi\left(\frac{0.5}{3}\right) \Phi\left(\frac{0.5}{3}\right) - 2 \cdot \Phi\left(\frac{-0.5}{3}\right) \Phi\left(\frac{0.5}{3}\right)
$$
\n
$$
+ \Phi\left(\frac{-0.5}{3}\right) \Phi\left(\frac{-0.5}{3}\right)
$$

 $\approx 0.5662^2 - 2 \cdot 0.5662 \cdot 0.4338 + 0.4338^2$

Center pixel: $(0, 0)$ $\frac{Y}{-1.5}$ Pixel bounds: $-0.5 < x \leq 0.5$ $-0.5 < y \leq 0.5$ Gaussian blurring with $\sigma = 3$ Joint PDF: $f_{X,Y}(x, y) =$ 1 $\frac{1}{2\pi \cdot 3^2} e^{-(x^2+y^2)/2 \cdot 3^2}$ Joint CDF: $F_{X,Y}(x, y) = \Phi$ $\left(\frac{x}{3}\right)$ $\Phi\left(\frac{y}{3}\right)$ Weight matrix:

 $F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2) - F_{X,Y}(a_2,b_1) + F_{X,Y}(a_1,b_1)$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$

4

CS109 roadmap

Multiple events:

Joint (Multivariate) distributions

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution
- Poisson
- Normal
- Uniform

Expectation of sum of RVs (next class)

Independent discrete RVs

Recall the definition of independent events E and F :

$$
P(EF) = P(E)P(F)
$$

Two discrete random variables X and Y are independent if:

 $P(X = x, Y = y) = P(X = x)P(Y = y)$ $p_{X,Y}(x, y) = p_X(x)p_Y(y)$ for all x, y :

Different notation, same idea:

Intuitively: knowing value of X tells us nothing about the distribution of Y (and vice versa)

If two variables are not independent, they are called **dependent**.

Dice (after all this time, still our friends)

- Let: D_1 and D_2 be the outcomes of two rolls $S = D_1 + D_2$, the sum of two rolls
- Each roll of a 6-sided die is an independent trial.

Are S and D_1 independent?

1. $P(D_1 = 1, S = 7)$?
2. $P(D_1 = 1, S = 5)$?

Dice (after all this time, still our friends)

- Let: D_1 and D_2 be the outcomes of two rolls $S = D_1 + D_2$, the sum of two rolls
	- Each roll of a 6-sided die is an independent trial.
- D_1 and D_2 are independent.

Are S and D_1 independent?

1. $P(D_1 = 1, S = 7)$? Event $(S = 7)$: {(1,6), (2,5), (3,4), $(4,3)$, $(5,2)$, $(6,1)$ } $= 1/36 = P(D_1 = 1, S = 7)$ $P(D_1 = 1)P(S = 7) = (1/6)(1/6)$

Independent events $(D_1 = 1)$, $(S = 7)$ Dependent events $(D_1 = 1)$, $(S = 5)$

2.
$$
P(D_1 = 1, S = 5)
$$
?
Event $(S = 5)$: {(1,4), (2,3), (3,2), (4,1)}

$$
P(D_1 = 1)P(S = 5) = (1/6)(4/36)
$$

$$
\neq 1/36 = P(D_1 = 1, S = 5)
$$

All events $(X = x, Y = y)$ must be independent for X , Y to be independent random variables.
Stanford University

9

Coin flips

Flip a coin with probability p of "heads" a total of $n + m$ times.

- Let $X =$ number of heads in first *n* flips. $X \sim \text{Bin}(n, p)$ $Y =$ number of heads in next m flips. $Y \sim Bin(m, p)$ $Z =$ total number of heads in $n + m$ flips.
- 1. Are X and Z independent?

Coin flips

Flip a coin with probability p of "heads" a total of $n + m$ times.

- Let $X =$ number of heads in first *n* flips. $X \sim \text{Bin}(n, p)$ $Y =$ number of heads in next m flips. $Y \sim Bin(m, p)$ $Z =$ total number of heads in $n + m$ flips.
- 1. Are X and Z independent?
- 2. Are X and Y independent?

Strategy:

- A. No, proof by counterexample
- B. Yes, proof by counting
- C. None/other

Coin flips

Flip a coin with probability p of "heads" a total of $n + m$ times.

- Let $X =$ number of heads in first *n* flips. $X \sim \text{Bin}(n, p)$ $Y =$ number of heads in next m flips. $Y \sim Bin(m, p)$ $Z =$ total number of heads in $n + m$ flips.
- 1. Are X and Z independent?
- 2. Are X and Y independent?

 $P(X = x, Y = y) = P\left(\begin{matrix} \text{first } n \text{ flips have } x \text{ heads} \\ \text{and next } m \text{ flips have } y \text{ head} \end{matrix}\right)$ and next m flips have \boldsymbol{y} heads

of mutually exclusive :
$$
\binom{n}{x}\binom{m}{y}
$$

outcomes in event : $\binom{n}{x}\binom{m}{y}$

$$
P(\text{each outcome}) = p^x(1-p)^{n-x}p^y(1-p)^{m-y}
$$

$$
= {n \choose x} p^{x} (1-p)^{n-x} {m \choose y} p^{y} (1-p)^{m-y}
$$

$$
= P(X = x)P(Y = y)
$$

 $\langle m \rangle$

Independent continuous RVs

Two continuous random variables X and Y are independent if:

$$
P(X \le x, Y \le y) = P(X \le x)P(Y \le y)
$$

Equivalently:

$$
F_{X,Y}(x, y) = F_X(x)F_Y(y)
$$

$$
f_{X,Y}(x, y) = f_X(x)f_Y(y)
$$

More generally, X and Y are independent if joint density factors separately:

$$
f_{X,Y}(x,y) = g(x)h(y), \text{ where } -\infty < x, y < \infty
$$

Is the Gaussian blur distribution independent?

Center pixel: $(0, 0)$ $\frac{1}{1.5}$ Pixel bounds: $-0.5 < x \leq 0.5$ $-0.5 < y \leq 0.5$ Gaussian blurring with $\sigma = 3$ Joint PDF: $f_{X,Y}(x, y) =$ 1 $\frac{1}{2\pi \cdot 3^2} e^{-(x^2+y^2)/2 \cdot 3^2}$ Joint CDF: $F_{X,Y}(x, y) = \Phi$ $\left(\frac{x}{3}\right) \Phi\left(\frac{y}{3}\right)$ Weight matrix:

$$
f_{X,Y}(x, y) = g(x)h(y),
$$
 independent
where $-\infty < x, y < \infty$
X and Y

Are X and Y independent in the following cases?

1.
$$
f_{X,Y}(x, y) = 6e^{-3x}e^{-2y}
$$

where $0 < x, y < \infty$

2.
$$
f_{X,Y}(x, y) = 4xy
$$

where $0 < x, y < 1$

3.
$$
f_{X,Y}(x, y) = 8xy
$$

where $0 < x, y < 1$
and $x + y < 1$

$$
f_{X,Y}(x, y) = g(x)h(y),
$$
 independent
where $-\infty < x, y < \infty$
X and Y

Are X and Y independent in the following cases?

- 1. $f_{X,Y}(x, y) = 6e^{-3x}e^{-2y}$ where $0 < x, y < \infty$ $g(x) = 3e^{-3x}$ $h(y) = 2e^{-2y}$ Separable functions:
- 2. $f_{X,Y}(x, y) = 4xy$ where $0 < x, y < 1$

Separable functions: $g(x) = 2x$ $h(v) = 2v$

3. $f_{X,Y}(x, y) = 8xy$ where $0 < x, y < 1$ and $x + y < 1$

Cannot capture constraint on $x + y$ into factorization!

> If you can factor densities over all of the support, you have independence.

Announcements

Midterm exam

Problem Set 4 Due: Wednesday 2/19 Midterm coverage: First third (marked)

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution
- **Poisson**
- Normal
- Uniform

Expectation of sum of RVs (next class)

$$
X \sim Bin(n_1, p)
$$

\n
$$
Y \sim Bin(n_2, p)
$$

\n
$$
X + Y \sim Bin(n_1 + n_2, p)
$$

\nX, Y independent

Intuition:

- Each trial in X and Y is independent and has same success probability p
- Define $Z = n_1 + n_2$ independent trials, each with success probability p $Z \sim Bin(n_1 + n_2, p)$, and also $Z = X + Y$

Holds in general case:

 $X_i \sim Bin(n_i, p)$ X_i independent for $i = 1, ..., n$

$$
\sum_{i=1}^{n} X_i \sim \text{Bin}(\sum_{i=1}^{n} n_i, p)
$$

Stanford University 19 If only it were always so simple…

Convolution: Sum of independent random variables

For any discrete random variables X and Y :

$$
P(X+Y=n) = \sum_{k} P(X=k, Y=n-k)
$$

In particular, for independent discrete random variables X and Y :

$$
P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)
$$

the convolution of p_X and p_Y

Insight into convolution

For independent discrete random variables X and Y :

$$
P(X+Y=n) = \sum_{k} P(X=k)P(Y=n-k)
$$

the convolution of p_X and p_Y

Suppose X and Y are independent, both with support $\{0, 1, ...\}$:

Sum of dice rolls

 $P(X + Y = n) = \sum_{i} P(X = k)P(Y = n - k)$ $\frac{k}{2}$ X and Y independent + discrete

The distribution of a sum of dice rolls is a convolution.

Note for $k, n - k$ in the support, $P(X = k, Y = n - k)$ $= P(X = k)P(Y = n - k)$

$$
= 1/36
$$

Sum of independent Poissons

 $X \sim \text{Poi}(\lambda_1)$, $Y \sim \text{Poi}(\lambda_2)$
X, Y independent

 $X + Y \sim Poi(\lambda_1 + \lambda_2)$

Stanford University 23 $P(X + Y = n) = \sum_{k=1}^{n} P(X = k)P(Y = n - k)$ X and Y independent, κ convolution $=$ \sum $k=0$ $\frac{n}{2}$ $e^{-\lambda_1}$ $\lambda_1^{\mathcal{K}}$ $k!$ $e^{-\lambda_2}$ λ_2^{n-k} $(n - k)!$ $= e^{-(\lambda_1+\lambda_2)}$ $k=0$ $\frac{n}{2}$ λ_1^k λ_2^{n-k} $k!$ $(n - k)!$ PMF of Poisson RVs = $e^{-(\lambda_1+\lambda_2)}$ $\overline{n!}$ $\sum_{k=0}$ $k=0$ $\frac{n}{2}$ $n!$ $k!$ $(n - k)!$ $\lambda_1^k \lambda_2^{n-k} =$ $e^{-(\lambda_1+\lambda_2)}$ $\frac{1}{n!}$ $(\lambda_1 + \lambda_2)^n$ Proof (just for reference): $(a + b)^n = \sum_{n=1}^{\infty}$ $k=0$ $\frac{n}{2}$ $\binom{n}{k} a^k b^{n-k}$ Binomial Theorem: $Poi(\lambda_1 + \lambda_2)$

General sum of independent Poissons

Holds in general case:

 $X_i \sim \text{Poi}(\lambda_i)$ X_i independent for $i = 1, ..., n$

 $l=1$ $\frac{n}{2}$ $X_i \thicksim$ Poi $(\sum_i$ $l=1$ $\frac{n}{2}$ λ_i)

Sum of independent Gaussians

$$
X \sim \mathcal{N}(\mu_1, \sigma_1^2),
$$

$$
Y \sim \mathcal{N}(\mu_2, \sigma_2^2)
$$

X, Y independent

$$
X+Y\sim \mathcal{N}(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)
$$

(proof left to [Wikipedia](https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables))

Holds in general case:

$$
X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)
$$

$$
X_i \text{ independent for } i = 1, ..., n
$$

$$
\sum_{i=1}^n X_i \sim \mathcal{N} \left(\sum_{i=1}^n X_i \right)
$$

 σ_i^2

 $l=1$

 μ_i , \sum_i

 $l=1$

 $\frac{n}{2}$

 $\frac{n}{2}$

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
• G2: 100 people, each independently infected with $p_2 = 0.4$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is P (people infected \geq 55)?

- 1. Define RVs & state goal
	- Let $A = #$ infected in G1. $A \sim Bin(200, 0.1)$ $B = #$ infected in G2. $B \sim Bin(100, 0.4)$

Want: $P(A + B \ge 55)$

Strategy:

- A. Convolution
- B. Sum of indep. Binomials
- C. (approximate) Sum of indep. Poissons
- D. (approximate) Sum of indep. Normals
- E. None/other

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
• G2: 100 people, each independently infected with $p_2 = 0.4$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is P (people infected \geq 55)?

1. Define RVs & state goal

Let $A = \#$ infected in G1. $A \sim Bin(200, 0.1)$ $B = #$ infected in G2. $B \sim Bin(100, 0.4)$

Want: $P(A + B \ge 55)$

Stanford University 27 2. Approximate as sum of Normals $A \approx X \sim \mathcal{N}(20.18)$ $B \approx Y \sim \mathcal{N}(40.24)$ $P(A + B \ge 55) \approx P(X + Y \ge 54.5)$ continuity correction 3. Solve Let $W = X + Y \sim \mathcal{N}(20 + 40 = 60, 18 + 24 = 42)$ ≈ 0.8023 $= 1 - \Phi$ $54.5 - 60$ 42 $P(W \ge 54.5) = 1 - \Phi\left(\frac{1}{\sqrt{42}}\right) \approx 1 - \Phi(-0.85)$

Linear transforms vs. independence

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y = X + X$. What is the distribution of Y? • Are both approaches valid?

Independent RVs approach

Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent. Then $Y = X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Linear transform approach

Let $X \sim \mathcal{N}(\mu, \sigma^2)$. If $Y = aX + b$. then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$

Linear transforms vs. independence

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y = X + X$. What is the distribution of Y? • Are both approaches valid?

Independent RVs approach

Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent. Then $Y = X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

 $Y = X + X$ $X + X \sim \mathcal{N}(\mu + \mu, \sigma^2 + \sigma^2)$ $Y \sim \mathcal{N}(2\mu, 2\sigma^2)$

Linear transform approach

Let $X \sim \mathcal{N}(\mu, \sigma^2)$. If $Y = aX + b$. then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$

 $Y = 2X$ $Y \sim \mathcal{N}(2\mu, 4\sigma^2)$

Motivating idea: Zero sum games

Want:
$$
P(\text{Warriors win}) = P(A_W > A_B)
$$

= $P(A_W - A_B > 0)$

Assume A_W , A_R are independent. Let $D = A_W - A_R$.

What is the distribution of D ?

A. $D \sim \mathcal{N} (1657 - 1470, 200^2 - 200^2)$ B. $D \sim \mathcal{N} (1657 - 1470, 200^2 + 200^2)$ C. $D \sim \mathcal{N} (1657 + 1470, 200^2 + 200^2)$ D. None/other

Motivating idea: Zero sum games

Want:
$$
P(\text{Warriors win}) = P(A_W > A_B)
$$

= $P(A_W - A_B > 0)$

Assume A_W , A_B are independent. Let $D = A_W - A_B$. $D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$ $\sim \mathcal{N}(187, 2 \cdot 200^2) \quad \sigma \approx 283$

$$
P(D > 0) = 1 - F_D(0) = 1 - \Phi\left(\frac{0 - 187}{283}\right)
$$

\n\approx 0.7454

Compare with 0.7488, calculated by sampling!

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution
- Poisson
- Normal
- Uniform

Expectation of sum of RVs (next class)

Continuous Convolution

For independent discrete random variables X and Y :

$$
P(X+Y=n) = \sum_{k} P(X=k)P(Y=n-k)
$$

the convolution of p_X and p_Y

For independent continuous random variables X and Y :

$$
f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx
$$

the convolution of f_X and f_Y

X and Y
independent
$$
f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx
$$

+ continuous

Let $X \sim$ Uni $(0,1)$ and $Y \sim$ Uni $(0,1)$ be independent random variables. What is the distribution of $X + Y$, f_{X+Y} ?

$$
f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(k) f_Y(\alpha - k) dk
$$

 $f_X(k) f_Y(\alpha - k) = 1$ when: (select one)

A. between 0 and 1

B.
$$
0 \leq k \leq 1
$$

$$
C. \quad 0 \le \alpha - k \le 1
$$

D.
$$
0 \leq \alpha \leq 2
$$

E. Other

X and Y
independent
$$
f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx
$$

+ continuous

Let $X \sim$ Uni $(0,1)$ and $Y \sim$ Uni $(0,1)$ be independent random variables. What is the distribution of $X + Y$, f_{X+Y} ?

$$
f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(k) f_Y(\alpha - k) dk
$$

$$
f_X(k)f_Y(\alpha-k)=1.
$$

 $0 \leq k \leq 1$ $0 \leq \alpha - k \leq 1$ $\alpha-1 \leq k \leq \alpha$

The precise integration bounds on k depend on α . What are the bounds on k when:

1.
$$
\alpha = 1/2
$$
? $0 \le k \le \alpha$

$$
\int_{k=0}^{\alpha} 1 dk = \alpha = 1/2
$$

2.
$$
\alpha = 3/2
$$
? $\alpha - 1 \le k \le 1$

$$
\int_{k=\alpha-1}^{1} 1 dk = 2 - \alpha = 1/2
$$

3.
$$
\alpha = 1
$$
?
\n
$$
\begin{array}{ccc}\n0 \le k \le \alpha \\
\int_{k=0}^{\alpha} 1 dk & = \alpha \\
\end{array} = 1
$$

(the other bound works too)

X and Y
independent
$$
f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx
$$

+ continuous

Let $X \sim$ Uni $(0,1)$ and $Y \sim$ Uni $(0,1)$ be independent random variables. What is the distribution of $X + Y$, f_{X+Y} ?

 $0 \leq \alpha - k \leq 1$ $\alpha-1 \leq k \leq \alpha$

The precise integration bounds on k depend on α .

$$
f_{X+Y}(\alpha) = \begin{cases} a & 0 \le a \le 1 \\ 2 - a & 1 \le a \le 2 \\ 0 & \text{otherwise} \end{cases}
$$

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution
- Poisson
- Normal
- Uniform

Expectation of sum of RVs (next class)

Properties of Expectation, extended to two RVs

1. Linearity: $E[aX + bY + c] = aE[X] + bE[Y] + c$

2. Expectation of a sum = sum of expectation: $E[X + Y] = E[X] + E[Y]$

(we've seen this; we'll prove this next)

3. Unconscious statistician:

$$
E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) p_{X,Y}(x, y)
$$

$$
E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X,Y}(x, y) dx dY
$$

Stanford University 38

Proof of expectation of a sum of RVs

 $E[X + Y] = E[X] + E[Y]$

$$
E[X + Y] = E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y)p_{X,Y}(x, y) = \sum_{x} \sum_{y} (x + y)p_{X,Y}(x, y) \xrightarrow{LOTUS}
$$

\n
$$
= \sum_{x} \sum_{y} xp_{X,Y}(x, y) + \sum_{x} \sum_{y} yp_{X,Y}(x, y)
$$

\n
$$
= \sum_{x} x \sum_{y} p_{X,Y}(x, y) + \sum_{y} y \sum_{x} p_{X,Y}(x, y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= E[X] + E[Y]
$$

\n
$$
= E[X] + E[Y]
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= E[X] + E[Y]
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)
$$

\n

Example: $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$ despite dependent trials X_i

Expectations of common RVs

$$
X \sim \text{Bin}(n, p) \quad E[X] = np
$$

$$
X = \sum_{i=1}^{n} X_i
$$
 Let $X_i = i$ th trial is heads

$$
X_i \sim \text{Ber}(p), E[X_i] = p
$$

$$
X = \sum_{i=1}^{n} X_i
$$
 Let $X_i = i$ th trial is heads
$$
E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np
$$

Expectations of common RVs

$$
X \sim \text{Bin}(n, p) \quad E[X] = np
$$

 $X = \sum$ $l=1$ $\frac{n}{2}$ X_i $X_i \sim \text{Ber}(p)$, $E[X_i] = p$ $E[X] = E$ Let $X_i = i$ th trial is heads X_i ~Ber (p) , $E[X_i] = p$

$$
E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np
$$

$$
Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}
$$

Suppose:

$$
Y = \sum_{i=1}^{?} Y_i
$$

How should we define Y_i ? A. $Y_i = i$ th trial is heads. $Y_i \sim \text{Ber}(p)$, $i = 1, ..., n$ B. $Y_i = #$ trials to get *i*th success (after $(i - 1)$ th success) $Y_i \sim \text{Geo}(p)$, $i = 1, ..., r$ C. $Y_i = #$ successes in *n* trials $Y_i \sim Bin(n, p)$, $i = 1, ..., r$, we look for $P(Y_i = 1)$

Stanford University 41

Expectations of common RVs

$$
X \sim \text{Bin}(n, p) \quad E[X] = np
$$

 \sim

$$
X = \sum_{i=1}^{n} X_i
$$
 Let $X_i = i$ th trial is heads

$$
E[X] = E\left[\sum_{i=1}^{n} X_i\right]
$$

$$
E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np
$$

$$
Y \sim \mathsf{NegBin}(r, p) \quad E[Y] = \frac{r}{p}
$$

 $Y = \sum_{i} Y_i$ $l=1$ \int Let $Y_i = #$ trials to get *i*th success (after $(i - 1)$ th success) Y_i ~Geo(p), $E[Y_i] = \frac{1}{p}$ \boldsymbol{p} $E[Y] = E \big| \big|$ $l=1$ $\frac{r}{\sqrt{2}}$ $Y_i \mid \equiv \sum_i$ $l=1$ $\frac{r}{\sqrt{2}}$ $E[Y_i] = \sum_i$ $l=1$ \int 1 p

=

 \boldsymbol{r}

 \boldsymbol{p}