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Probabilities from joint CDFs

2

Joint CDF: 𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥,𝑌𝑌 ≤ 𝑦𝑦 = 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦
𝑃𝑃 𝑎𝑎1 < 𝑋𝑋 ≤ 𝑎𝑎2, 𝑏𝑏1 < 𝑌𝑌 ≤ 𝑏𝑏2 =

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎2,𝑏𝑏2 − 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎1,𝑏𝑏2 − 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎2,𝑏𝑏1 + 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎1,𝑏𝑏1

𝑎𝑎2𝑎𝑎1
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Review



Gaussian blur
In a Gaussian blur, for every pixel:
• Weight each pixel by the probability that 𝑋𝑋

and 𝑌𝑌 are both within the pixel bounds
• The weighting function is a Gaussian joint 

PDF with a standard deviation parameter 𝜎𝜎.

Center pixel: (0, 0)
Pixel bounds:
−0.5 < 𝑥𝑥 ≤ 0.5
−0.5 < 𝑦𝑦 ≤ 0.5

Gaussian blurring with 𝜎𝜎 = 3

Joint PDF:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 =
1

2𝜋𝜋 ⋅ 32
𝑒𝑒− 𝑥𝑥2+𝑦𝑦2 /2⋅32

Joint CDF:

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = Φ
𝑥𝑥
3
Φ

𝑦𝑦
3

Weight matrix:

3

𝑃𝑃 𝑎𝑎1 < 𝑋𝑋 ≤ 𝑎𝑎2, 𝑏𝑏1 < 𝑌𝑌 ≤ 𝑏𝑏2 =
𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎2,𝑏𝑏2 − 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎1,𝑏𝑏2 − 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎2,𝑏𝑏1 + 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎1,𝑏𝑏1



Gaussian blur
In a Gaussian blur:
• Weight each pixel by the probability that 𝑋𝑋

and 𝑌𝑌 are both within the pixel bounds

What is the weight of the center pixel?

4

Center pixel: (0, 0)
Pixel bounds:
−0.5 < 𝑥𝑥 ≤ 0.5
−0.5 < 𝑦𝑦 ≤ 0.5

Gaussian blurring with 𝜎𝜎 = 3

Joint PDF:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 =
1

2𝜋𝜋 ⋅ 32
𝑒𝑒− 𝑥𝑥2+𝑦𝑦2 /2⋅32

Joint CDF:

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = Φ
𝑥𝑥
3
Φ

𝑦𝑦
3

Weight matrix:

𝑃𝑃 −0.5 < 𝑋𝑋 ≤ 0.5,−0.5 < 𝑌𝑌 ≤ 0.5
= 𝐹𝐹𝑋𝑋,𝑌𝑌 0.5,0.5 − 𝐹𝐹𝑋𝑋,𝑌𝑌 −0.5, 0.5

−𝐹𝐹𝑋𝑋,𝑌𝑌 0.5,−0.5 + 𝐹𝐹𝑋𝑋,𝑌𝑌 −0.5,−0.5

= Φ 0.5
3

Φ 0.5
3

− 2 ⋅ Φ −0.5
3

Φ 0.5
3

+Φ −0.5
3

Φ −0.5
3

𝑃𝑃 𝑎𝑎1 < 𝑋𝑋 ≤ 𝑎𝑎2, 𝑏𝑏1 < 𝑌𝑌 ≤ 𝑏𝑏2 =
𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎2,𝑏𝑏2 − 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎1,𝑏𝑏2 − 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎2,𝑏𝑏1 + 𝐹𝐹𝑋𝑋,𝑌𝑌 𝑎𝑎1,𝑏𝑏1

≈ 0.56622 − 2 ⋅ 0.5662 ⋅ 0.4338 + 0.43382

≈ 0.206



CS109 roadmap
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Multiple events:

𝑃𝑃 𝐸𝐸 𝐹𝐹 =
𝑃𝑃 𝐸𝐸𝐹𝐹
𝑃𝑃 𝐹𝐹

conditional 
probability

𝑃𝑃 𝐸𝐸𝐹𝐹 = 𝑃𝑃 𝐸𝐸 𝑃𝑃(𝐹𝐹)

independence

Joint (Multivariate) distributions

joint PMF/PDF

𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦

intersection

𝑃𝑃 𝐸𝐸 ∩ 𝐹𝐹
= 𝑃𝑃 𝐸𝐸𝐹𝐹

conditional 
distributions?

independent
RVs?

Yes!
(Friday)

Yes!
(today)



Today’s plan

Independent RVs
Sum of independent RVs
• Binomial
• Convolution 
• Poisson
• Normal
• Uniform

Expectation of sum of RVs (next class)

6



Independent discrete RVs
Recall the definition of independent events 𝐸𝐸 and 𝐹𝐹:

𝑃𝑃 𝐸𝐸𝐹𝐹 = 𝑃𝑃 𝐸𝐸 𝑃𝑃 𝐹𝐹

Two discrete random variables 𝑋𝑋 and 𝑌𝑌 are independent if:

𝑃𝑃 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑃𝑃 𝑌𝑌 = 𝑦𝑦

𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑝𝑝𝑋𝑋 𝑥𝑥 𝑝𝑝𝑌𝑌 𝑦𝑦

Intuitively: knowing value of 𝑋𝑋 tells us nothing about the distribution of 𝑌𝑌
(and vice versa)

If two variables are not independent, they are called dependent.
7

for all 𝑥𝑥,𝑦𝑦:

Different notation,
same idea:



Dice (after all this time, still our friends)
Let: 𝐷𝐷1 and 𝐷𝐷2 be the outcomes of two rolls

𝑆𝑆 = 𝐷𝐷1 + 𝐷𝐷2, the sum of two rolls
• Each roll of a 6-sided die is an independent trial.
• 𝐷𝐷1 and 𝐷𝐷2 are independent.

Are 𝑆𝑆 and 𝐷𝐷1 independent?

8

1. 𝑃𝑃 𝐷𝐷1 = 1, 𝑆𝑆 = 7 ? 2. 𝑃𝑃 𝐷𝐷1 = 1, 𝑆𝑆 = 5 ?



Dice (after all this time, still our friends)
Let: 𝐷𝐷1 and 𝐷𝐷2 be the outcomes of two rolls

𝑆𝑆 = 𝐷𝐷1 + 𝐷𝐷2, the sum of two rolls
• Each roll of a 6-sided die is an independent trial.
• 𝐷𝐷1 and 𝐷𝐷2 are independent.

Are 𝑆𝑆 and 𝐷𝐷1 independent?

9

1. 𝑃𝑃 𝐷𝐷1 = 1, 𝑆𝑆 = 7 ? 2. 𝑃𝑃 𝐷𝐷1 = 1, 𝑆𝑆 = 5 ?
Event 𝑆𝑆 = 7 : { 1,6 , 2,5 , 3,4 ,

4,3 , 5,2 , 6,1 }

= 1/36 = 𝑃𝑃 𝐷𝐷1 = 1, 𝑆𝑆 = 7

Independent events 𝐷𝐷1 = 1 , 𝑆𝑆 = 7

𝑃𝑃 𝐷𝐷1 = 1 𝑃𝑃 𝑆𝑆 = 7 = 1/6 1/6

All events 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 must 
be independent for 𝑋𝑋,𝑌𝑌 to be
independent random variables.

Event 𝑆𝑆 = 5 : { 1,4 , 2,3 , 3,2 , 4,1 }

≠ 1/36 = 𝑃𝑃 𝐷𝐷1 = 1, 𝑆𝑆 = 5
𝑃𝑃 𝐷𝐷1 = 1 𝑃𝑃 𝑆𝑆 = 5 = 1/6 4/36

Dependent events 𝐷𝐷1 = 1 , 𝑆𝑆 = 5



Coin flips
Flip a coin with probability 𝑝𝑝 of “heads” a total of 𝑛𝑛 + 𝑚𝑚 times.
Let 𝑋𝑋 = number of heads in first 𝑛𝑛 flips. 𝑋𝑋~Bin(𝑛𝑛, 𝑝𝑝)

𝑌𝑌 = number of heads in next 𝑚𝑚 flips. 𝑌𝑌~Bin 𝑚𝑚, 𝑝𝑝
𝑍𝑍 = total number of heads in 𝑛𝑛 + 𝑚𝑚 flips.

1. Are 𝑋𝑋 and 𝑍𝑍 independent?

10



Coin flips
Flip a coin with probability 𝑝𝑝 of “heads” a total of 𝑛𝑛 + 𝑚𝑚 times.
Let 𝑋𝑋 = number of heads in first 𝑛𝑛 flips. 𝑋𝑋~Bin(𝑛𝑛, 𝑝𝑝)

𝑌𝑌 = number of heads in next 𝑚𝑚 flips. 𝑌𝑌~Bin(𝑚𝑚, 𝑝𝑝)
𝑍𝑍 = total number of heads in 𝑛𝑛 + 𝑚𝑚 flips.

1. Are 𝑋𝑋 and 𝑍𝑍 independent?
2. Are 𝑋𝑋 and 𝑌𝑌 independent?

11

Strategy:
A. No, proof by counterexample
B. Yes, proof by counting
C. None/other



Coin flips
Flip a coin with probability 𝑝𝑝 of “heads” a total of 𝑛𝑛 + 𝑚𝑚 times.
Let 𝑋𝑋 = number of heads in first 𝑛𝑛 flips. 𝑋𝑋~Bin(𝑛𝑛, 𝑝𝑝)

𝑌𝑌 = number of heads in next 𝑚𝑚 flips. 𝑌𝑌~Bin(𝑚𝑚, 𝑝𝑝)
𝑍𝑍 = total number of heads in 𝑛𝑛 + 𝑚𝑚 flips.

1. Are 𝑋𝑋 and 𝑍𝑍 independent?
2. Are 𝑋𝑋 and 𝑌𝑌 independent?

12

𝑃𝑃 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 = 𝑃𝑃 first 𝑛𝑛 flips have 𝑥𝑥 heads
and next 𝑚𝑚 flips have 𝑦𝑦 heads

# of mutually exclusive
outcomes in event ∶ 𝑛𝑛

𝑥𝑥
𝑚𝑚
𝑦𝑦

𝑃𝑃 each outcome
= 𝑝𝑝𝑥𝑥 1 − 𝑝𝑝 𝑛𝑛−𝑥𝑥𝑝𝑝𝑦𝑦 1 − 𝑝𝑝 𝑚𝑚−𝑦𝑦

= 𝑛𝑛
𝑥𝑥 𝑝𝑝𝑥𝑥 1 − 𝑝𝑝 𝑛𝑛−𝑥𝑥 𝑚𝑚

𝑦𝑦 𝑝𝑝𝑦𝑦 1 − 𝑝𝑝 𝑚𝑚−𝑦𝑦

= 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑃𝑃 𝑌𝑌 = 𝑦𝑦



Independent continuous RVs
Two continuous random variables 𝑋𝑋 and 𝑌𝑌 are independent if:

𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥,𝑌𝑌 ≤ 𝑦𝑦 = 𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥 𝑃𝑃 𝑌𝑌 ≤ 𝑦𝑦
Equivalently:

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝐹𝐹𝑋𝑋 𝑥𝑥 𝐹𝐹𝑌𝑌 𝑦𝑦
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝑦𝑦

More generally, 𝑋𝑋 and 𝑌𝑌 are independent if joint density factors separately:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝑔𝑔 𝑥𝑥 ℎ 𝑦𝑦 , where −∞ < 𝑥𝑥,𝑦𝑦 < ∞

13



Is the Gaussian blur distribution independent?

Center pixel: (0, 0)
Pixel bounds:
−0.5 < 𝑥𝑥 ≤ 0.5
−0.5 < 𝑦𝑦 ≤ 0.5

Gaussian blurring with 𝜎𝜎 = 3

Joint PDF:

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 =
1

2𝜋𝜋 ⋅ 32
𝑒𝑒− 𝑥𝑥2+𝑦𝑦2 /2⋅32

Joint CDF:

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = Φ
𝑥𝑥
3
Φ

𝑦𝑦
3

Weight matrix:

14



Pop quiz! (just kidding)

Are 𝑋𝑋 and 𝑌𝑌 independent in the following cases?

15

1. 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 6𝑒𝑒−3𝑥𝑥𝑒𝑒−2𝑦𝑦
where 0 < 𝑥𝑥,𝑦𝑦 < ∞

2. 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 4𝑥𝑥𝑦𝑦
where 0 < 𝑥𝑥,𝑦𝑦 < 1

independent
𝑋𝑋 and 𝑌𝑌

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥, 𝑦𝑦 = 𝑔𝑔 𝑥𝑥 ℎ 𝑦𝑦 ,
where −∞ < 𝑥𝑥, 𝑦𝑦 < ∞

3. 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 8𝑥𝑥𝑦𝑦
where 0 < 𝑥𝑥,𝑦𝑦 < 1

and 𝑥𝑥 + 𝑦𝑦 < 1



Pop quiz! (just kidding)

Are 𝑋𝑋 and 𝑌𝑌 independent in the following cases?

16

1. 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 6𝑒𝑒−3𝑥𝑥𝑒𝑒−2𝑦𝑦
where 0 < 𝑥𝑥,𝑦𝑦 < ∞

2. 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 4𝑥𝑥𝑦𝑦
where 0 < 𝑥𝑥,𝑦𝑦 < 1

𝑔𝑔 𝑥𝑥 = 3𝑒𝑒−3𝑥𝑥
ℎ 𝑦𝑦 = 2𝑒𝑒−2𝑦𝑦

𝑔𝑔 𝑥𝑥 = 2𝑥𝑥
ℎ 𝑦𝑦 = 2𝑦𝑦

Cannot capture constraint on 𝑥𝑥 + 𝑦𝑦
into factorization!

If you can factor densities over all of the 
support, you have independence.

independent
𝑋𝑋 and 𝑌𝑌

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥, 𝑦𝑦 = 𝑔𝑔 𝑥𝑥 ℎ 𝑦𝑦 ,
where −∞ < 𝑥𝑥, 𝑦𝑦 < ∞

Separable functions:

Separable functions:

3. 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 8𝑥𝑥𝑦𝑦
where 0 < 𝑥𝑥,𝑦𝑦 < 1

and 𝑥𝑥 + 𝑦𝑦 < 1



Midterm exam

When: Monday, February 10, 7:00pm-9:00pm
Where: Cubberley Auditorium

Not permitted: book/computer/calculator
Permitted: Three 8.5”x11” double-sided sheets of notes

Covers: Up to (and including) week 4 + Lecture Notes 11
Practice: http://web.stanford.edu/class/cs109/exams/midterm.html
Review session: Saturday, 3-5pm, STLC 111

Announcements

17

not recorded; materials will be posted though

Problem Set 4

Due: Wednesday 2/19
Midterm coverage: First third (marked)

http://web.stanford.edu/class/cs109/exams/midterm.html


Today’s plan

Independent RVs
Sum of independent RVs
• Binomial
• Convolution 
• Poisson
• Normal
• Uniform

Expectation of sum of RVs (next class)

18



Sum of independent Binomials

Intuition:
• Each trial in 𝑋𝑋 and 𝑌𝑌 is independent and has same success probability 𝑝𝑝
• Define 𝑍𝑍 = 𝑛𝑛1 + 𝑛𝑛2 independent trials, each with success probability 𝑝𝑝
𝑍𝑍~Bin 𝑛𝑛1 + 𝑛𝑛2,𝑝𝑝 , and also 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌

19

𝑋𝑋~Bin(𝑛𝑛1,𝑝𝑝)
𝑌𝑌~Bin(𝑛𝑛2,𝑝𝑝) 𝑋𝑋 + 𝑌𝑌 ~Bin(𝑛𝑛1 + 𝑛𝑛2,𝑝𝑝)

If only it were 
always so 

simple…

𝑋𝑋,𝑌𝑌 independent

𝑋𝑋𝑖𝑖~Bin(𝑛𝑛𝑖𝑖 ,𝑝𝑝)
𝑋𝑋𝑖𝑖 independent for 𝑖𝑖 = 1, … ,𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 ~Bin(�
𝑖𝑖=1

𝑛𝑛

𝑛𝑛𝑖𝑖 , 𝑝𝑝)
Holds in general case:



Convolution: Sum of independent random variables
For any discrete random variables 𝑋𝑋 and 𝑌𝑌:

𝑃𝑃 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 = �
𝑘𝑘

𝑃𝑃 𝑋𝑋 = 𝑘𝑘,𝑌𝑌 = 𝑛𝑛 − 𝑘𝑘

In particular, for independent discrete random variables 𝑋𝑋 and 𝑌𝑌:

𝑃𝑃 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 = �
𝑘𝑘

𝑃𝑃 𝑋𝑋 = 𝑘𝑘 𝑃𝑃 𝑌𝑌 = 𝑛𝑛 − 𝑘𝑘

20

the convolution of 𝑝𝑝𝑋𝑋 and 𝑝𝑝𝑌𝑌



the convolution
of 𝑝𝑝𝑋𝑋 and 𝑝𝑝𝑌𝑌

Insight into convolution
For independent discrete random variables 𝑋𝑋 and 𝑌𝑌:

𝑃𝑃 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 = �
𝑘𝑘

𝑃𝑃 𝑋𝑋 = 𝑘𝑘 𝑃𝑃 𝑌𝑌 = 𝑛𝑛 − 𝑘𝑘

Suppose 𝑋𝑋 and 𝑌𝑌 are independent, both with support 0, 1, … :

21

𝑋𝑋 = 𝑘𝑘 𝑌𝑌 = 𝑛𝑛 − 𝑘𝑘 Probability
0 𝑛𝑛 𝑃𝑃 𝑋𝑋 = 0 𝑃𝑃 𝑌𝑌 = 𝑛𝑛
1 𝑛𝑛 − 1 𝑃𝑃 𝑋𝑋 = 1 𝑃𝑃 𝑌𝑌 = 𝑛𝑛 − 1
2 𝑛𝑛 − 2 𝑃𝑃 𝑋𝑋 = 2 𝑃𝑃 𝑌𝑌 = 𝑛𝑛 − 2
⋯ ⋯ ⋯
𝑛𝑛 0 𝑃𝑃 𝑋𝑋 = 𝑛𝑛 𝑃𝑃 𝑌𝑌 = 0

𝑛𝑛 + 1 − 0

Sum of mutually
exclusive events



Sum of dice rolls

22

The distribution of a sum of 
dice rolls is a convolution.

Note for 𝑘𝑘,𝑛𝑛 − 𝑘𝑘 in the support,

𝑃𝑃 𝑋𝑋 = 𝑘𝑘,𝑌𝑌 = 𝑛𝑛 − 𝑘𝑘
= 𝑃𝑃 𝑋𝑋 = 𝑘𝑘 𝑃𝑃 𝑌𝑌 = 𝑛𝑛 − 𝑘𝑘
= 1/36

𝑃𝑃 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 = �
𝑘𝑘

𝑃𝑃 𝑋𝑋 = 𝑘𝑘 𝑃𝑃 𝑌𝑌 = 𝑛𝑛 − 𝑘𝑘
𝑋𝑋 and 𝑌𝑌

independent
+ discrete



Sum of independent Poissons

23

𝑋𝑋~Poi 𝜆𝜆1 ,𝑌𝑌~Poi 𝜆𝜆2
𝑋𝑋,𝑌𝑌 independent 𝑋𝑋 + 𝑌𝑌 ~Poi(𝜆𝜆1 + 𝜆𝜆2)

𝑃𝑃 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 = �
𝑘𝑘

𝑃𝑃 𝑋𝑋 = 𝑘𝑘 𝑃𝑃 𝑌𝑌 = 𝑛𝑛 − 𝑘𝑘 𝑋𝑋 and 𝑌𝑌 independent, 
convolution

= �
𝑘𝑘=0

𝑛𝑛

𝑒𝑒−𝜆𝜆1
𝜆𝜆1𝑘𝑘

𝑘𝑘!
𝑒𝑒−𝜆𝜆2

𝜆𝜆2𝑛𝑛−𝑘𝑘

(𝑛𝑛 − 𝑘𝑘)!
= 𝑒𝑒−(𝜆𝜆1+𝜆𝜆2) �

𝑘𝑘=0

𝑛𝑛
𝜆𝜆1𝑘𝑘 𝜆𝜆2𝑛𝑛−𝑘𝑘

𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)!
PMF of Poisson RVs

=
𝑒𝑒− 𝜆𝜆1+𝜆𝜆2

𝑛𝑛!
�
𝑘𝑘=0

𝑛𝑛
𝑛𝑛!

𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)!
𝜆𝜆1𝑘𝑘 𝜆𝜆2𝑛𝑛−𝑘𝑘 =

𝑒𝑒− 𝜆𝜆1+𝜆𝜆2

𝑛𝑛!
𝜆𝜆1 + 𝜆𝜆2 𝑛𝑛

Proof (just for reference):

𝑎𝑎 + 𝑏𝑏 𝑛𝑛 = �
𝑘𝑘=0

𝑛𝑛
𝑛𝑛
𝑘𝑘 𝑎𝑎𝑘𝑘𝑏𝑏𝑛𝑛−𝑘𝑘

Binomial Theorem:

Poi 𝜆𝜆1 + 𝜆𝜆2



General sum of independent Poissons

24

Holds in general case:

𝑋𝑋𝑖𝑖~Poi 𝜆𝜆𝑖𝑖
𝑋𝑋𝑖𝑖 independent for 𝑖𝑖 = 1, … ,𝑛𝑛 �

𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 ~Poi(�
𝑖𝑖=1

𝑛𝑛

𝜆𝜆𝑖𝑖)



Sum of independent Gaussians

25

𝑋𝑋~𝒩𝒩 𝜇𝜇1,𝜎𝜎12 ,
𝑌𝑌~𝒩𝒩 𝜇𝜇2,𝜎𝜎22
𝑋𝑋,𝑌𝑌 independent

𝑋𝑋 + 𝑌𝑌 ~𝒩𝒩(𝜇𝜇1 + 𝜇𝜇2,𝜎𝜎12 + 𝜎𝜎22)

(proof left to Wikipedia)

Holds in general case:

𝑋𝑋𝑖𝑖~𝒩𝒩 𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖2

𝑋𝑋𝑖𝑖 independent for 𝑖𝑖 = 1, … ,𝑛𝑛 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 ~𝒩𝒩 �
𝑖𝑖=1

𝑛𝑛

𝜇𝜇𝑖𝑖 ,�
𝑖𝑖=1

𝑛𝑛

𝜎𝜎𝑖𝑖2

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables


Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝𝑝1 = 0.1
• G2: 100 people, each independently infected with 𝑝𝑝2 = 0.4

What is 𝑃𝑃 people infected ≥ 55 ? 

26

Strategy:
A. Convolution
B. Sum of indep. Binomials
C. (approximate) Sum of indep. Poissons
D. (approximate) Sum of indep. Normals
E. None/other

Let 𝐴𝐴 = # infected in G1.
𝐴𝐴~Bin 200,0.1
𝐵𝐵 = # infected in G2.
𝐵𝐵~Bin 100,0.4

Want: 𝑃𝑃 𝐴𝐴 + 𝐵𝐵 ≥ 55

1. Define RVs
& state goal



Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝𝑝1 = 0.1
• G2: 100 people, each independently infected with 𝑝𝑝2 = 0.4

What is 𝑃𝑃 people infected ≥ 55 ? 
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2. Approximate as sum of Normals

Let 𝐴𝐴 = # infected in G1.
𝐴𝐴~Bin 200,0.1
𝐵𝐵 = # infected in G2.
𝐵𝐵~Bin 100,0.4

Want: 𝑃𝑃 𝐴𝐴 + 𝐵𝐵 ≥ 55

𝐴𝐴 ≈ 𝑋𝑋 ~𝒩𝒩 20,18 𝐵𝐵 ≈ 𝑌𝑌 ~𝒩𝒩 40,24
1. Define RVs

& state goal
𝑃𝑃 𝐴𝐴 + 𝐵𝐵 ≥ 55 ≈ 𝑃𝑃 𝑋𝑋 + 𝑌𝑌 ≥ 54.5 continuity 

correction

3. Solve
Let 𝑊𝑊 = 𝑋𝑋 + 𝑌𝑌~𝒩𝒩 20 + 40 = 60, 18 + 24 = 42

≈ 0.8023
= 1 −Φ

54.5 − 60
42

≈ 1 −Φ −0.85𝑃𝑃 𝑊𝑊 ≥ 54.5



Linear transforms vs. independence
Let 𝑋𝑋~𝒩𝒩(𝜇𝜇,𝜎𝜎2) and 𝑌𝑌 = 𝑋𝑋 + 𝑋𝑋. What is the distribution of 𝑌𝑌?
• Are both approaches valid?

28

Independent RVs approach

Let 𝑋𝑋~𝒩𝒩(𝜇𝜇,𝜎𝜎2).
If 𝑌𝑌 = 𝑎𝑎𝑋𝑋 + 𝑏𝑏,

then 𝑌𝑌~𝒩𝒩(𝑎𝑎𝜇𝜇 + 𝑏𝑏,𝑎𝑎2𝜎𝜎2)

Let 𝑋𝑋1~𝒩𝒩 𝜇𝜇1,𝜎𝜎12 ,𝑋𝑋2~𝒩𝒩 𝜇𝜇2,𝜎𝜎22
be independent.

Then 𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2~𝒩𝒩(𝜇𝜇1 + 𝜇𝜇2,𝜎𝜎12 + 𝜎𝜎22)

Linear transform approach



Linear transforms vs. independence
Let 𝑋𝑋~𝒩𝒩(𝜇𝜇,𝜎𝜎2) and 𝑌𝑌 = 𝑋𝑋 + 𝑋𝑋. What is the distribution of 𝑌𝑌?
• Are both approaches valid?
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Independent RVs approach

𝑌𝑌 = 𝑋𝑋 + 𝑋𝑋
𝑋𝑋 + 𝑋𝑋~𝒩𝒩(𝜇𝜇 + 𝜇𝜇,𝜎𝜎2 + 𝜎𝜎2)
𝑌𝑌~𝒩𝒩 2𝜇𝜇, 2𝜎𝜎2

Let 𝑋𝑋~𝒩𝒩(𝜇𝜇,𝜎𝜎2).
If 𝑌𝑌 = 𝑎𝑎𝑋𝑋 + 𝑏𝑏,

then 𝑌𝑌~𝒩𝒩(𝑎𝑎𝜇𝜇 + 𝑏𝑏,𝑎𝑎2𝜎𝜎2)

Let 𝑋𝑋1~𝒩𝒩 𝜇𝜇1,𝜎𝜎12 ,𝑋𝑋2~𝒩𝒩 𝜇𝜇2,𝜎𝜎22
be independent.

Then 𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2~𝒩𝒩(𝜇𝜇1 + 𝜇𝜇2,𝜎𝜎12 + 𝜎𝜎22)

𝑌𝑌 = 2𝑋𝑋

Linear transform approach

𝑌𝑌~𝒩𝒩(2𝜇𝜇, 4𝜎𝜎2)



Motivating idea: Zero sum games
Want: 𝑃𝑃 Warriors win = 𝑃𝑃 𝐴𝐴𝑊𝑊 > 𝐴𝐴𝐵𝐵

= 𝑃𝑃 𝐴𝐴𝑊𝑊 − 𝐴𝐴𝐵𝐵 > 0

Assume 𝐴𝐴𝑊𝑊,𝐴𝐴𝐵𝐵 are independent.
Let 𝐷𝐷 = 𝐴𝐴𝑊𝑊 − 𝐴𝐴𝐵𝐵.

30

A. 𝐷𝐷~𝒩𝒩 1657 − 1470, 2002 − 2002
B. 𝐷𝐷~𝒩𝒩 1657 − 1470, 2002 + 2002
C. 𝐷𝐷~𝒩𝒩 1657 + 1470, 2002 + 2002
D. None/other

What is the distribution of 𝐷𝐷?



Motivating idea: Zero sum games
Want: 𝑃𝑃 Warriors win = 𝑃𝑃 𝐴𝐴𝑊𝑊 > 𝐴𝐴𝐵𝐵

= 𝑃𝑃 𝐴𝐴𝑊𝑊 − 𝐴𝐴𝐵𝐵 > 0

Assume 𝐴𝐴𝑊𝑊,𝐴𝐴𝐵𝐵 are independent.
Let 𝐷𝐷 = 𝐴𝐴𝑊𝑊 − 𝐴𝐴𝐵𝐵.

31

𝐷𝐷~𝒩𝒩 1657 − 1470, 2002+2002

~𝒩𝒩 187, 2 ⋅ 2002 𝜎𝜎 ≈ 283

𝑃𝑃 𝐷𝐷 > 0 = 1 − 𝐹𝐹𝐷𝐷 0 = 1 −Φ
0 − 187

283
≈ 0.7454

Compare with 0.7488, calculated by sampling!



Today’s plan

Independent RVs
Sum of independent RVs
• Binomial
• Convolution 
• Poisson
• Normal
• Uniform

Expectation of sum of RVs (next class)

32



Continuous Convolution

33

the convolution 
of 𝑝𝑝𝑋𝑋 and 𝑝𝑝𝑌𝑌

For independent discrete random variables 𝑋𝑋 and 𝑌𝑌:

𝑃𝑃 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 = �
𝑘𝑘

𝑃𝑃 𝑋𝑋 = 𝑘𝑘 𝑃𝑃 𝑌𝑌 = 𝑛𝑛 − 𝑘𝑘

the convolution
of 𝑓𝑓𝑋𝑋 and 𝑓𝑓𝑌𝑌

For independent continuous random variables 𝑋𝑋 and 𝑌𝑌:

𝑓𝑓𝑋𝑋+𝑌𝑌 𝛼𝛼 = �
−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝛼𝛼 − 𝑥𝑥 𝑑𝑑𝑥𝑥



Sum of independent Uniforms
Let 𝑋𝑋~Uni 0,1 and 𝑌𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋𝑋 + 𝑌𝑌, 𝑓𝑓𝑋𝑋+𝑌𝑌?

34

𝑓𝑓𝑋𝑋+𝑌𝑌 𝛼𝛼 = �
−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝛼𝛼 − 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑋𝑋 and 𝑌𝑌
independent
+ continuous

𝑓𝑓𝑋𝑋+𝑌𝑌 𝛼𝛼 = �
−∞

∞
𝑓𝑓𝑋𝑋 𝑘𝑘 𝑓𝑓𝑌𝑌 𝛼𝛼 − 𝑘𝑘 𝑑𝑑𝑘𝑘

A. between 0 and 1
B. 0 ≤ 𝑘𝑘 ≤ 1
C. 0 ≤ 𝛼𝛼 − 𝑘𝑘 ≤ 1
D. 0 ≤ 𝛼𝛼 ≤ 2
E. Other

𝑓𝑓𝑋𝑋 𝑘𝑘 𝑓𝑓𝑌𝑌 𝛼𝛼 − 𝑘𝑘 = 1 when: (select one) 



Sum of independent Uniforms
Let 𝑋𝑋~Uni 0,1 and 𝑌𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋𝑋 + 𝑌𝑌, 𝑓𝑓𝑋𝑋+𝑌𝑌?

35

𝑓𝑓𝑋𝑋+𝑌𝑌 𝛼𝛼 = �
−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝛼𝛼 − 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑋𝑋 and 𝑌𝑌
independent
+ continuous

𝑓𝑓𝑋𝑋+𝑌𝑌 𝛼𝛼 = �
−∞

∞
𝑓𝑓𝑋𝑋 𝑘𝑘 𝑓𝑓𝑌𝑌 𝛼𝛼 − 𝑘𝑘 𝑑𝑑𝑘𝑘

0 ≤ 𝑘𝑘 ≤ 1
0 ≤ 𝛼𝛼 − 𝑘𝑘 ≤ 1
𝛼𝛼 − 1 ≤ 𝑘𝑘 ≤ 𝛼𝛼

The precise integration
bounds on 𝑘𝑘 depend on 𝛼𝛼.

𝑓𝑓𝑋𝑋 𝑘𝑘 𝑓𝑓𝑌𝑌 𝛼𝛼 − 𝑘𝑘 = 1:

What are the bounds on 𝑘𝑘 when:
1. 𝛼𝛼 = 1/2?

2. 𝛼𝛼 = 3/2?

3. 𝛼𝛼 = 1?

0 ≤ 𝑘𝑘 ≤ 𝛼𝛼
∫𝑘𝑘=0
𝛼𝛼 1𝑑𝑑𝑘𝑘 = 𝛼𝛼 = 1/2

𝛼𝛼 − 1 ≤ 𝑘𝑘 ≤ 1
∫𝑘𝑘=𝛼𝛼−1
1 1𝑑𝑑𝑘𝑘 = 2 − 𝛼𝛼 = 1/2

0 ≤ 𝑘𝑘 ≤ 𝛼𝛼
∫𝑘𝑘=0
𝛼𝛼 1𝑑𝑑𝑘𝑘 = 𝛼𝛼 = 1

(the other bound works too)



Sum of independent Uniforms
Let 𝑋𝑋~Uni 0,1 and 𝑌𝑌~Uni 0,1 be independent random variables.
What is the distribution of 𝑋𝑋 + 𝑌𝑌, 𝑓𝑓𝑋𝑋+𝑌𝑌?

36

𝑓𝑓𝑋𝑋+𝑌𝑌 𝛼𝛼 = �
−∞

∞
𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝛼𝛼 − 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑋𝑋 and 𝑌𝑌
independent
+ continuous

𝑓𝑓𝑋𝑋+𝑌𝑌 𝛼𝛼 = �
−∞

∞
𝑓𝑓𝑋𝑋 𝑘𝑘 𝑓𝑓𝑌𝑌 𝛼𝛼 − 𝑘𝑘 𝑑𝑑𝑘𝑘

0 ≤ 𝑘𝑘 ≤ 1
0 ≤ 𝛼𝛼 − 𝑘𝑘 ≤ 1
𝛼𝛼 − 1 ≤ 𝑘𝑘 ≤ 𝛼𝛼

The precise integration
bounds on 𝑘𝑘 depend on 𝛼𝛼.

𝑓𝑓𝑋𝑋 𝑘𝑘 𝑓𝑓𝑌𝑌 𝛼𝛼 − 𝑘𝑘 = 1 when:

𝑓𝑓𝑋𝑋+𝑌𝑌 𝛼𝛼 = �
𝑎𝑎 0 ≤ 𝑎𝑎 ≤ 1

2 − 𝑎𝑎 1 ≤ 𝑎𝑎 ≤ 2
0 otherwise

0

1/2

𝛼𝛼

𝑓𝑓 𝑋𝑋
+
𝑌𝑌
𝛼𝛼

1/2 1 3/2 2

1

0



Today’s plan

Independent RVs
Sum of independent RVs
• Binomial
• Convolution 
• Poisson
• Normal
• Uniform

Expectation of sum of RVs (next class)

37



Properties of Expectation, extended to two RVs
1. Linearity:

𝐸𝐸 𝑎𝑎𝑋𝑋 + 𝑏𝑏𝑌𝑌 + 𝑐𝑐 = 𝑎𝑎𝐸𝐸 𝑋𝑋 + 𝑏𝑏𝐸𝐸 𝑌𝑌 + 𝑐𝑐

2. Expectation of a sum = sum of expectation:

𝐸𝐸 𝑋𝑋 + 𝑌𝑌 = 𝐸𝐸 𝑋𝑋 + 𝐸𝐸 𝑌𝑌

3. Unconscious statistician:

38

(we’ve seen this; 
we’ll prove this next)

𝐸𝐸 𝑔𝑔 𝑋𝑋,𝑌𝑌 = �
𝑥𝑥

�
𝑦𝑦

𝑔𝑔 𝑥𝑥,𝑦𝑦 𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)

𝐸𝐸 𝑔𝑔 𝑋𝑋,𝑌𝑌 = �
−∞

∞
�
−∞

∞
𝑔𝑔 𝑥𝑥,𝑦𝑦 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦



Proof of expectation of a sum of RVs

39

Even if the joint distribution is unknown, you can calculate the 
expectation of sum as sum of expectations.

Example: 𝐸𝐸 ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖 = ∑𝑖𝑖=1𝑛𝑛 𝐸𝐸 𝑋𝑋𝑖𝑖 despite dependent trials 𝑋𝑋𝑖𝑖

𝐸𝐸 𝑋𝑋 + 𝑌𝑌 = 𝐸𝐸 𝑋𝑋 + 𝐸𝐸 𝑌𝑌

𝐸𝐸 𝑋𝑋 + 𝑌𝑌 = 𝐸𝐸 𝑔𝑔 𝑋𝑋,𝑌𝑌 = �
𝑥𝑥

�
𝑦𝑦

𝑔𝑔 𝑥𝑥,𝑦𝑦 𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = �
𝑥𝑥

�
𝑦𝑦

𝑥𝑥 + 𝑦𝑦 𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 LOTUS,
𝑔𝑔 𝑋𝑋,𝑌𝑌 = 𝑋𝑋 + 𝑌𝑌

= �
𝑥𝑥

�
𝑦𝑦

𝑥𝑥𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 + �
𝑥𝑥

�
𝑦𝑦

𝑦𝑦𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦

Linearity of summations
(cont. case: linearity of integrals)

= �
𝑥𝑥

𝑥𝑥�
𝑦𝑦

𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 + �
𝑦𝑦

𝑦𝑦�
𝑥𝑥

𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦

Marginal PMFs for 𝑋𝑋 and 𝑌𝑌= �
𝑥𝑥

𝑥𝑥𝑝𝑝𝑋𝑋 𝑥𝑥 + �
𝑦𝑦

𝑦𝑦𝑝𝑝𝑌𝑌 𝑦𝑦

= 𝐸𝐸 𝑋𝑋 + 𝐸𝐸[𝑌𝑌]
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𝑋𝑋~Bin(𝑛𝑛,𝑝𝑝) 𝐸𝐸 𝑋𝑋 = 𝑛𝑛𝑝𝑝

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝 = 𝑛𝑛𝑝𝑝𝑋𝑋 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖
Let 𝑋𝑋𝑖𝑖 = 𝑖𝑖th trial is heads
𝑋𝑋𝑖𝑖~Ber 𝑝𝑝 ,𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝑝𝑝

Review
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𝑋𝑋~Bin(𝑛𝑛,𝑝𝑝) 𝐸𝐸 𝑋𝑋 = 𝑛𝑛𝑝𝑝

𝑌𝑌~NegBin(𝑟𝑟, 𝑝𝑝) 𝐸𝐸 𝑌𝑌 = 𝑟𝑟
𝑝𝑝

𝑋𝑋 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 𝐸𝐸 𝑋𝑋 = 𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝 = 𝑛𝑛𝑝𝑝Let 𝑋𝑋𝑖𝑖 = 𝑖𝑖th trial is heads
𝑋𝑋𝑖𝑖~Ber 𝑝𝑝 ,𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝑝𝑝

How should we define 𝑌𝑌𝑖𝑖? 
A. 𝑌𝑌𝑖𝑖 = 𝑖𝑖th trial is heads. 𝑌𝑌𝑖𝑖~Ber 𝑝𝑝 , 𝑖𝑖 = 1, … ,𝑛𝑛
B. 𝑌𝑌𝑖𝑖 = # trials to get 𝑖𝑖th success (after 𝑖𝑖 − 1 th success)

𝑌𝑌𝑖𝑖~Geo 𝑝𝑝 , 𝑖𝑖 = 1, … , 𝑟𝑟
C. 𝑌𝑌𝑖𝑖 = # successes in 𝑛𝑛 trials 

𝑌𝑌𝑖𝑖~Bin 𝑛𝑛,𝑝𝑝 , 𝑖𝑖 = 1, … , 𝑟𝑟, we look for 𝑃𝑃 𝑌𝑌𝑖𝑖 = 1

𝑌𝑌 = �
𝑖𝑖=1

?

𝑌𝑌𝑖𝑖

Suppose:
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𝑋𝑋~Bin(𝑛𝑛,𝑝𝑝) 𝐸𝐸 𝑋𝑋 = 𝑛𝑛𝑝𝑝

𝑌𝑌~NegBin(𝑟𝑟, 𝑝𝑝) 𝐸𝐸 𝑌𝑌 = 𝑟𝑟
𝑝𝑝

𝑋𝑋 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 𝐸𝐸 𝑋𝑋 = 𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝 = 𝑛𝑛𝑝𝑝Let 𝑋𝑋𝑖𝑖 = 𝑖𝑖th trial is heads
𝑋𝑋𝑖𝑖~Ber 𝑝𝑝 ,𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝑝𝑝

𝑌𝑌 = �
𝑖𝑖=1

𝑟𝑟

𝑌𝑌𝑖𝑖

Let 𝑌𝑌𝑖𝑖 = # trials to get 𝑖𝑖th
success (after
𝑖𝑖 − 1 th success)

𝑌𝑌𝑖𝑖~Geo 𝑝𝑝 ,𝐸𝐸 𝑌𝑌𝑖𝑖 = 1
𝑝𝑝

𝐸𝐸 𝑌𝑌 = 𝐸𝐸 �
𝑖𝑖=1

𝑟𝑟

𝑌𝑌𝑖𝑖 = �
𝑖𝑖=1

𝑟𝑟

𝐸𝐸 𝑌𝑌𝑖𝑖 = �
𝑖𝑖=1

𝑟𝑟
1
𝑝𝑝

=
𝑟𝑟
𝑝𝑝
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