13: Independent RVs

David Varodayan February 5, 2020 Adapted from slides by Lisa Yan

Probabilities from joint CDFs

Stanford University 2

Gaussian blur

In a Gaussian blur, for every pixel:

- Weight each pixel by the probability that X and Y are both within the pixel bounds
- The weighting function is a Gaussian joint PDF with a standard deviation parameter σ .

Gaussian blurring with $\sigma = 3$ Joint PDF: $f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-(x^2 + y^2)/2 \cdot 3^2}$ Joint CDF: $F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right) \Phi\left(\frac{y}{3}\right)$ Weight matrix: Center pixel: (0, 0)Pixel bounds: $-0.5 < x \le 0.5$ $-0.5 < y \le 0.5$

 $F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2) - F_{X,Y}(a_2,b_1) + F_{X,Y}(a_1,b_1)$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$

Gaussian blur

In a Gaussian blur:

• Weight each pixel by the probability that *X* and *Y* are both within the pixel bounds

What is the weight of the center pixel?

$$P(-0.5 < X \le 0.5, -0.5 < Y \le 0.5)$$

= $F_{X,Y}(0.5, 0.5) - F_{X,Y}(-0.5, 0.5)$
 $-F_{X,Y}(0.5, -0.5) + F_{X,Y}(-0.5, -0.5)$
= $\Phi\left(\frac{0.5}{3}\right) \Phi\left(\frac{0.5}{3}\right) - 2 \cdot \Phi\left(\frac{-0.5}{3}\right) \Phi\left(\frac{0.5}{3}\right)$
 $+ \Phi\left(\frac{-0.5}{3}\right) \Phi\left(\frac{-0.5}{3}\right)$

 $\approx 0.5662^2 - 2 \cdot 0.5662 \cdot 0.4338 + 0.4338^2$

Gaussian blurring with $\sigma = 3$ Joint PDF: $f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-(x^2 + y^2)/2 \cdot 3^2}$ Joint CDF: $F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right)\Phi\left(\frac{y}{3}\right)$ X -1.5 0.5 Weight matrix: Center pixel: (0, 0) $\frac{Y}{-1.5-}$ Pixel bounds: $-0.5 < x \le 0.5$ $-0.5 < y \le 0.5$

 $F_{X,Y}(a_{2,b_{2}}) - F_{X,Y}(a_{1,b_{2}}) - F_{X,Y}(a_{2,b_{1}}) + F_{X,Y}(a_{1,b_{1}})$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$

≈ 0.206

CS109 roadmap

Multiple events:

Joint (Multivariate) distributions

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution
- Poisson
- Normal
- Uniform

Expectation of sum of RVs (next class)

Independent discrete RVs

Recall the definition of independent events *E* and *F*: P(EF) = P(E)P(F)

Two discrete random variables *X* and *Y* are **independent** if:

for all x, y: P(X = x, Y = y) = P(X = x)P(Y = y) $p_{X,Y}(x, y) = p_X(x)p_Y(y)$

Different notation, same idea:

Intuitively: knowing value of X tells us nothing about the distribution of Y (and vice versa)

If two variables are not independent, they are called **dependent**.

Dice (after all this time, still our friends)

- Let: D_1 and D_2 be the outcomes of two rolls $S = D_1 + D_2$, the sum of two rolls
- Each roll of a 6-sided die is an independent trial.
- D_1 and D_2 are independent.
- Are S and D_1 independent?
- **1.** $P(D_1 = 1, S = 7)$?

2. $P(D_1 = 1, S = 5)$?

Dice (after all this time, still our friends)

- Let: D_1 and D_2 be the outcomes of two rolls $S = D_1 + D_2$, the sum of two rolls
- Each roll of a 6-sided die is an independent trial.
- D_1 and D_2 are independent.

Are S and D_1 independent?

1. $P(D_1 = 1, S = 7)$? Event (S = 7): {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} $P(D_1 = 1)P(S = 7) = (1/6)(1/6)$ $= 1/36 = P(D_1 = 1, S = 7)$

Independent events $(D_1 = 1), (S = 7)$ Dependent events $(D_1 = 1), (S = 5)$

9

2.
$$P(D_1 = 1, S = 5)$$
?
Event $(S = 5)$: {(1,4), (2,3), (3,2), (4,1)}

$$P(D_1 = 1)P(S = 5) = (1/6)(4/36)$$

= 1/36 = P(D_1 = 1, S = 5)

All events (X = x, Y = y) must be independent for X, Y to be independent random variables. Stanford University

Coin flips

Flip a coin with probability p of "heads" a total of n + m times.

- Let X = number of heads in first n flips. $X \sim Bin(n, p)$ Y = number of heads in next m flips. $Y \sim Bin(m, p)$ Z = total number of heads in n + m flips.
- **1.** Are *X* and *Z* independent?

Coin flips

Flip a coin with probability p of "heads" a total of n + m times.

- Let X = number of heads in first *n* flips. $X \sim Bin(n, p)$ Y = number of heads in next *m* flips. $Y \sim Bin(m, p)$ Z = total number of heads in n + m flips.
- 1. Are *X* and *Z* independent?
- 2. Are *X* and *Y* independent?

Strategy:

- A. No, proof by counterexample
- B. Yes, proof by counting
- C. None/other

Coin flips

Flip a coin with probability p of "heads" a total of n + m times.

- Let X = number of heads in first n flips. $X \sim Bin(n, p)$ Y = number of heads in next m flips. $Y \sim Bin(m, p)$ Z = total number of heads in n + m flips.
- 1. Are *X* and *Z* independent?
- 2. Are *X* and *Y* independent?

 $P(X = x, Y = y) = P\left(\begin{array}{c} \text{first } n \text{ flips have } x \text{ heads} \\ \text{and next } m \text{ flips have } y \text{ heads} \end{array}\right)$

of mutually exclusive
outcomes in event
$$: \binom{n}{x}\binom{m}{y}$$

 $P(\text{each outcome})$
 $= p^{x}(1-p)^{n-x}p^{y}(1-p)^{m-y}$

$$= \binom{n}{x} p^{x} (1-p)^{n-x} \binom{m}{y} p^{y} (1-p)^{m-y}$$

$$= P(X = x)P(Y = y)$$

Independent continuous RVs

Two continuous random variables *X* and *Y* are **independent** if:

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

Equivalently:

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

More generally, X and Y are independent if joint density factors separately:

$$f_{X,Y}(x,y) = g(x)h(y)$$
, where $-\infty < x, y < \infty$

Is the Gaussian blur distribution independent?

Gaussian blurring with $\sigma = 3$ Joint PDF: $f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-(x^2 + y^2)/2 \cdot 3^2}$ Joint CDF: $F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right)\Phi\left(\frac{y}{3}\right)$ X -1.5 0.5 Weight matrix: Center pixel: (0, 0) Pixel bounds: 1.5 $-0.5 < x \le 0.5$ $-0.5 < y \le 0.5$

Stanford University 14

$$f_{X,Y}(x,y) = g(x)h(y),$$

where $-\infty < x, y < \infty$ independent
X and Y

Are *X* and *Y* independent in the following cases?

1.
$$f_{X,Y}(x, y) = 6e^{-3x}e^{-2y}$$

where $0 < x, y < \infty$

2.
$$f_{X,Y}(x, y) = 4xy$$

where $0 < x, y < 1$

3.
$$f_{X,Y}(x, y) = 8xy$$

where $0 < x, y < 1$
and $x + y < 1$

$$f_{X,Y}(x,y) = g(x)h(y),$$

where $-\infty < x, y < \infty$ independent
X and Y

Are *X* and *Y* independent in the following cases?

- 1. $f_{X,Y}(x,y) = 6e^{-3x}e^{-2y}$ Separable functions: $g(x) = 3e^{-3x}$ where $0 < x, y < \infty$ $h(y) = 2e^{-2y}$
- 2. $f_{X,Y}(x, y) = 4xy$ where 0 < x, y < 1

Separable functions: g(x) = 2xh(y) = 2y

3. $f_{X,Y}(x, y) = 8xy$ where 0 < x, y < 1and x + y < 1 Cannot capture constraint on x + y into factorization!

If you can factor densities over all of the support, you have independence.

Announcements

Midterm exam

When:	Monday, February 10, 7:00pm-9:00pm
Where:	Cubberley Auditorium
Not permitted:	ed: book/computer/calculator <u>Three</u> 8.5"x11" double-sided sheets of notes
Covers:	Up to (and including) week 4 + Lecture Notes 11
Practice:	http://web.stanford.edu/class/cs109/exams/midterm.html
Review sess	sion: Saturday, 3-5pm, STLC 111 not recorded; materials will be posted though
	not recorded; materials will be posted though

Problem Set 4Due:Wednesday 2/19Midterm coverage:First third (marked)

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution
- Poisson
- Normal
- Uniform

Expectation of sum of RVs (next class)

Sum of independent Binomials

$$X \sim Bin(n_1, p)$$

$$Y \sim Bin(n_2, p)$$

$$X + Y \sim Bin(n_1 + n_2, p)$$

$$X, Y \text{ independent}$$

 $\sum X_i \sim \operatorname{Bin}(\sum n_i, p)$

If only it were

Stanford University 19

always so

simple...

Intuition:

- Each trial in X and Y is independent and has same success probability p
- Define $Z = n_1 + n_2$ independent trials, each with success probability $p Z \sim Bin(n_1 + n_2, p)$, and also Z = X + Y

Holds in general case:

 $X_i \sim Bin(n_i, p)$ X_i independent for i = 1, ..., n

Convolution: Sum of independent random variables

For any discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k, Y = n - k)$$

In particular, for independent discrete random variables X and Y:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

the convolution of p_X and p_Y

Insight into convolution

For independent discrete random variables *X* and *Y*:

$$P(X+Y=n) = \sum_{k} P(X=k)P(Y=n-k)$$

the convolution of p_X and p_Y

Suppose *X* and *Y* are independent, both with support {0, 1, ... }:

X = k	Y = n - k	Probability	_	
0	n	P(X=0)P(Y=n)	Sum of mutually	
1	n-1	P(X=1)P(Y=n-1)		
2	n-2	P(X=2)P(Y=n-2)		exclusive events
•••	•••	•••		
n	0	P(X=n)P(Y=0)		
n + 1	—	0		

Sum of dice rolls

X and *Y* independent + discrete $P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$

The distribution of a sum of dice rolls is a convolution.

Note for k, n - k in the support, P(X = k, Y = n - k) = P(X = k)P(Y = n - k) = 1/36

Sum of independent Poissons

 $X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$ X, Y independent

 $X + Y \sim \operatorname{Poi}(\lambda_1 + \lambda_2)$

Proof (just for reference): $P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$ X and Y independent, convolution $= \sum_{k=0}^{n} e^{-\lambda_1} \frac{\lambda_1^k}{k!} e^{-\lambda_2} \frac{\lambda_2^{n-k}}{(n-k)!} = e^{-(\lambda_1+\lambda_2)} \sum_{k=0}^{n} \frac{\lambda_1^k \lambda_2^{n-k}}{k! (n-k)!}$ PMF of Poisson RVs $=\frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!}\sum_{k=0}^{n}\frac{n!}{k!(n-k)!}\lambda_{1}^{k}\lambda_{2}^{n-k}=\frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!}(\lambda_{1}+\lambda_{2})^{n}$ **Binomial Theorem:** $(a+b)^n = \sum \binom{n}{k} a^k b^{n-k}$ $Poi(\lambda_1 + \lambda_2)$ Stanford University 23

General sum of independent Poissons

Holds in general case:

 $X_i \sim \text{Poi}(\lambda_i)$ X_i independent for i = 1, ..., n

$$\sum_{i=1}^{n} X_i \sim \operatorname{Poi}(\sum_{i=1}^{n} \lambda_i)$$

Sum of independent Gaussians

$$X \sim \mathcal{N}(\mu_1, \sigma_1^2),$$

 $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$
 X, Y independent

$$X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

(proof left to Wikipedia)

Holds in general case:

$$X_{i} \sim \mathcal{N}(\mu_{i}, \sigma_{i}^{2})$$

$$X_{i} \text{ independent for } i = 1, ..., n$$

$$\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$$

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 55)$?

1. Define RVs & state goal

Let A = # infected in G1. $A \sim Bin(200,0.1)$ B = # infected in G2. $B \sim Bin(100,0.4)$

Want: $P(A + B \ge 55)$

Strategy:

- A. Convolution
- B. Sum of indep. Binomials
- C. (approximate) Sum of indep. Poissons
- D. (approximate) Sum of indep. Normals
- E. None/other

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 55)$?

Define RVs
 & state goal

Let A = # infected in G1. $A \sim Bin(200,0.1)$ B = # infected in G2. $B \sim Bin(100,0.4)$

Want: $P(A + B \ge 55)$

2. Approximate as sum of Normals $A \approx X \sim \mathcal{N}(20,18) \quad B \approx Y \sim \mathcal{N}(40,24)$ $P(A + B \ge 55) \approx P(X + Y \ge 54.5) \quad \text{continuity} \quad \text{correction}$ 3. Solve Let $W = X + Y \sim \mathcal{N}(20 + 40 = 60, 18 + 24 = 42)$ $P(W \ge 54.5) = 1 - \Phi\left(\frac{54.5 - 60}{\sqrt{42}}\right) \approx 1 - \Phi(-0.85)$ $\approx 0.8023 \quad \text{Stanford University} \quad 27$

Linear transforms vs. independence

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = X + X. What is the distribution of *Y*?

Are both approaches valid?

Independent RVs approach

Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent. Then $Y = X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ Linear transform approach

Let $X \sim \mathcal{N}(\mu, \sigma^2)$. If Y = aX + b, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$

Linear transforms vs. independence

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = X + X. What is the distribution of Y? • Are both approaches valid?

Independent RVs approach

Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent. Then $Y = X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Y = X + X $X + X \sim \mathcal{N}(\mu + \mu, \sigma^{2} + \sigma^{2})$ $Y \sim \mathcal{N}(2\mu, 2\sigma^{2})$ Linear transform approach

Let $X \sim \mathcal{N}(\mu, \sigma^2)$. If Y = aX + b, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$

Y = 2X $Y \sim \mathcal{N}(2\mu, 4\sigma^2)$

Motivating idea: Zero sum games

Want:
$$P(\text{Warriors win}) = P(A_W > A_B)$$

= $P(A_W - A_B > 0)$

Assume A_W , A_B are independent. Let $D = A_W - A_B$.

What is the distribution of *D*?

A.
$$D \sim \mathcal{N}(1657 - 1470, 200^2 - 200^2)$$

B. $D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$
C. $D \sim \mathcal{N}(1657 + 1470, 200^2 + 200^2)$
D. None/other

Motivating idea: Zero sum games

Want:
$$P(\text{Warriors win}) = P(A_W > A_B)$$

= $P(A_W - A_B > 0)$

Assume A_W, A_B are independent. Let $D = A_W - A_B$. $D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$ $\sim \mathcal{N}(187, 2 \cdot 200^2) \quad \sigma \approx 283$

$$P(D > 0) = 1 - F_D(0) = 1 - \Phi\left(\frac{0 - 187}{283}\right)$$

 ≈ 0.7454

Compare with 0.7488, calculated by sampling!

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution
- Poisson
- Normal
- Uniform

Expectation of sum of RVs (next class)

Continuous Convolution

For independent discrete random variables *X* and *Y*:

$$P(X+Y=n) = \sum_{k} P(X=k)P(Y=n-k)$$

the convolution of p_X and p_Y

For independent continuous random variables *X* and *Y*:

$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

the convolution of f_X and f_Y

X and Y
independent
$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

+ continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent random variables. What is the distribution of X + Y, f_{X+Y} ?

$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(k) f_Y(\alpha - k) dk$$

 $f_X(k)f_Y(\alpha - k) = 1$ when: (select one)

- A. between 0 and 1
- B. $0 \le k \le 1$
- C. $0 \le \alpha k \le 1$
- D. $0 \le \alpha \le 2$
- E. Other

X and Y
independent
$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

+ continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent random variables. What is the distribution of X + Y, f_{X+Y} ?

$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(k) f_Y(\alpha - k) dk$$

$$f_X(k)f_Y(\alpha - k) = 1:$$

 $0 \le k \le 1$ $0 \le \alpha - k \le 1$ $\alpha - 1 \le k \le \alpha$

The precise integration bounds on k depend on α .

What are the bounds on *k* when:

1.
$$\alpha = 1/2$$
? $0 \le k \le \alpha$
 $\int_{k=0}^{\alpha} 1 dk = \alpha = 1/2$

2.
$$\alpha = 3/2$$
? $\alpha - 1 \le k \le 1$
 $\int_{k=\alpha-1}^{1} 1dk = 2 - \alpha = 1/2$

3.
$$\alpha = 1$$
? $0 \le k \le \alpha$
 $\int_{k=0}^{\alpha} 1 dk = \alpha =$

(the other bound works too)

1

Sum of independent Uniforms

X and Y
independent
$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

+ continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent random variables. What is the distribution of X + Y, f_{X+Y} ?

 $\begin{array}{c}
0 \leq k \leq 1 \\
0 \leq \alpha - k \leq 1 \\
\alpha - 1 \leq k \leq \alpha
\end{array}$

The precise integration bounds on k depend on α .

$$f_{X+Y}(\alpha) = \begin{cases} a & 0 \le a \le 1\\ 2-a & 1 \le a \le 2\\ 0 & \text{otherwise} \end{cases}$$

Today's plan

Independent RVs

Sum of independent RVs

- Binomial
- Convolution
- Poisson
- Normal
- Uniform

Expectation of sum of RVs (next class)

Properties of Expectation, extended to two RVs

1. Linearity: E[aX + bY + c] = aE[X] + bE[Y] + c

2. Expectation of a sum = sum of expectation: E[X + Y] = E[X] + E[Y]

(we've seen this; we'll prove this next)

3. Unconscious statistician:

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$
$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, dx \, dy$$

Stanford University 38

Proof of expectation of a sum of RVs

E[X+Y] = E[X] + E[Y]

$$E[X + Y] = E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) p_{X,Y}(x, y) = \sum_{x} \sum_{y} (x + y) p_{X,Y}(x, y) \frac{\text{LOTUS}}{g(X, Y) = X + Y}$$

$$= \sum_{x} \sum_{y} x p_{X,Y}(x, y) + \sum_{x} \sum_{y} y p_{X,Y}(x, y)$$
Linearity of summations
(cont. case: linearity of integrals)
$$= \sum_{x} x \sum_{y} p_{X,Y}(x, y) + \sum_{y} y \sum_{x} p_{X,Y}(x, y)$$

$$= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)$$
Marginal PMFs for X and Y
$$= E[X] + E[Y]$$
Even if the joint distribution is unknown, you can calculate the expectation of sum as sum of expectations.

Example: $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$ despite dependent trials X_i

Expectations of common RVs

$$X \sim Bin(n, p) \quad E[X] = np$$

$$X = \sum_{i=1}^{n} X_i \quad \begin{array}{c} \operatorname{Let} X_i = i \text{th trial is heads} \\ X_i \sim \operatorname{Ber}(p), E[X_i] = p \end{array}$$

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np$$

Expectations of common RVs

$$X \sim Bin(n, p) \quad E[X] = np$$

 $X = \sum_{i=1}^{n} X_i \quad \text{Let } X_i = i \text{th trial is heads} \\ X_i \sim \text{Ber}(p), E[X_i] = p$

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np$$

$$Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}$$

Suppose:

$$Y = \sum_{i=1}^{?} Y_i$$

How should we define Y_i ? A. $Y_i = i$ th trial is heads. $Y_i \sim \text{Ber}(p), i = 1, ..., n$ B. $Y_i = \#$ trials to get *i*th success (after (i - 1)th success) $Y_i \sim \text{Geo}(p), i = 1, ..., r$ C. $Y_i = \#$ successes in *n* trials $Y_i \sim \text{Bin}(n, p), i = 1, ..., r$, we look for $P(Y_i = 1)$

Stanford University 41

Expectations of common RVs

$$X \sim Bin(n,p) \quad E[X] = np$$

 $X = \sum_{i=1}^{n} X_i$ Let $X_i = i$ th trial is heads $X_i \sim \text{Ber}(p), E[X_i] = p$

$$E[X] = E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}] = \sum_{i=1}^{n} p = np$$

$$Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}$$

$$Y = \sum_{i=1}^{r} Y_i$$

$$Y = \sum_{i=1}^{r} Y_i$$

$$Y_i = \# \text{ trials to get } i\text{ th}$$

$$Success (after)$$

$$(i - 1)\text{ th success})$$

$$Y_i \sim \text{Geo}(p), E[Y_i] = \frac{1}{p}$$

$$E[Y] = E\left[\sum_{i=1}^{r} Y_i\right] = \sum_{i=1}^{r} E[Y_i] = \sum_{i=1}^{r} \frac{1}{p} = \frac{r}{p}$$