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Multiple events:

𝑃𝑃 𝐸𝐸 𝐹𝐹 =
𝑃𝑃 𝐸𝐸𝐹𝐹
𝑃𝑃 𝐹𝐹

conditional 
probability

𝑃𝑃 𝐸𝐸𝐹𝐹 = 𝑃𝑃 𝐸𝐸 𝑃𝑃(𝐹𝐹)

independence

Joint (Multivariate) distributions

joint PMF/PDF

𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦

intersection

𝑃𝑃 𝐸𝐸 ∩ 𝐹𝐹
= 𝑃𝑃 𝐸𝐸𝐹𝐹

conditional 
distributions

independent
RVs

𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦
𝑓𝑓𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦

sum of 
independent RVs

Review



Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋𝑋,𝑌𝑌 .
• You observe a noisy distance measurement, 𝐷𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object 

after observing the measurement?
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posterior
belief

likelihood
(of evidence)

prior
belief

normalization constant

Recall Bayes 
terminology:

𝑓𝑓𝑋𝑋,𝑌𝑌|𝐷𝐷 𝑥𝑥, 𝑦𝑦|𝑑𝑑 =
𝑓𝑓𝐷𝐷|𝑋𝑋,𝑌𝑌 𝑑𝑑|𝑥𝑥, 𝑦𝑦 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥, 𝑦𝑦

𝑓𝑓𝐷𝐷 𝑑𝑑



Top-down view

Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋𝑋,𝑌𝑌 .
• You observe a noisy distance measurement, 𝐷𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object 

after observing the measurement?
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Let 𝑋𝑋,𝑌𝑌 = object’s 2-D location.
(your satellite is at (0,0)

Suppose the prior distribution is a
symmetric bivariate normal distribution:

𝑥𝑥

𝑦𝑦

𝑓𝑓 𝑋𝑋
,𝑌𝑌
𝑥𝑥,
𝑦𝑦

3-D view

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 =
1

2𝜋𝜋22
𝑒𝑒
−

𝑥𝑥−3 2+ 𝑦𝑦−3 2

2 22

normalizing constant

= 𝐾𝐾1 ⋅ 𝑒𝑒
− 𝑥𝑥−3 2+ 𝑦𝑦−3 2
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Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋𝑋,𝑌𝑌 .
• You observe a noisy distance measurement, 𝐷𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object 

after observing the measurement?

5

Let 𝐷𝐷 = distance from the satellite (radially).
Suppose you knew your actual position: 𝑥𝑥,𝑦𝑦 .
• 𝐷𝐷 is still noisy! Suppose noise is unit variance: 𝜎𝜎2 = 1
• On average, 𝐷𝐷 is your actual position: 𝜇𝜇 = 𝑥𝑥2 + 𝑦𝑦2

If you knew your actual location 
𝑥𝑥,𝑦𝑦 , you could say how likely

a measurement 𝐷𝐷 = 4 is!!



Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋𝑋,𝑌𝑌 .
• You observe a noisy distance measurement, 𝐷𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object 

after observing the measurement?
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If noise is normal: 𝐷𝐷|𝑋𝑋,𝑌𝑌~𝑁𝑁 𝜇𝜇 = 𝑥𝑥2 + 𝑦𝑦2 ,𝜎𝜎2 = 1

Distance measurement of a ping is normal with respect to the true location.

If you knew your actual location 
𝑥𝑥,𝑦𝑦 , you could say how likely

a measurement 𝐷𝐷 = 4 is!!

pr
ob
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ty
 d

en
si

ty 𝜇𝜇 = 𝑥𝑥2 + 𝑦𝑦2

𝜎𝜎2 = 1



Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋𝑋,𝑌𝑌 .
• You observe a noisy distance measurement, 𝐷𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object 

after observing the measurement?
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If you knew your actual location 
𝑥𝑥,𝑦𝑦 , you could say how likely

a measurement 𝐷𝐷 = 4 is!!
𝐷𝐷|𝑋𝑋,𝑌𝑌~𝒩𝒩 𝜇𝜇 = 𝑥𝑥2 + 𝑦𝑦2 ,𝜎𝜎2 = 1

𝑓𝑓𝐷𝐷|𝑋𝑋,𝑌𝑌 𝐷𝐷 = 𝑑𝑑|𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒
− 𝑑𝑑−𝜇𝜇 2

2𝜎𝜎2

=
1
2𝜋𝜋

𝑒𝑒
− 𝑑𝑑− 𝑥𝑥2+𝑦𝑦2

2

2 = 𝑒𝑒
− 𝑑𝑑− 𝑥𝑥2+𝑦𝑦2

2

2

normalizing constant

𝐾𝐾2 ⋅



Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋𝑋,𝑌𝑌 .
• You observe a noisy distance measurement, 𝐷𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object 

after observing the measurement?
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Observation 
likelihood

𝑓𝑓𝐷𝐷|𝑋𝑋,𝑌𝑌 𝑑𝑑|𝑥𝑥,𝑦𝑦 = 𝐾𝐾2 ⋅ 𝑒𝑒
− 𝑑𝑑− 𝑥𝑥2+𝑦𝑦2

2

2

𝜇𝜇 = 𝑥𝑥2 + 𝑦𝑦2

𝜎𝜎2 = 1Top-
down 
view

Prior belief

𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝐾𝐾1 ⋅ 𝑒𝑒
− 𝑥𝑥−3 2+ 𝑦𝑦−3 2

8

𝑓𝑓𝑋𝑋,𝑌𝑌|𝐷𝐷 𝑥𝑥,𝑦𝑦|4 = 𝑓𝑓𝑋𝑋,𝑌𝑌|𝐷𝐷 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦|𝐷𝐷 = 4Posterior
belief



Tracking in 2-D space
What is your updated (posterior) belief of the 2-D location of the object 
after observing the measurement?
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𝑓𝑓𝑋𝑋,𝑌𝑌|𝐷𝐷 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦|𝐷𝐷 = 4 =
𝑓𝑓𝐷𝐷|𝑋𝑋,𝑌𝑌 𝐷𝐷 = 4|𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦

𝑓𝑓(𝐷𝐷 = 4)
Bayes’
Theorem

=
𝐾𝐾2 ⋅ 𝑒𝑒

−
4− 𝑥𝑥2+𝑦𝑦2

2

2 ⋅ 𝐾𝐾1 ⋅ 𝑒𝑒
−

𝑥𝑥−3 2+ 𝑦𝑦−3 2

8

𝑓𝑓(𝐷𝐷 = 4)

likelihood of 𝐷𝐷 = 4 prior belief

=
𝐾𝐾3 ⋅ 𝑒𝑒

−
4− 𝑥𝑥2+𝑦𝑦2

2

2 +
𝑥𝑥−3 2+ 𝑦𝑦−3 2

8

𝑓𝑓(𝐷𝐷 = 4)

= 𝐾𝐾4 ⋅ 𝑒𝑒
−

4− 𝑥𝑥2+𝑦𝑦2
2

2 + 𝑥𝑥−3 2+ 𝑦𝑦−3 2

8



Tracking in 2-D space: Posterior belief
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𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝐾𝐾1 ⋅ 𝑒𝑒
− 𝑥𝑥−3 2+ 𝑦𝑦−3 2

8

Prior belief Posterior belief
Top-down view

𝑦𝑦

3-D view

𝑥𝑥

𝑦𝑦

𝑥𝑥

Top-down view 3-D view

𝑓𝑓𝑋𝑋,𝑌𝑌|𝐷𝐷 𝑥𝑥,𝑦𝑦|4 =

𝐾𝐾4⋅ 𝑒𝑒
−

4− 𝑥𝑥2+𝑦𝑦2
2

2 +
𝑥𝑥−3 2+ 𝑦𝑦−3 2

8



Today’s plan

Covariance

Variance/covariance of independent RVs

Correlation

11



A word about today’s diagrams:

12



Spot the difference
How do the following distributions of two variables differ?
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In both distributions: 𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝑌𝑌 , Var 𝑋𝑋 = Var 𝑌𝑌



Covariance
The covariance of two variables 𝑋𝑋 and 𝑌𝑌 is:

Cov 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌
= 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

14

Cov 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌
= 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝑋𝑋𝐸𝐸 𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 + 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌
= 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝐸𝐸 𝑋𝑋𝐸𝐸 𝑌𝑌 − 𝐸𝐸 𝐸𝐸 𝑋𝑋 𝑌𝑌 + 𝐸𝐸 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌
= 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌 + 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌
= 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

Proof of second part:

(linearity of 
expectation)
(𝐸𝐸 𝑋𝑋 , 𝐸𝐸 𝑌𝑌 are 
scalars)



Cov 𝑊𝑊,𝐻𝐻 = 𝐸𝐸 𝑊𝑊𝐻𝐻 − 𝐸𝐸 𝑊𝑊 𝐸𝐸 𝐻𝐻
= 3355.83 − 62.75 52.75
= 45.77

Covarying humans

What is the covariance of weight 𝑊𝑊 and 
height 𝐻𝐻?

15

Weight (kg) Height (in) W · H
64 57 3648
71 59 4189
53 49 2597
67 62 4154
55 51 2805
58 50 2900
77 55 4235
57 48 2736
56 42 2352
51 42 2142
76 61 4636
68 57 3876

(positive)

Cov 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌
= 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

𝐸𝐸 𝑊𝑊
= 62.75

𝐸𝐸 𝐻𝐻
= 52.75

𝐸𝐸 𝑊𝑊𝐻𝐻
= 3355.83

Positive covariance = as one variable 
increases, so does the second variable.



Covariance reps
Is the covariance positive, negative, or zero?
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1. 3. 

𝑋𝑋 = 𝑥𝑥

𝑌𝑌
=
𝑦𝑦

𝐸𝐸[𝑋𝑋]

𝐸𝐸[𝑌𝑌]

2. 

𝑋𝑋 = 𝑥𝑥
𝑌𝑌

=
𝑦𝑦

𝐸𝐸[𝑋𝑋]

𝐸𝐸[𝑌𝑌]

𝑋𝑋 = 𝑥𝑥

𝑌𝑌
=
𝑦𝑦

𝐸𝐸[𝑋𝑋]

𝐸𝐸[𝑌𝑌]

Cov 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌
= 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌



Properties of Covariance
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1. Cov 𝑋𝑋,𝑌𝑌 = Cov 𝑌𝑌,𝑋𝑋

2. Cov 𝑋𝑋,𝑋𝑋 = 𝐸𝐸 𝑋𝑋 ⋅ 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑋𝑋 = Var 𝑋𝑋

3. Cov 𝑎𝑎𝑋𝑋 + 𝑏𝑏,𝑌𝑌 = 𝑎𝑎Cov 𝑋𝑋,𝑌𝑌

4. Cov ∑𝑖𝑖 𝑋𝑋𝑖𝑖 ,∑𝑗𝑗 𝑌𝑌𝑗𝑗 = ∑𝑖𝑖 ∑𝑗𝑗 Cov 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑗𝑗

The covariance of two variables 𝑋𝑋 and 𝑌𝑌 is:

Cov 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌
= 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

True/False:



Announcements
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Midquarter feedback (optional but appreciated)

Link posted in announcement on CS109 webpage
https://forms.gle/6JC6a4oyrH5hEGTy7

Closes: Wednesday February 12, 11:59pm

https://forms.gle/6JC6a4oyrH5hEGTy7


Today’s plan

Covariance

Variance/covariance of sum of RVs

Correlation

19



Variance of sum of RVs

If 𝑋𝑋 and 𝑌𝑌 are random variables, then

20

Var 𝑋𝑋 + 𝑌𝑌 = Cov 𝑋𝑋 + 𝑌𝑌,𝑋𝑋 + 𝑌𝑌

= Cov 𝑋𝑋,𝑋𝑋 + Cov 𝑋𝑋,𝑌𝑌 + Cov 𝑌𝑌,𝑋𝑋 + Cov 𝑌𝑌,𝑌𝑌
= Var 𝑋𝑋 + 2 ⋅ Cov 𝑋𝑋,𝑌𝑌 + Var 𝑌𝑌

covariance of
all pairs

Var 𝑋𝑋 = Cov 𝑋𝑋,𝑋𝑋

Symmetry of covariance + 
Cov 𝑋𝑋,𝑋𝑋 = Var 𝑋𝑋

Var 𝑋𝑋 + 𝑌𝑌 = Var 𝑋𝑋 + 2 ⋅ Cov 𝑋𝑋,𝑌𝑌 + Var 𝑌𝑌

Proof:

More generally: Var �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

Var 𝑋𝑋𝑖𝑖 + 2�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=i+1

𝑛𝑛

Cov 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗
(proof in

extra slides)



Variance of sum of independent random variables
If 𝑋𝑋 and 𝑌𝑌 are independent, then:

𝐸𝐸 𝑋𝑋𝑌𝑌 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

Therefore for   independent 𝑋𝑋 and 𝑌𝑌 :

21

(proof in
extra slides)

Cov 𝑋𝑋,𝑌𝑌 = 0
Var 𝑋𝑋 + 𝑌𝑌 = Var 𝑋𝑋 + Var 𝑌𝑌

NOT bidirectional: Cov 𝑋𝑋,𝑌𝑌 = 0
does NOT imply independence of 𝑋𝑋 and 𝑌𝑌! 

Proof
of covariance: Cov 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

= 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌
= 0

𝑋𝑋 and 𝑌𝑌 are independent

def. of covariance



Zero covariance does not imply independence
Let 𝑋𝑋 take on values −1,0,1
with equal probability 1/3.

Define 𝑌𝑌 = �1 if 𝑋𝑋 = 0
0 otherwise

22

-1 0 1

0 1/6 1/6 1/6

1 1/6 1/6 1/6

𝑋𝑋

𝑌𝑌

What is the joint PMF of 𝑋𝑋 and 𝑌𝑌?

A. 
-1 0 1

0 1/3 0 1/3

1 0 1/3 0

𝑋𝑋

𝑌𝑌

B. 
-1 0 1

0 0 1/3 0

1 1/3 0 1/3

𝑋𝑋

𝑌𝑌

C. 



Zero covariance does not imply independence
Let 𝑋𝑋 take on values −1,0,1
with equal probability 1/3.

Define 𝑌𝑌 = �1 if 𝑋𝑋 = 0
0 otherwise

23

-1 0 1

0 1/3 0 1/3 2/3

1 0 1/3 0 1/3

1/3 1/3 1/3

𝑋𝑋

𝑌𝑌

Marginal PMF
of 𝑋𝑋, 𝑝𝑝𝑋𝑋 𝑥𝑥

Marginal 
PMF of 
𝑌𝑌, 𝑝𝑝𝑌𝑌 𝑦𝑦

1. 𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝑌𝑌 =

3. Cov 𝑋𝑋,𝑌𝑌 =

4. Are 𝑋𝑋 and 𝑌𝑌 independent?

2. 𝐸𝐸 𝑋𝑋𝑌𝑌 =



Variance of sum of independent random variables
If 𝑋𝑋 and 𝑌𝑌 are independent, then:

𝐸𝐸 𝑋𝑋𝑌𝑌 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

Therefore for  independent 𝑋𝑋 and 𝑌𝑌:

24

(proof in
extra slides)

Cov 𝑋𝑋,𝑌𝑌 = 0
Var 𝑋𝑋 + 𝑌𝑌 = Var 𝑋𝑋 + Var 𝑌𝑌

Proof
of variance:

= Cov 𝑋𝑋,𝑋𝑋 + Cov 𝑌𝑌,𝑌𝑌
= Var 𝑋𝑋 + Var 𝑌𝑌

(proved earlier)

𝑋𝑋 and 𝑌𝑌 are independent

1. Also not bidirectional
2. Does not apply to dependent 𝑋𝑋 and 𝑌𝑌

Var 𝑋𝑋 + 𝑌𝑌 = Var 𝑋𝑋 + 2 ⋅ Cov 𝑋𝑋,𝑌𝑌 + Var 𝑌𝑌



Variance of the Binomial
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𝑋𝑋~Bin(𝑛𝑛,𝑝𝑝) Var 𝑋𝑋 = 𝑛𝑛𝑝𝑝 1 − 𝑝𝑝

Var 𝑋𝑋 = Var �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑋𝑋 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖

Let 𝑋𝑋𝑖𝑖 = 𝑖𝑖th trial is heads
𝑋𝑋𝑖𝑖~Ber 𝑝𝑝

Var 𝑋𝑋𝑖𝑖 = 𝑝𝑝 1 − 𝑝𝑝

= �
𝑖𝑖=1

𝑛𝑛

Var 𝑋𝑋𝑖𝑖

Let

𝑋𝑋i are independent, 
therefore variance of sum 
= sum of variance

𝑋𝑋𝑖𝑖 are independent
(by definition)

= �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝 1 − 𝑝𝑝

= 𝑛𝑛𝑝𝑝 1 − 𝑝𝑝

Variance of Bernoulli



Today’s plan

Covariance

Variance/covariance of sum of independent RVs

Correlation

26



Covarying humans
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Cov 𝑋𝑋,𝑌𝑌 = 𝐸𝐸 𝑋𝑋 − 𝐸𝐸 𝑋𝑋 𝑌𝑌 − 𝐸𝐸 𝑌𝑌
= 𝐸𝐸 𝑋𝑋𝑌𝑌 − 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌

For covariance, the sign (+/–) is more 
meaningful than the value.

Cov 2.20𝑊𝑊, 2.54𝐻𝐻
= 𝐸𝐸 2.20𝑊𝑊 ⋅ 2.54𝐻𝐻 − 𝐸𝐸 2.20𝑊𝑊 𝐸𝐸 2.54𝐻𝐻
= 18752.38 − 138.05 133.99
= 255.06

What about weight (lb) and 
height (cm)?

Cov 𝑊𝑊,𝐻𝐻 = 𝐸𝐸 𝑊𝑊𝐻𝐻 − 𝐸𝐸 𝑊𝑊 𝐸𝐸 𝐻𝐻
= 3355.83 − 62.75 52.75
= 45.77

What is the covariance of 
weight 𝑊𝑊 and height 𝐻𝐻?

(positive)

(positive)

Covariance depends
on units!



Correlation
The correlation of two variables 𝑋𝑋 and 𝑌𝑌 is:

𝜌𝜌 𝑋𝑋,𝑌𝑌 =
Cov 𝑋𝑋,𝑌𝑌
𝜎𝜎𝑋𝑋 𝜎𝜎𝑌𝑌

• Note: −1 ≤ 𝜌𝜌 𝑋𝑋,𝑌𝑌 ≤ 1
• Correlation measures the linear relationship between 𝑋𝑋 and 𝑌𝑌:

28

𝜌𝜌 𝑋𝑋,𝑌𝑌 = 1 ⟹ 𝑌𝑌 = 𝑎𝑎𝑋𝑋 + 𝑏𝑏,where 𝑎𝑎 = 𝜎𝜎𝑌𝑌/𝜎𝜎𝑋𝑋
𝜌𝜌 𝑋𝑋,𝑌𝑌 = −1 ⟹ 𝑌𝑌 = 𝑎𝑎𝑋𝑋 + 𝑏𝑏,where 𝑎𝑎 = −𝜎𝜎𝑌𝑌/𝜎𝜎𝑋𝑋
𝜌𝜌 𝑋𝑋,𝑌𝑌 = 0 ⟹ “uncorrelated” (absence of linear relationship)

𝜎𝜎𝑋𝑋2 = Var 𝑋𝑋 ,
𝜎𝜎𝑌𝑌2 = Var 𝑌𝑌



Correlation reps
What is the correlation coefficient 𝜌𝜌 𝑋𝑋,𝑌𝑌 ?

29

1. 2. 

3. 4. 

A. 𝜌𝜌 𝑋𝑋,𝑌𝑌 = 1
B. 𝜌𝜌 𝑋𝑋,𝑌𝑌 = −1
C. 𝜌𝜌 𝑋𝑋,𝑌𝑌 = 0
D. Other



Correlation reps
What is the correlation coefficient 𝜌𝜌 𝑋𝑋,𝑌𝑌 ?

30

A. 𝜌𝜌 𝑋𝑋,𝑌𝑌 = 1
B. 𝜌𝜌 𝑋𝑋,𝑌𝑌 = −1
C. 𝜌𝜌 𝑋𝑋,𝑌𝑌 = 0
D. Other

1. 2. 

3. 4. 

Correlation measures linearity.
𝑋𝑋 and 𝑌𝑌 can be nonlinearly related even if Cov 𝑋𝑋,𝑌𝑌 = 0

𝑌𝑌 = −
𝜎𝜎𝑌𝑌
𝜎𝜎𝑋𝑋
𝑋𝑋 + 𝑏𝑏

B. 𝜌𝜌 𝑋𝑋,𝑌𝑌 = −1

“uncorrelated”
C. 𝜌𝜌 𝑋𝑋,𝑌𝑌 = 0

𝑌𝑌 =
𝜎𝜎𝑌𝑌
𝜎𝜎𝑋𝑋
𝑋𝑋 + 𝑏𝑏

A. 𝜌𝜌 𝑋𝑋,𝑌𝑌 = 1

𝑌𝑌 = 𝑋𝑋2
C. 𝜌𝜌 𝑋𝑋,𝑌𝑌 = 0



Spurious Correlations

𝜌𝜌 𝑋𝑋,𝑌𝑌 is used a lot to statistically quantify the relationship b/t X and Y.
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Correlation: 
0.947091

“Correlation does not imply causation”

https://www.tylervigen.com/spurious-correlations

https://www.tylervigen.com/spurious-correlations


Spurious Correlations

𝜌𝜌 𝑋𝑋,𝑌𝑌 is used a lot to statistically quantify the relationship b/t X and Y.
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“Correlation does not imply causation”

Correlation: 
0.947091



Arcade revenue vs. CS PhDs
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Correlation: 
0.947091

“Correlation does not imply causation”

https://www.tylervigen.com/spurious-correlations

https://www.tylervigen.com/spurious-correlations


Extra slides

Expectation of a product of independent RVs

Variance of sums of variables

34



Expectation of product of independent RVs
If 𝑋𝑋 and 𝑌𝑌 are independent, then:

𝐸𝐸 𝑋𝑋𝑌𝑌 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑌𝑌
More generally,

35

𝐸𝐸 𝑔𝑔 𝑋𝑋 ℎ 𝑌𝑌
(for discrete proof, replace 

integrals with summations)

𝐸𝐸 𝑔𝑔 𝑋𝑋 ℎ 𝑌𝑌 = 𝐸𝐸 𝑔𝑔 𝑋𝑋 𝐸𝐸 ℎ 𝑌𝑌

Proof:

𝑋𝑋 and 𝑌𝑌 are independent= �
−∞

∞
�
−∞

∞
𝑔𝑔 𝑥𝑥 ℎ 𝑦𝑦 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

= �
−∞

∞
�
−∞

∞
𝑔𝑔 𝑥𝑥 ℎ 𝑦𝑦 𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

= �
−∞

∞
ℎ 𝑦𝑦 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑦𝑦�

−∞

∞
𝑔𝑔 𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥 Terms dependent on 𝑦𝑦

are constant in integral of 𝑥𝑥

= �
−∞

∞
𝑔𝑔 𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥 �

−∞

∞
ℎ 𝑦𝑦 𝑓𝑓𝑌𝑌 𝑦𝑦 𝑑𝑑𝑦𝑦 Integrals separate

= 𝐸𝐸 𝑔𝑔 𝑋𝑋 𝐸𝐸 ℎ 𝑌𝑌



Variance of Sums of Variables

Var �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

Var 𝑋𝑋𝑖𝑖 + 2�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=i+1

𝑛𝑛

Cov 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗

For 2 variables: Var 𝑋𝑋 + 𝑌𝑌 = Var 𝑋𝑋 + Var 𝑌𝑌 + 2Cov 𝑋𝑋,𝑌𝑌
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Proof:

Symmetry of covariance 
Cov 𝑋𝑋,𝑋𝑋 = Var 𝑋𝑋

Var �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=1

𝑛𝑛

Cov 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

Var 𝑋𝑋𝑖𝑖 + �
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

𝑛𝑛

Cov 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

Var 𝑋𝑋𝑖𝑖 + 2 �
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=i+1

𝑛𝑛

Cov 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗

= Cov �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 ,�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖

Adjust summation bounds
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