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CS109 roadmap

Multiple events:

. . conditional .
Intersection orobability Independence
P(ENF) P(EF)

Joint (Multivariate) distributions

o conditional Independent

Joint PMF/PDF jl> distributions ;l: RVs
pxy (X, y) Pxiy (x]y) sum of
fxy (6, y) fX|Y(x|y) independent RVs
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Tracking in 2-D space

* You have a prior belief about the 2-D location of an object, (X,Y).
* You observe a noisy distance measurement, D = 4.

* What is your updated (posterior) belief of the 2-D location of the object
after observing the measurement?

likelihood prior
posterior (of evidence) belief

belief
foixy(@dlx, y)fxy(x,y)
fxyip(x,yld) = i fD(d)XY

normalization constant

Recall Bayes
terminology:
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Tracking in 2-D space

* You have a prior belief about the 2-D location of an object, (X,Y).

Top-down view
5

Let (X,Y) = object’s 2-D location.
(your satellite is at (0,0)

3
Yo

Suppose the prior distribution is a
symmetric bivariate normal distribution:

X

[(x=3)+(y—3)% [(x-3)2+(y—-3)2]

frxy(x,y) = 2122 € 2(2%) =K -e 8

normalizing constant
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Tracking in 2-D space

You observe a noisy distance measurement, D = 4.

Let D = distance from the satellite (radially).
Suppose you knew your actual position: (x, y).
e e D is still noisy! Suppose noise is unit variance: % = 1
On average, D is your actual position: u = /x2 + y2
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If you knew your actual location
(x,y), you could say how likely
a measurement D = 4 is!!
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Tracking in 2-D space

You observe a noisy distance measurement, D = 4.

If you knew your actual location
(x,y), you could say how likely
a measurement D = 4 is!!

probability density

If noise is normal: D|X,Y~N (,u = \/xz +y2,0% = 1)

Distance measurement of a ping is normal with respect to the true location.
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Tracking in 2-D space

* You observe a noisy distance measurement, D = 4.

If you knew your actual location
(x,y), you could say how likely  DI|X,Y~N (ﬂ — \/xZ + y2, g2 = 1)
a measurement D = 4 is!!

—(d—uw)?
foixy(D=d|X =xY =y) = - e 20°
' o\2m
’i\&\)’@’b 5 ~ d—\/ﬁ 2
R N T G i) (a-Vx2+y?)
\)“a(\ — \/T_n_e 2 — KZ e 2

normalizing constant
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Tracking in 2-D space

* You observe a noisy distance measurement, D = 4.

5 _ p=x*+y?
| | : Top- Observation 21,
. L] O- - o
Prior belief v, down likelihood
view d
S 0 3 5 2
X 2 2
_ [x-3)2+(-3)?] (a7
fxy(x,y) =K; -e 8 fDIX,Y(dlx: y)=K;-e 2

Posteri
osbeerlli(;[ fX,Y|D(xry|4‘) = fX,Y|D(X =x,Y=y|D =4)
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Tracking in 2-D space

What is your updated (posterior) belief of the 2-D location of the object
after observing the measurement?

likelihood of D = 4 prior belief
fD|X,Y(D =4|X =x,Y = y)fX,Y(x’ y) Bayes’
fX,Y|D(X — X'Y — le — 4) — f(D — 4) Theorem
_(4‘Vx2+y2)2 _ =32+ (y-3)?]
_ KZ - e 2 ° K]_ - e 8
f Z(D = 4)
_[(4_\”‘:2"')72) N [(x_3)2+(y_3)2]]
B K3 . e 2 8
- f(D=4)

_l(z}— /x2+y2> . [(x—3)2+(y—3)2]]
— K4 . e 2 8

Stanford University 9




Tracking in 2-D space: Posterior belief

Prior belief Posterior belief

Top-down view 3-D view Top-down view 3-D view
5

_ (6= 4 r=9)%] fxyip(x,y|4) =

fX,Y(x» y) =K;-e 8
(4—\/x2+y2)2 [(x_3)2+(y_3)2]
K4. e_ 2 t 8
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Today's plan

=) Covariance
Variance/covariance of independent RVs

Correlation
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A word about today’s diagrams:

200

400

6001

8001

900

0 200 400 600 800 900 900 200 X
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Spot the difference

How do the following distributions of two variables differ?

Y . y ‘
[ ]
e o °
4 e, VN 4 ARYR 2
e L LY | .M".\
- IS B o A o 8 o Je%e
L ] ‘3"%.'.“f \‘ ° Y ?r.‘
[ ] > ,. . «d %
R TR 2o "f ” !" St
> et 0 2 SR
LY LA ] 8 '.. Y o
L ] LYY L]
“’ @ (’ L N ‘o ¢ .:A‘O‘oo'~
% o ® A ’,,,'
P ™ 0"‘0. . ¢ :‘ "‘. e x
O : x O ..‘.‘ [ ]
0 2 4 6 0 2 4 6

In both distributions: E|X] = E[Y], Var(X) = Var(Y)
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Covariance

The covariance of two variables X and Y is:

Cov(X,Y) =E[(X - E[X]D(Y —E|Y]]
= E|XY]| — E|X]|E|Y]

Proof of second part:

Cov(X,Y) = E[(X = E[XD(Y = E[Y])]

= E|XY — XE[Y] - E[X Y + E[X]E[Y]]

_ N
= E[XY] - E[XE[Y]] - E[E[X]Y] + E[E[X]E[Y]] expectaton
= E[XY] - E[X]E[Y] - E[X]E[Y] + E|X]E[Y] (ELX], ELY] are
= E[XY] — E[X]E[Y
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Cov(X,Y) = E[(X — E[XD(Y — E[Y])]

Covarying humans = E[XY] - E[X]E[Y]
Weight (ke) | Height(in) | W-H What is the covariance of weight W and
64 57 3648 eight H?
71 59 4189
53 49 5597 Cov(W,H) = E|WH]| - E|W]E|[H]
- - 1o = 3355.83 — (62.75)(52.75)
55 51 2805 = 45.77 (positive)
58 50 2900 70 -
77 55 4235 £ oo | ¢« . .
57 48 2736 E ° o .
56 42 2352 = 50 o,
51 42 2142 T 40 e o | | ,
76 61 4636 45 55 65 75 85
63 57 3876 Weight W (kilograms)

Positive covariance = as one variable
E[W] E[H] E[WH] increases, so does the second variable.
— 62.75 = 52.75 = 3355.83 Stanford University 15




. Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
Covariance reps = E[XY] - E[X]E[Y]

Is the covariance positive, negative, or zero?

1' E[X] re 2. TN | E[X]
. N -
|l |l [
ol RS E[y] > oy
N '_\.,_,..\-
X =x X =x
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Properties of Covariance

The covariance of two variables X and Y is:
Cov(X,Y) =E|(X —E|X]D(Y —E|Y])]
= E|XY| - E|X]|E|Y]

True/False:
Cov(X,Y) = Cov(Y, X)

Cov(X, X) = E[X - X] — E[X]E[X] = Var(X)
Cov(aX + b,Y) = aCov(X,Y)

Cov(X; X;, %, Y) = X %; Cov(X;, Y)
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Announcements

Midquarter feedback (optional but appreciated)

Link posted in announcement on CS109 webpage
https://forms.gle/6JC6a4oyrH5hEGTy 7
Closes: Wednesday February 12, 11:59pm

\_
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https://forms.gle/6JC6a4oyrH5hEGTy7

Today's plan

=) Variance/covariance of sum of RVs

Correlation
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Variance of sum of RVs

If X and Y are random variables, then

Var(X +Y) =Var(X) + 2 - Cov(X,Y) + Var(Y)

Proof: Var(X ~+ Y) = COV(X ~+ Y,X -+ Y) Var(X) = Cov(X, X)
= Cov(X, X) + Cov(X, ¥)+ Cov(Y,X)+ Cov(Y,Y)  °Ogrees
— Var(X) + 2. COV(X, Y) + Var(Y) Symmetry of covariance +

Cov(X,X) = Var(X)

More generally: Var(ZX ) ZVar(X)+ZZ z Cov (X;, X;)

=1 j=i+1
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Variance of sum of independent random variables

If X and Y are independent, then:
E|XY] = E|X]E|Y]

Therefore for independent X and Y :

Cov(X,Y) = 0 -
Var(X +Y) = Var(X) + Var(Y)

Proot cov(X,Y) = E[XY] — E[X]E[Y] def. of covariance
of covariance:
— E[X]E[Y] — E[X]E[Y] X andY are independent
=0

NOT bidirectional: Cov(X,Y) = 0
does NOT imply independence of X and Y!
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Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.

. 1 ifX=0
Define Y = .
{O otherwise
What is the joint PMF of X and Y?
A. X B. X C. X
1 0 1 1 0 1 1 0 1
. 0 |16 1/6 1/6 . 0 |13 0 13 . 0|0 13 0
1/6 1/6 1/6 1] 0 1/3 0 1 11/3 0 1/3
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Zero covariance does not imply independence

Let X take onvalues {—1,0,1} 1 fg[x] = E[Y] =
with equal probability 1/3.
Define Y = {é t;:X N 0
otnerwise o E[XY] =
10 1
| 3. Cov(X,Y) =
. O |1/3 0 1/3|2/3 Marginal
PMF of
0 1/3 0 |1/3 vy , ()
1/3 1/3 1/3 4. Are X and Y independent?
Marginal PMF
of X, px(x)
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Variance of sum of independent random variables

iIndependent X and Y:

Var(X +Y) = Var(X) + Var(Y) <

Proof
of variance:

Var(X +Y) =Var(X) + 2 - Cov(X,Y) + Var(Y) (proved earlier)
= Cov(X,X) + Cov(Y,Y) X and Y are independent
= Var(X) + Var(Y)

1. Also not bidirectional
2. Does not apply to dependent X and Y
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Variance of the Binomial

X~Bin(n,p) var(X) =np(1 - p)

n
Let X = zxi Var(X) = Var X;
2

=1
- X; are independent,
Let X; = ith trial is heads = 2 Var(X;) therefore variance of sum
Xl-~Ber(p) — = sum of variance

Var(X;) =p(1 —p) n
= z p(1—p) Variance of Bernoulli
X; are independent i=1

(by definition)
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Today's plan

E> Correlation
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Cov(X,Y) = E[(X — E[XD(Y — E[Y])]

Covarying humans = E[XY] - E[X]E[Y]
What is the covariance of 7707
weight W and height H? 5 60 -
Cov(W,H) = E[WH] — E[W]E[H] =
= 3355.83 — (62.75)(52.75) %40
= 45.77 (positive) T s 55 65 75 85

Weight W (kilograms)

What about weight (Ib) and =0
height (cm)? 160 1 ¢ L, e
T 140 | ¢ ¢ .
Cov(2.20W, 2.54H) @00 R
= E[2.20W - 2.54H] — E[2.20W]E[2.54H] ~ 100 ¢ o , , .
100 120 140 160 180
= 18752.38 — (138.05)(133.99) Weight W ()

= 255.06 (positive)

Covariance depends
on units!

For covariance, the sign (+/-) is more

meaningful than the value.
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Correlation

The correlation of two variables X and Y is:

Cov(X,Y) s _y
_ ) oz = Var(X),
p(X, Y) — Oy Oy o2 = Var(Y)

Note: —1 < p(X,Y) <1
Correlation measures the linear relationship between X and Y

p(X,Y)=1 = Y = aX + b,where a = oy /oy
p(X,Y)=—-1 =Y =aX+ b,wherea = —oy/oy
p(X,Y)=0 = “uncorrelated” (absence of linear relationship)
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. A pX,Y) =1
Correlation reps 5 p(XY) =1
C. p(X,Y)=0
What is the correlation coefficient p(X,Y)? D. Other
1. j\\ B 2. //
\\4\ ) /.
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Correlation reps

3. p(X,Y) = —1
o

Y =——LX+b
Ox

C.p(X,Y)=0

“uncorrelated”

What is the correlation coefficient p(X,Y)?

2.

LT LT TR R
D -:a-\ ‘:;:. .

b S ) <
\-'r'l-.._“ 1\-’". .
.

Correlation measures linearity.

A pX,Y) =1
5. p(X,Y)=-1
C. p(X,Y) =0
D. Other
A.p(X,Y) =1
o
Y=—X+b
Ox
C.p(X,Y)=0
Y = X?

X and Y can be nonlinearly related even if Cov(X,Y) = 0
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Spurious C()rre]ations “Correlation does not imply causation”

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation:
0.947091
2000 2001 2002 2003 2004 2005 2006 2007 2008 2008
_._!..
il e
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

https://www.tylervigen.com/spurious-correlations
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https://www.tylervigen.com/spurious-correlations

Spurious C()rre]ations “Correlation does not imply causation”

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: Per capita cheese consumption

correlates with

0.947091 Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
33lbs . 200 deaths
= 2
3 -
Z 315lbs 600 deaths 2
o B -~
L -
5
L =
U 5
& 30Ibs 400 deaths
L
28.5lbs 200 deaths
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-8 Bedsheet tanglings -+ Cheese consumed
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Arcade revenue vs. CS PhDS “Correlation does not imply causation”

Total revenue generated by arcades
correlates with

Correlation: Computer science doctorates awarded in the US
0.947091

206000 2001 201k2 ELIE] 004 20005 206 2007 2H0E b L
%2 billion 2000 degrees
~
=)
£1.75 billion %
2 1500 degrees
= =
: =}
o 515 billion g
= i
i =N
- 1000 degrees 5,
=
%1.25 ballion 2]
— . %
L2
%1 billion 500 degrees
2000 20611 200k 2003 04 2005 2006 2007 2008 209

-8 Computer science doctorates =4 Arcade revenue

https://www.tylervigen.com/spurious-correlations
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Extra slides

Expectation of a product of independent RVs

Variance of sums of variables

Stanford University 34




Expectation of product of independent RVs

If X and Y are independent, then:

E|XY] = E|X]E|Y]
More generally, Elg(X)h(Y)] = E[g(X)]E[h(Y)]

e roo (for discrete proof, replace

Proof: E [g (X)h(Y)] = ] J g(x)h(y)fx’y(x, y) dx dy integrals with summations)
= Jr Jf gOh(y) fx(x)fy(y)dx dy X and Y are independent
. r°° > Terms dependenton y
- J_Ooh(y)fY(y)dy _[_oog(x)fx(x)dx are constant in integral of x

— ( g(xX)fy (x)dx) ( f h(y)fy(y) dy) Integrals separate
Elg(X)]E[R(Y)]
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Variance of Sums of Variables

Var(iXi> ZVar(X)+ZZ Z Cov (X, X;)

=1 j=i+1

For 2 variables: Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)

\
NE\ ® £, 0 o\la"‘aﬂg\(@:
Proof: n (;0\‘& n n TN n
Var ZXi = Cov in,EXi = zCOV(Xi'Xj)
i=1 i=1 i=1 t=1Jj=1
n n n
. Symmetry of covariance
= z Var(X;) + Z 2 Cov (Xier) Cov(X, X) = Var(X)
i=1 i=1 j=1,j%i
n n n
— z Var(X;) + 2 z Z Cov (Xl-,Xj) Adjust summation bounds
i=1 i=1 j=i+1
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