15: Covariance

David Varodayan February 10, 2020 Adapted from slides by Lisa Yan

CS109 roadmap

Review

Multiple events:

Joint (Multivariate) distributions

- You have a prior belief about the 2-D location of an object, (X, Y) .
- You observe a noisy distance measurement, $D = 4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

posterior belief likelihood (of evidence) prior belief normalization constant Recall Bayes terminology: $f_{X,Y|D}(x, y|d) =$ $f_{D|X,Y}(d|x, y) f_{X,Y}(x, y)$ $f_D(d)$

- You have a prior belief about the 2-D location of an object, (X, Y) .
- You observe a noisy distance measurement, $D = 4$.

 $-\frac{(x-3)^2+(y-3)^2}{2(2^2)}$ $2(2^2)$

• What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Let (X, Y) = object's 2-D location. (your satellite is at (0,0)

1

 $\sqrt{2\pi 2^2}$ e

 $f_{X,Y}(x, y) =$

Suppose the prior distribution is a symmetric bivariate normal distribution:

normalizing constant

- You have a prior belief about the 2-D location of an object, (X, Y) .
- You observe a noisy distance measurement, $D = 4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Let $D =$ distance from the satellite (radially). Suppose you knew your actual position: (x, y) .

- D is still noisy! Suppose noise is unit variance: $\sigma^2 = 1$
- On average, D is your actual position: $\mu = \sqrt{x^2 + y^2}$

If you knew your actual location (x, y) , you could say how likely a measurement $D = 4$ is!!

- You have a prior belief about the 2-D location of an object, (X, Y) .
- You observe a noisy distance measurement, $D = 4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

If you knew your actual location (x, y) , you could say how likely a measurement $D = 4$ is!!

If noise is normal:
$$
D|X, Y \sim N(\mu = \sqrt{x^2 + y^2}, \sigma^2 = 1)
$$

Distance measurement of a ping is normal with respect to the true location.

- You have a prior belief about the 2-D location of an object, (X, Y) .
- You observe a noisy distance measurement, $D = 4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

If you knew your actual location (x, y) , you could say how likely a measurement $D = 4$ is!!

$$
D|X, Y \sim \mathcal{N}\left(\mu = \sqrt{x^2 + y^2}, \sigma^2 = 1\right)
$$

$$
f_{D|X,Y}(D = d|X = x, Y = y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(d-\mu)^2}{2\sigma^2}}
$$

\n
$$
e^{\omega\beta\sigma^{\text{cylinder}}}_{\mu} = \frac{1}{\sqrt{2\pi}}e^{-\frac{(d-\sqrt{x^2+y^2})^2}{2}} = K_2 \cdot e^{-\frac{-(d-\sqrt{x^2+y^2})^2}{2}}
$$

- You have a prior belief about the 2-D location of an object, (X, Y) .
- You observe a noisy distance measurement, $D = 4$.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

belief

$$
\begin{array}{ll}\n\text{Posterior} & f_{X,Y|D}(x,y|4) = f_{X,Y|D}(X=x,Y=y|D=4) \\
\text{belief} & \end{array}
$$

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

likelihood of $D = 4$ prior belief $f_{D|X,Y}(D = 4|X = x, Y = y) f_{X,Y}(x, y)$ Bayes' $f_{X,Y|D}(X = x, Y = y|D = 4) =$ Theorem $f(D = 4)$ 2 $K_2 \cdot e^{-\frac{(4-\sqrt{x^2+y^2})^2}{2}}$ $\frac{1}{2}$ \cdot K_1 \cdot $e^{-\frac{[(x-3)^2 + (y-3)^2]}{8}}$ = $f(D = 4)$ 2 $K_3 \cdot e^{-\left[\frac{(4-\sqrt{x^2+y^2})}{2}\right]}$ $(x-3)^2 + (y-3)^2$ $\frac{1}{2}$ + 8 = $f(D = 4)$ 2 $4-\sqrt{x^2+y^2}$ $(x-3)^2 + (y-3)^2$ $= K_4 \cdot e^{-}$ $\frac{1}{2}$ + 8**Stanford University** 9

Tracking in 2-D space: Posterior belief

Prior belief **Prior** Posterior belief

$$
f_{X,Y|D}(x,y|4) =
$$

$$
K_4 \cdot e^{-\left[\frac{\left(4-\sqrt{x^2+y^2}\right)^2}{2} + \frac{\left[(x-3)^2+(y-3)^2\right]}{8}\right]}
$$

Variance/covariance of independent RVs

Correlation

A word about today's diagrams:

Spot the difference

How do the following distributions of two variables differ?

In both distributions: $E[X] = E[Y]$, $Var(X) = Var(Y)$

Covariance

The **covariance** of two variables X and Y is:

$$
Cov(X, Y) = E[(X - E[X])(Y - E[Y])]
$$

=
$$
E[XY] - E[X]E[Y]
$$

Proof of second part:

$$
Cov(X, Y) = E[(X - E[X])(Y - E[Y])]
$$

= $E[XY - XE[Y] - E[X]Y + E[X]E[Y]]$
= $E[XY] - E[XE[Y]] - E[E[X]Y] + E[E[X]E[Y]]$
= $E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$
= $E[XY] - E[X]E[Y]$

(linearity of expectation) $(E[X], E[Y]$ are scalars)

Covarying humans

Covariance reps

 $Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$ $= E[XY] - E[X]E[Y]$

Is the covariance positive, negative, or zero?

Properties of Covariance

The **covariance** of two variables X and Y is:

$$
Cov(X, Y) = E[(X - E[X])(Y - E[Y])]
$$

$$
= E[XY] - E[X]E[Y]
$$

True/False:

- 1. $Cov(X, Y) = Cov(Y, X)$
- 2. $Cov(X, X) = E[X \cdot X] E[X]E[X] = Var(X)$
- 3. $Cov(aX + b, Y) = aCov(X, Y)$

4.
$$
Cov(\sum_i X_i, \sum_j Y_j) = \sum_i \sum_j Cov(X_i, Y_j)
$$

Midquarter feedback (optional but appreciated) Link posted in announcement on CS109 webpage <https://forms.gle/6JC6a4oyrH5hEGTy7> Closes: Wednesday February 12, 11:59pm

Covariance

Variance/covariance of sum of RVs

Correlation

Variance of sum of RVs

If X and Y are random variables, then

 $Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$

Proof:
$$
Var(X + Y) = Cov(X + Y, X + Y)
$$

\n
$$
= Cov(X, X) + Cov(X, Y) + Cov(Y, X) + Cov(Y, Y)
$$
\n
$$
covariance of\nall pairs
$$

 $= Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$ Symmetry of covariance + $Cov(X, X) = Var(X)$

More generally:
$$
Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} Cov(X_i, X_j)
$$
 (proof in extra slides)

Variance of sum of independent random variables

If X and Y are independent, then:

 $E[XY] = E[X]E[Y]$

(proof in extra slides)

Therefore for independent X and Y :

$$
Cov(X, Y) = 0
$$

Var(X + Y) = Var(X) + Var(Y)

def. of covariance

Proof P^{root} Cov $(X, Y) = E[XY] - E[X]E[Y]$

 $= E[X]E[Y] - E[X]E[Y]$ $= 0$

 X and Y are independent

Stanford University 21 NOT bidirectional: $Cov(X, Y) = 0$ does NOT imply independence of X and $Y!$

Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability $1/3$.

Define
$$
Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}
$$

What is the joint PMF of X and Y ?

Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability $1/3$. Define $Y = \{$ 1 if $X = 0$ 0 otherwise -1 0 1 $0 | 1/3 | 0 1/3 | 2/3$ $1 \ 0 \ 1/3 \ 0 \ 1/3$ 1/3 1/3 1/3 X \blacktriangleright Marginal PMF of X, $p_X(x)$ Marginal PMF of $Y, p_Y(y)$ 1. $E[X] = E[Y] =$ 3. $Cov(X, Y) =$ 4. Are X and Y independent? 2. $E[XY] =$

Variance of sum of independent random variables

If X and Y are independent, then:

 $E[XY] = E[X]E[Y]$

(proof in extra slides)

Therefore for independent X and Y :

$$
Cov(X, Y) = 0
$$

Var(X + Y) = Var(X) + Var(Y)

Proof of variance: $=$ Cov (X, X) + Cov (Y, Y) $= Var(X) + Var(Y)$ (proved earlier) X and Y are independent $Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$

> **Stanford University** 24 1. Also not bidirectional 2. Does not apply to dependent X and Y

Variance of the Binomial

$$
X \sim \text{Bin}(n, p) \quad \text{Var}(X) = np(1-p)
$$

Let
$$
X = \sum_{i=1}^{n} X_i
$$

 $n_{\rm c}$

Let $X_i = i$ th trial is heads $X_i \sim \text{Ber}(p)$ $Var(X_i) = p(1-p)$

> X_i are independent (by definition)

$$
X = \sum_{i=1}^{n} X_i
$$

\nwith trial is heads
\n
$$
X_i \sim \text{Ber}(p)
$$

 $= np(1-p)$

 X_i are independent, therefore variance of sum = sum of variance

Variance of Bernoulli

Covariance

Variance/covariance of sum of independent RVs

Covarying humans

 $Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$ $= E[XY] - E[X]E[Y]$

 $Cov(W, H) = E[WH] - E[W]E[H]$ $= 3355.83 - (62.75)(52.75)$ $= 45.77$ (positive) What is the covariance of weight W and height H ?

 $Cov(2.20W, 2.54H)$

- $= E[2.20W \cdot 2.54H] E[2.20W]E[2.54H]$
- $= 18752.38 (138.05)(133.99)$
- $= 255.06$ (positive)

Covariance depends on units!

meaningful than the value.

Correlation

The correlation of two variables X and Y is:

$$
\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}
$$

$$
\sigma_X^2 = \text{Var}(X),
$$

$$
\sigma_Y^2 = \text{Var}(Y)
$$

- Note: $-1 \leq \rho(X, Y) \leq 1$
- Correlation measures the linear relationship between X and Y :

$$
\rho(X, Y) = 1 \implies Y = aX + b, \text{where } a = \sigma_Y/\sigma_X
$$

\n
$$
\rho(X, Y) = -1 \implies Y = aX + b, \text{where } a = -\sigma_Y/\sigma_X
$$

\n
$$
\rho(X, Y) = 0 \implies \text{"uncorrelated" (absence of linear relationship)}
$$

Correlation reps

What is the correlation coefficient $\rho(X, Y)$?

1. \sim 2. 3. 4.

A. $\rho(X, Y) = 1$ B. $\rho(X, Y) = -1$ C. $\rho(X, Y) = 0$ D. Other

Correlation reps

What is the correlation coefficient $\rho(X, Y)$?

A.
$$
\rho(X, Y) = 1
$$

$$
Y = \frac{\sigma_Y}{\sigma_X} X + b
$$

A. $\rho(X, Y) = 1$

C. $\rho(X, Y) = 0$

D. Other

B. $\rho(X, Y) = -1$

"uncorrelated" $C. \rho(X, Y) = 0$

 $Y = X^2$ **C.** $\rho(X, Y) = 0$

Stanford University 30 Correlation measures linearity. X and Y can be nonlinearly related even if $Cov(X, Y) = 0$

 $\rho(X, Y)$ is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: 0.947091

<https://www.tylervigen.com/spurious-correlations>

 $\rho(X, Y)$ is used a lot to statistically quantify the relationship b/t X and Y.

Arcade revenue vs. CS PhDs

"Correlation does not imply causation"

Data sources: U.S. Census Bureau and National Science Foundation

<https://www.tylervigen.com/spurious-correlations>

Expectation of a product of independent RVs

Variance of sums of variables

Expectation of product of independent RVs

If X and Y are independent, then:

$$
E[XY] = E[X]E[Y]
$$

More generally,
$$
E[g(X)h(Y)] = E[g(X)]E[h(Y)]
$$

Proof:
$$
E[g(X)h(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y) f_{X,Y}(x, y) dx dy
$$
 (for discrete proof, replace
integrals with summations)

$$
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y) f_X(x) f_Y(y) dx dy
$$
 X and Y are independent

$$
= \int_{-\infty}^{\infty} h(y) f_Y(y) dy \int_{-\infty}^{\infty} g(x) f_X(x) dx
$$
 Terms dependent on y

$$
= \left(\int_{-\infty}^{\infty} g(x) f_X(x) dx \right) \left(\int_{-\infty}^{\infty} h(y) f_Y(y) dy \right)
$$
 Integrals separate

$$
= E[g(X)] E[h(Y)]
$$
Standard University as

$$
\text{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \text{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_{i}, X_{j})
$$
\n
$$
\text{For 2 variables:} \quad \text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y)
$$
\n
$$
\text{Proof:} \quad \text{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \text{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{\text{cov}(\text{value})} \sum_{j=1}^{\text{conv}(n)} \sum_{j=1}^{n} \sum_{j=1}^{n} \text{Cov}(X_{i}, X_{j})
$$
\n
$$
= \sum_{i=1}^{n} \text{Var}(X_{i}) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \text{Cov}(X_{i}, X_{j}) \qquad \text{Symmetry of covariance} \text{Cov}(X, X) = \text{Var}(X)
$$
\n
$$
= \sum_{i=1}^{n} \text{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_{i}, X_{j}) \qquad \text{Algorithmation bounds}
$$