# 15: Covariance

David Varodayan February 10, 2020 Adapted from slides by Lisa Yan

CS109 roadmap

Review

Multiple events:



#### Joint (Multivariate) distributions



- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, D = 4.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?



- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, D = 4.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Let (X, Y) = object's 2-D location. (your satellite is at (0,0)

Suppose the prior distribution is a symmetric bivariate normal distribution:



normalizing constant

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, D = 4.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?



Let D = distance from the satellite (radially).

Suppose you knew your actual position: (x, y).

- *D* is still noisy! Suppose noise is unit variance:  $\sigma^2 = 1$
- On average, D is your actual position:  $\mu = \sqrt{x^2 + y^2}$

If you knew your actual location (x, y), you could say how likely a measurement D = 4 is!!

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, D = 4.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

If you knew your actual location (x, y), you could say how likely a measurement D = 4 is!!



$$D|X, Y \sim N\left(\mu = \sqrt{x^2 + y^2}, \sigma^2 = 1\right)$$

Distance measurement of a ping is normal with respect to the true location.

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, D = 4.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

If you knew your actual location (x, y), you could say how likely *L* a measurement D = 4 is!!

$$D|X, Y \sim \mathcal{N}\left(\mu = \sqrt{x^2 + y^2}, \sigma^2 = 1\right)$$

$$f_{D|X,Y}(D = d|X = x, Y = y) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(d-\mu)^2}{2\sigma^2}}$$
  
$$s_{\mu}^{\text{substitute}} = \frac{1}{\sqrt{2\pi}} e^{\frac{-(d-\sqrt{x^2+y^2})^2}{2}} = \frac{K_2 \cdot e^{\frac{-(d-\sqrt{x^2+y^2})^2}{2}}}{1 + \sqrt{2\pi}}$$
  
normalizing constant

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, D = 4.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?



Posterior belief

$$f_{X,Y|D}(x,y|4) = f_{X,Y|D}(X = x, Y = y|D = 4)$$

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

likelihood of D = 4 prior belief  $f_{X,Y|D}(X = x, Y = y|D = 4) = \frac{f_{D|X,Y}(D = 4|X = x, Y = y)f_{X,Y}(x, y)}{f(D = 4)} \text{Bayes'}$ Theorem Theorem  $\frac{K_2 \cdot e^{-\frac{(4-\sqrt{x^2+y^2})^2}{2}} \cdot K_1 \cdot e^{-\frac{[(x-3)^2+(y-3)^2]}{8}}$  $K_3 \cdot e^{-\left[\frac{\left(4 - \sqrt{x^2 + y^2}\right)^2}{2} + \frac{\left[(x - 3)^2 + (y - 3)^2\right]}{8}\right]}$ f(D = 4) $= K_{4} \cdot e^{-\left[\frac{\left(4-\sqrt{x^{2}+y^{2}}\right)^{2}}{2} + \frac{\left[(x-3)^{2}+(y-3)^{2}\right]}{8}\right]}$ Stanford University 9

#### Tracking in 2-D space: Posterior belief

#### **Prior belief**





$$f_{X,Y|D}(x,y|4) = K_4 \cdot e^{-\left[\frac{\left(4-\sqrt{x^2+y^2}\right)^2}{2} + \frac{\left[(x-3)^2+(y-3)^2\right]}{8}\right]}$$





#### Variance/covariance of independent RVs

Correlation

## A word about today's diagrams:



#### Spot the difference

How do the following distributions of two variables differ?



In both distributions: E[X] = E[Y], Var(X) = Var(Y)

#### Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Proof of second part:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
  

$$= E[XY - XE[Y] - E[X]Y + E[X]E[Y]]$$
  

$$= E[XY] - E[XE[Y]] - E[E[X]Y] + E[E[X]E[Y]]$$
  

$$= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$$
  

$$= E[XY] - E[X]E[Y]$$

(linearity of expectation) (E[X], E[Y] are scalars)

## Covarying humans

|   | Weight (kg) | Height (in) | W · H     | V                        |
|---|-------------|-------------|-----------|--------------------------|
| - | 64          | 57          | 3648      | h                        |
|   | 71          | 59          | 4189      |                          |
|   | 53          | 49          | 2597      | C                        |
|   | 67          | 62          | 4154      |                          |
|   | 55          | 51          | 2805      |                          |
|   | 58          | 50          | 2900      | (r                       |
|   | 77          | 55          | 4235      | Height <i>H</i> (inches) |
|   | 57          | 48          | 2736      | (ine                     |
|   | 56          | 42          | 2352      | nt H                     |
|   | 51          | 42          | 2142      | leig                     |
|   | 76          | 61          | 4636      |                          |
|   | 68          | 57          | 3876      |                          |
|   |             |             |           |                          |
|   | E[W]        | E[H]        | E[WH]     |                          |
|   | = 62.75     | = 52.75     | = 3355.83 |                          |

Nhat is the covariance of weight W and neight H? Cov(W,H) = E[WH] - E[W]E[H]= 3355.83 - (62.75)(52.75)= 45.77 (positive) 70 ( D D 60 50 JUSIAL 40 55 65 75 45 85 Weight W (kilograms)

> Positive covariance = as one variable increases, so does the second variable. Stanford University 15

#### Covariance reps

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

Is the covariance positive, negative, or zero?



#### Properties of Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

True/False:

- 1. Cov(X, Y) = Cov(Y, X)
- 2.  $Cov(X,X) = E[X \cdot X] E[X]E[X] = Var(X)$
- 3. Cov(aX + b, Y) = aCov(X, Y)

4. 
$$\operatorname{Cov}(\sum_{i} X_{i}, \sum_{j} Y_{j}) = \sum_{i} \sum_{j} \operatorname{Cov}(X_{i}, Y_{j})$$

Midquarter feedback (optional but appreciated)Link posted in announcement on CS109 webpage<br/><a href="https://forms.gle/6JC6a4oyrH5hEGTy7">https://forms.gle/6JC6a4oyrH5hEGTy7</a>Closes:Wednesday February 12, 11:59pm



#### Covariance



#### Correlation

#### Variance of sum of RVs

If *X* and *Y* are random variables, then

 $Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$ 

Proof: 
$$Var(X + Y) = Cov(X + Y, X + Y)$$
  $Var(X) = Cov(X, X)$ 

 $= \operatorname{Cov}(X, X) + \operatorname{Cov}(X, Y) + \operatorname{Cov}(Y, X) + \operatorname{Cov}(Y, Y)$   $= \operatorname{Var}(X) + 2 \cdot \operatorname{Cov}(X, Y) + \operatorname{Var}(Y)$   $\operatorname{Symmetry of covariance + } \operatorname{Cov}(X, X) = \operatorname{Var}(X)$ 

More generally: 
$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$
 (proof in extra slides)

#### Variance of sum of independent random variables

If *X* and *Y* are independent, then:

E[XY] = E[X]E[Y]

(proof in extra slides)

Therefore for independent *X* and *Y* :

Cov(X,Y) = E[XY] - E[X]E[Y]

= 0

$$Cov(X, Y) = 0$$
  
 $Var(X + Y) = Var(X) + Var(Y)$ 

= E[X]E[Y] - E[X]E[Y]

Proof of covariance:

def. of covariance

X and Y are independent

NOT bidirectional: Cov(X, Y) = 0does NOT imply independence of X and Y! Stanford University 21

#### Zero covariance does not imply independence

Let X take on values  $\{-1,0,1\}$  with equal probability 1/3.

Define 
$$Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$$

#### What is the joint PMF of *X* and *Y*?

| Α. |   | _          | X   |     |          | Β. |   | i        | X   |     |   | С. |   |          | X |     |
|----|---|------------|-----|-----|----------|----|---|----------|-----|-----|---|----|---|----------|---|-----|
|    |   | -1         |     |     |          |    |   | -1       |     |     |   |    |   | -1       |   |     |
| ~  | 0 | 1/6<br>1/6 | 1/6 | 1/6 | <u> </u> | λ  | 0 | 1/3<br>0 | 0   | 1/3 | ~ | 0  | 0 | 1/3      | 0 |     |
|    | 1 | 1/6        | 1/6 | 1/6 |          |    | 1 | 0        | 1/3 | 0   |   |    | 1 | 0<br>1/3 | 0 | 1/3 |

#### Zero covariance does not imply independence

Let X take on values  $\{-1,0,1\}$ **1**. E[X] =E[Y] =with equal probability 1/3. Define  $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$ 2. E[XY] =X 0 1 -1 3. Cov(X, Y) =1/3 0 1/3 2/3 Marginal 0 PMF of 1/3 1/3 0 0 1  $Y, p_Y(y)$ 4. Are X and Y independent? 1/3 1/3 1/3 Marginal PMF of X,  $p_X(x)$ 

#### Variance of sum of independent random variables

If *X* and *Y* are independent, then:

E[XY] = E[X]E[Y]

(proof in extra slides)

Therefore for **independent** *X* and *Y*:

$$Cov(X, Y) = 0$$
  
Var(X + Y) = Var(X) + Var(Y)

Proof of variance:  $Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$  (proved earlier) = Cov(X, X) + Cov(Y, Y) X and Y are independent = Var(X) + Var(Y)

> Also not bidirectional
>  Does not apply to dependent *X* and *Y* Stanford University 24

#### Variance of the Binomial

$$X \sim Bin(n,p)$$
  $Var(X) = np(1-p)$ 

Let 
$$X = \sum_{i=1}^{N} X_i$$

 $\boldsymbol{n}$ 

Let  $X_i = i$ th trial is heads  $X_i \sim \text{Ber}(p)$  $Var(X_i) = p(1-p)$ 

> X<sub>i</sub> are independent (by definition)

$$Var(X) = Var\left(\sum_{i=1}^{n} X_i\right)$$
$$= \sum_{i=1}^{n} Var(X_i)$$
$$= \sum_{i=1}^{n} p(1-p)$$

= np(1-p)

X<sub>i</sub> are independent, therefore variance of sum = sum of variance

Variance of Bernoulli



#### Covariance

#### Variance/covariance of sum of independent RVs



## Covarying humans

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

What is the covariance of weight W and height H? Cov(W,H) = E[WH] - E[W]E[H]= 3355.83 - (62.75)(52.75)= 45.77 (positive)

What about weight (lb) and height (cm)?

Cov(2.20W, 2.54H)

- $= E[2.20W \cdot 2.54H] E[2.20W]E[2.54H]$
- = 18752.38 (138.05)(133.99)
- = **255.06** (positive)

Covariance depends on units!



## Correlation

The **correlation** of two variables *X* and *Y* is:

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \, \sigma_Y}$$

$$\sigma_X^2 = \operatorname{Var}(X),$$
  
$$\sigma_Y^2 = \operatorname{Var}(Y)$$

- Note:  $-1 \le \rho(X, Y) \le 1$
- Correlation measures the linear relationship between X and Y:

$$\begin{array}{ll} \rho(X,Y) = 1 & \Longrightarrow Y = aX + b, \text{where } a = \sigma_Y / \sigma_X \\ \rho(X,Y) = -1 & \Longrightarrow Y = aX + b, \text{where } a = -\sigma_Y / \sigma_X \\ \rho(X,Y) = 0 & \Longrightarrow \text{``uncorrelated'''} (absence of linear relationship) \end{array}$$

## Correlation reps

What is the correlation coefficient  $\rho(X, Y)$ ?

1. 3.





A.  $\rho(X, Y) = 1$ B.  $\rho(X, Y) = -1$ C.  $\rho(X, Y) = 0$ D. Other

## Correlation reps

#### What is the correlation coefficient $\rho(X, Y)$ ?







A. 
$$\rho(X, Y) = 1$$
  
B.  $\rho(X, Y) = -1$   
C.  $\rho(X, Y) = 0$   
D. Other

(V V) = 1

A.  $\rho(X, Y) = 1$  $Y = \frac{\sigma_Y}{\sigma_X} X + b$ 



C.  $\rho(X, Y) = 0$ 

"uncorrelated"



 $\begin{array}{l} \mathsf{C.} \ \rho(X,Y) = 0\\ Y = X^2 \end{array}$ 

Correlation measures <u>linearity</u>. *X* and *Y* can be nonlinearly related even if Cov(X, Y) = 0Stanford University 30  $\rho(X, Y)$  is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: 0.947091



https://www.tylervigen.com/spurious-correlations

 $\rho(X,Y)$  is used a lot to statistically quantify the relationship b/t X and Y.





## Arcade revenue vs. CS PhDs

"Correlation does not imply causation"



Data sources: U.S. Census Bureau and National Science Foundation

#### https://www.tylervigen.com/spurious-correlations

#### Expectation of a product of independent RVs

Variance of sums of variables

#### Expectation of product of independent RVs

If *X* and *Y* are independent, then:

$$E[XY] = E[X]E[Y]$$
  
More generally, 
$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Proof: 
$$E[g(X)h(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_{X,Y}(x,y)dx dy$$
 (for discrete proof, replace  
integrals with summations)  
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_X(x)f_Y(y)dx dy$  X and Y are independent  
 $= \int_{-\infty}^{\infty} h(y)f_Y(y)dy \int_{-\infty}^{\infty} g(x)f_X(x)dx$  Terms dependent on y  
are constant in integral of x  
 $= \left(\int_{-\infty}^{\infty} g(x)f_X(x)dx\right) \left(\int_{-\infty}^{\infty} h(y)f_Y(y)dy\right)$  Integrals separate  
 $= E[g(X)]E[h(Y)]$   
Stanford University 35

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$
For 2 variables: 
$$\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$$
Proof: 
$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$
Adjust summation bounds