

16: Great Expectations

David Varodayan February 12, 2020 Adapted from slides by Lisa Yan

Today's plan

More expectations of sums of random variables

Conditional Expectation

Law of Total Expectation

Mixing discrete and continuous random variables

1. Linearity: $E[aX + bY + c] = aE[X] + bE[Y] + c$

2. Expectation of a sum = sum of expectation:

$$
E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]
$$

3. Unconscious statistician (LOTUS):

$$
E[g(X)] = \sum_{x} g(x) p_{X}(x)
$$

These properties hold **regardless of dependency** of random variables!

Review

Indicator Random Variables

Let $E_1, E_2, ..., E_n$ be events with indicator random variables X_i : • If event E_i occurs, then $X_i = 1$. Else $X_i = 0$.

Recall: $E[X_i] = P(E_i)$

Proof: $E[X_i] = 0 \cdot (1 - P(E_i)) + 1 \cdot P(E_i)$

From expectation of a sum result:

$$
E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} P(E_i)
$$

Coupon collector's problem

The coupon collector's problem in probability theory:

- You buy n boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i .

```
n requests
k servers
 Servers
request to
```
server i

* 52% of Amazon profits **more profitable than Amazon's North America commerce operations

What is the expected number of utilized servers after n requests?

Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server *i* with probability p_i
- Let $X = #$ servers that receive ≥ 1 request.

What is $E[X]$?

1. Define additional random variables.

Let:
$$
A_i
$$
 = event that server *i* $E[X_i] = P(A_i)$
receives ≥ 1 request X_i = indicator for A_i $E[X] = E$

$$
P(A_i) = 1 - P(\text{no requests to } i)
$$

= 1 - (1 - p_i)ⁿ

Note: A_i are dependent!

2. Solve.

$$
\begin{aligned}\n\text{every is } \quad E[X_i] &= P(A_i) = 1 - (1 - p_i)^n \\
\text{request} \\
A_i &= E[X] = E\left[\sum_{i=1}^k X_i\right] = \sum_{i=1}^k E[X_i] = \sum_{i=1}^k (1 - (1 - p_i)^n) \\
\text{quests to } i) &= \sum_{i=1}^k 1 - \sum_{i=1}^k (1 - p_i)^n = k - \sum_{i=1}^k (1 - p_i)^n \\
\text{respectively, } i &= 1\n\end{aligned}
$$

6 Stanford University

Coupon collector's problem – Hash tables

The coupon collector's problem in probability theory:

- You buy n boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i .

 n requests k servers **Servers** request to server i n strings k buckets Hash Tables hashed to bucket *i*

What is the expected number of strings to hash until each bucket has ≥ 1 string?

Hash Tables

Consider a hash table with n buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y = #$ strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional random variables.

Let: $Y_i = #$ of trials to get success after i -th success

- Success: hash string to previously empty bucket
- If i non-empty buckets: $P(\text{success}) =$ $k-\overline{l}$ κ

2. Solve.

$$
P(Y_i = n) = \left(\frac{i}{k}\right)^{n-1} \left(\frac{k-i}{k}\right)
$$

Equivalently, $Y_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right)$

$$
E[Y_i] = \frac{1}{p} = \frac{k}{k-i}
$$

Stanford University 8

Hash Tables

9

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y = #$ strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional random variables.

Let: $Y_i = #$ of trials to get success after i -th success

Success: hash string to previously empty bucket

 V_i ~Geo ($p=$ $k-\overline{l}$ k
- $E[Y_i] =$ 1 p = κ $k-i$

2. Solve.

$$
Y = Y_0 + Y_1 + \dots + Y_{n-1}
$$

\n
$$
F[Y] = E[Y_0] + E[Y_1] + \dots + E[Y_{n-1}]
$$

\n
$$
= \frac{k}{k} + \frac{k}{k-1} + \frac{k}{k-2} + \dots + \frac{k}{1}
$$

\n
$$
= k \left[\frac{1}{k} + \frac{1}{k-1} + \dots + 1 \right] = O(k \log k)
$$

\nStandard University

Midterm exam

It's done! Grades: Friday 2/14 Solutions: Friday 2/14

Midquarter feedback (optional but appreciated)

Link posted in announcement on CS109 webpage

<https://forms.gle/6JC6a4oyrH5hEGTy7>

Closes: Today, 11:59pm

Today's plan

More expectations of sums of random variables

Conditional Expectation

Law of Total Expectation

Mixing discrete and continuous random variables

Conditional expectation

Recall the the conditional PMF of X given $Y = y$:

$$
p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}
$$

The conditional expectation of X given $Y = y$ is

$$
E[X|Y = y] = \sum_{x} xP(X = x|Y = y) = \sum_{x} xp_{X|Y}(x|y)
$$

For continuous random variables:

$$
f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}
$$

$$
E[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx
$$

Stanford University 12

It's been so long, our dice friends

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let $X =$ value of $D_1 + D_2$ $Y =$ value of D_2
- 1. What is $E[X|Y = 6]$?

$$
E[X|Y=y] = \sum_{x} x p_{X|Y}(x|y)
$$

Quick check

- A. number
- B. function of Y *,* $g(Y)$
- C. function of $X, g(X)$
- D. function of *X* and *Y*, $g(X, Y)$
- E. doesn't make sense

- 1. $E[X]$
- 2. $E[X, Y]$
- $3. E[X|Y]$
- 4. $E[X|Y = 6]$
- 5. $E[Y|X]$
- 6. $E[X = 1]$

It's been so long, our dice friends

• Roll two 6-sided dice, yielding values D_1 and D_2 .

 $E[X|Y = 6] = 9.5$

- Let $X =$ value of $D_1 + D_2$ $Y =$ value of D_2
- 1. What is $E[X|Y=6]$?
- 2. What is $E[X|Y]$?

 $E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y)$

 χ

A. A function of $\mathsf B$. A function of X C. A number

Stanford University 15

It's been so long, our dice friends

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let $X =$ value of $D_1 + D_2$ $Y =$ value of D_2
- 1. What is $E[X|Y=6]$?
- 2. What is $E[X|Y]$?

 $A.$ A function of Y **B.** A function of X C. A number

 $E[X|Y = y] = E[W + Y|Y = y]$ Let $W =$ value of D_1 . W and Y are independent. $= y + \sum$ \boldsymbol{W} $wP(W = w|Y = y) = y + \sum_{k=1}^{n}$ $= E[W + y|Y = y] = y + E[W|Y = y]$ \boldsymbol{w} $WP(W = W)$ $= y + E[W] = 3.5 + y$

 $E[X|Y = 6] = 9.5$

 $E[X|Y] = 3.5 + Y$

Today's plan

More expectations of sums of random variables

Conditional Expectation

Law of Total Expectation

Mixing discrete and continuous random variables

Properties of conditional expectation

1. LOTUS:

$$
E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y) \quad \text{or} \quad \int_{-\infty}^{\infty} g(x)f_{X|Y}(x|y) dx
$$

2. Linearity of conditional expectation:

$$
E\left[\sum_{i=1}^{n} X_i \mid Y = y\right] = \sum_{i=1}^{n} E[X_i | Y = y]
$$

3. Law of total expectation:

 $E[X] = E[E[X|Y]]$

18 For any RV X and **discrete** RV Y, $E[X] = \sum$ \mathcal{Y} $E[X|Y = y]P(Y = y)$

$$
E\big[E[X|Y]\big] = E\big[g(Y)\big] = \sum_{y} P(Y = y)E[X|Y = y]
$$
\n(g(Y) = E[X|Y])

$$
= \sum_{y} P(Y = y) \sum_{x} xP(X = x | Y = y)
$$
\n(der of conditional expectation)

\n(over to the standard expectation)

$$
= \sum_{y} \left(\sum_{x} xP(X = x|Y = y)P(Y = y) \right) = \sum_{y} \left(\sum_{x} xP(X = x, Y = y) \right) \quad \text{(chain rule)}
$$

$$
= \sum_{x} \sum_{y} xP(X = x, Y = y) = \sum_{x} x \sum_{y} P(X = x, Y = y)
$$
 (switch order of summations)

$$
=\sum_{x} xP(X=x)
$$

(marginalization)

 $= E[X]$

def recurse(): # equally likely values 1,2,3 $x = np.random.choice([1,2,3])$ **if** (x == 1): **return** 3 **elif** $(x == 2)$: **return** $(5 + \text{recursive}))$ **else**: **return** (7 + recurse())

 $E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)$ \mathcal{Y} If Y discrete

Let $Y =$ return value of recurse(). What is $E[Y]$?

def recurse(): # equally likely values 1,2,3 $x = np.random.choice([1,2,3])$ **if** (x == 1): **return** 3 **elif** $(x == 2)$: **return** $(5 + \text{recursive}))$ **else**: **return** (7 + recurse())

 $E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)$ \mathcal{Y} If Y discrete

Let $Y =$ return value of recurse(). What is $E[Y]$?

When $X = 1$, return 3. $E[Y|X = 1] = 3$ $E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$

def recurse(): # equally likely values 1,2,3 $x = np.random.choice([1,2,3])$ **if** (x == 1): **return** 3 **elif** $(x == 2)$: **return** $(5 + \text{recursive}))$ **else**: **return** (7 + recurse())

Let $Y =$ return value of recurse(). What is $E[Y]$?

 $E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)$

 \mathcal{Y}

 $E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$

 $E[Y|X = 1] = 3$

When $X = 2$, return 5 + a future return value of recurse().

What is $E[Y|X=2]$? A. $E[5] + Y$ B. $E[Y + 5] = 5 + E[Y]$ C. $E[5] + E[Y|X = 2]$

If Y discrete

def recurse(): # equally likely values 1,2,3 $x = np.random.choice([1,2,3])$ **if** (x == 1): **return** 3 **elif** $(x == 2)$: **return** $(5 + \text{recursive}))$ **else**: **return** (7 + recurse())

 $E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)$ \mathcal{Y} If Y discrete

Let $Y =$ return value of recurse(). What is $E[Y]$?

 $E[Y|X = 1] = 3$ $E[Y|X = 2] = 5 + E[Y]$ When $X = 3$, return $7 + a$ future return value of recurse(). $E[Y|X = 3] = 7 + E[Y]$ $E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$

def recurse(): # equally likely values 1,2,3 $x = np.random.choice([1,2,3])$ **if** (x == 1): **return** 3 **elif** $(x == 2)$: **return** $(5 + \text{recursive}))$ **else**: **return** (7 + recurse())

 $E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)$ \mathcal{Y} If Y discrete

Let $Y =$ return value of recurse(). What is $E[Y]$?

 $E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$ $E[Y] =$ 3(1/3) + (5 + $E[Y]/(1/3)$ + (7 + $E[Y]/(1/3)$ $E[Y] = (1/3)(15 + 2E[Y]) = 5 + (2/3)E[Y]$ $E[Y] = 15$ $E[Y|X = 1] = 3$ $E[Y|X = 2] = 5 + E[Y]$ $E[Y|X = 3] = 7 + E[Y]$

Conditional expectation of X given Y :

- $E[X|Y]$ is a function of Y.
- To evaluate at $Y = y$, $E[X|Y = y] = \sum_{x} xP(X = x|Y = y)$

Law of total expectation:

$$
E[X] = E\big[E[X|Y]\big]
$$

- Helps us analyze recursive code.
- Pro tip: use this more in CS161

Today's plan

More expectations of sums of random variables

Conditional Expectation

Law of Total Expectation

Mixing discrete and continuous random variables

For discrete RVs X and Y , the conditional PMF of X given Y is

$$
p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}
$$

Bayes' Theorem:

$$
p_{Y|X}(y|x) = \frac{p_{X|Y}(x|y)p_Y(y)}{p_X(x)}
$$

For continuous RVs X and Y , the conditional PDF of X given Y is

$$
f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}
$$

Bayes' Theorem:

$$
f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_Y(y)}{f_X(x)}
$$

Conditioning with a continuous RV feels
weird at first, but then it gets good
Stanford University 27

Review

Mixing discrete and continuous

Let X be a continuous random variable, and N be a **discrete** random variable.

The conditional PDF of X given N is: The conditional PMF of N given X is:

> $f_{X|N}(x|n)$ $p_{N|X}(n|x)$

Mixing discrete and continuous

Let X be a continuous random variable for person's height (inches), and N be a **discrete** random variable for person's age (10, 13, 15, or 20).

Matching: A. $f_{X|N}(x|n)$, conditional PDF of X given N B. $p_{N|X}(n|x)$, conditional PMF of N given X

Mixing discrete and continuous

Let X be a continuous random variable, and N be a **discrete** random variable.

The conditional PDF of X given N is: $\hskip10mm$ The conditional PMF of N given X is:

 $f_{X|N}(x|n)$ $p_{N|X}(n|x)$

Bayes' Theorem:

$$
f_{X|N}(x|n) = \frac{p_{N|X}(n|x) f_X(x)}{p_N(n)}
$$

Intuition:

$$
P(X = x | N = n) = \frac{P(N = n | X = x)P(X = x)}{P(N = n)} \sum_{X \mid N} f_{X \mid N}(x | n) \varepsilon_X = \frac{p_{N \mid X}(n | x) \cdot f_X(x) \varepsilon_X}{p_N(n)}
$$

Stanford University 30

Bayes in all its forms

Let X , Y be continuous and M , N be discrete random variables.

OG Bayes:

\n
$$
p_{M|N}(m|n) = \frac{p_{N|M}(n|m)p_M(m)}{p_N(n)}
$$
\nMix Bayes #1:

\n
$$
f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}
$$
\nMix Bayes #2:

\n
$$
p_{N|X}(n|x) = \frac{f_{X|N}(x|n)p_N(n)}{f_X(x)}
$$
\nAll continuous:

\n
$$
f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}
$$

We are going to learn something unintuitive, beautiful, and useful!

We are going to think of probabilities as random variables.

Mixing discrete and continuous random variables, combined with Bayes' Theorem, allows us to reason about probabilities as random variables.

A new definition of probability

Flip a coin $n + m$ times, comes up with n heads. We don't know the probability X that the coin comes up with heads.

The world's first coin

Bayesian

X is a random variable.

 X 's support: $(0, 1)$

Stanford University 33

Flip a coin $n + m$ times, comes up with n heads.

- Before our experiment, X (the probability that the coin comes up heads) can be any probability.
- Let $N =$ number of heads.
- Given $X = x$, coin flips are independent.

What is our updated belief of X after we observe $N = n$?

What are the distributions of the following?

$$
2. \quad N|X
$$

$3. \quad X|N$

$$
f_X(x)
$$

 $p_{N|X}(n|x)$ $f_{X|N}(x|n)$

A. $Uni(0,1)$ B. Bin($n + m, x$) C. Use Bayes' D. Subjective opinion

Flip a coin $n + m$ times, comes up with n heads.

- Before our experiment, X (the probability that the coin comes up heads) can be any probability.
- Let $N =$ number of heads.
- Given $X = x$, coin flips are independent.

What is our updated belief of X after we observe $N = n$?

What are the distributions of the following?

- 1. Bayesian prior $X \sim$ Uni $(0,1)$
- 2. $N|X$ Likelihood $N | X \sim Bin(n + m, x)$
- $3. X|N$ Bayesian posterior. Use Bayes'

 $f_X(x)$

 $p_{N|X}(n|x)$ $f_{X|N}(x|n)$

- A. $Uni(0,1)$ B. Bin($n + m, x$) C. Use Bayes'
- D. Subjective opinion

Flip a coin $n + m$ times, comes up with n heads.

- Before our experiment, X (the probability that the coin comes up heads) can be any probability.
- Let $N =$ number of heads.
- Given $X = x$, coin flips are independent.

What is our updated belief of X after we observe $N = n$?

$$
\begin{array}{c}\n\text{Prior:} \\
X \sim \text{Uni}(0,1)\n\end{array}
$$

Likelihood: $N | X \sim Bin(n + m, x)$

Posterior: $f_{X|N}(x|n)$

$$
f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)} = \frac{\binom{n+m}{n}x^n(1-x)^m \cdot 1}{p_N(n)}
$$

=
$$
\frac{\binom{n+m}{n}}{\frac{p_N(n)}{\text{constant}}}\,x^n(1-x)^m = \frac{1}{c}\,x^n(1-x)^m,\text{ where } c = \int_0^1 x^n(1-x)^m dx
$$

constant,
doesn't depend on x
Stanford University as

- Start with a $X \sim$ Uni $(0,1)$ over probability
- Observe n successes and m failures
- Your new belief about the probability of X is:

$$
f_{X|N}(x|n) = \frac{1}{c} x^n (1-x)^m, \text{where } c = \int_0^1 x^n (1-x)^m dx
$$

Suppose our experiment is 8 flips of a coin. We observe:

• $n = 7$ heads (successes)

• $m = 1$ tail (failure) What is our posterior belief, $X|N$?

- Start with a $X \sim$ Uni $(0,1)$ over probability
- Observe $n = 7$ successes and $m = 1$ failures
- Your new belief about the probability of X is:

$$
f_{X|N}(x|n) = \frac{1}{c} x^7 (1-x)^1, \text{ where } c = \int_0^1 x^7 (1-x)^1 dx
$$

