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Today’s plan

More expectations of sums of random variables

Conditional Expectation

Law of Total Expectation

Mixing discrete and continuous random variables
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Properties of Expectation
1. Linearity:

𝐸𝐸 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 𝑎𝑎𝑎𝑎 𝑋𝑋 + 𝑏𝑏𝐸𝐸 𝑌𝑌 + 𝑐𝑐

2. Expectation of a sum = sum of expectation:

𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖

3. Unconscious statistician (LOTUS):
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𝐸𝐸 𝑔𝑔 𝑋𝑋 = �
𝑥𝑥

𝑔𝑔 𝑥𝑥 𝑝𝑝𝑋𝑋(𝑥𝑥)

Review

These properties hold regardless 
of dependency of random 
variables!



Indicator Random Variables
Let 𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑛𝑛 be events with indicator random variables 𝑋𝑋𝑖𝑖:
• If event 𝐸𝐸𝑖𝑖 occurs, then 𝑋𝑋𝑖𝑖 = 1. Else 𝑋𝑋𝑖𝑖 = 0.

Recall: 𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝑃𝑃 𝐸𝐸𝑖𝑖

From expectation of a sum result:

𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝐸𝐸𝑖𝑖
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Proof:

𝐸𝐸 𝑋𝑋𝑖𝑖 = 0 ⋅ 1 − 𝑃𝑃 𝐸𝐸𝑖𝑖 + 1 ⋅ 𝑃𝑃 𝐸𝐸𝑖𝑖



Coupon collector’s problem
The coupon collector’s problem in probability theory:
• You buy 𝑛𝑛 boxes of cereal.
• There are 𝑘𝑘 different types of coupons
• For each box you buy, you “collect”

a coupon of type 𝑖𝑖.
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𝑛𝑛 requests
𝑘𝑘 servers

Servers

request to
server 𝑖𝑖

* 52% of Amazon profits
**more profitable than Amazon’s

North America commerce operations

What is the expected number of utilized
servers after 𝑛𝑛 requests?



Computer cluster utilization
Consider a computer cluster with 𝑘𝑘 servers. We send 𝑛𝑛 requests.
• Requests independently go to server 𝑖𝑖 with probability 𝑝𝑝𝑖𝑖
• Let 𝑋𝑋 = # servers that receive ≥ 1 request.

What is 𝐸𝐸 𝑋𝑋 ?
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1. Define additional
random variables.

2. Solve.

Let: 𝐴𝐴𝑖𝑖 = event that server 𝑖𝑖
receives ≥ 1 request

𝑋𝑋𝑖𝑖 = indicator for 𝐴𝐴𝑖𝑖 𝐸𝐸 𝑋𝑋 = 𝐸𝐸 �
𝑖𝑖=1

𝑘𝑘

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑘𝑘

𝐸𝐸 𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑘𝑘

1 − 1 − 𝑝𝑝𝑖𝑖 𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝑃𝑃 𝐴𝐴𝑖𝑖 = 1 − 1 − 𝑝𝑝𝑖𝑖 𝑛𝑛

= �
𝑖𝑖=1

𝑘𝑘

1 −�
𝑖𝑖=1

𝑘𝑘

1 − 𝑝𝑝𝑖𝑖 𝑛𝑛
𝑃𝑃 𝐴𝐴𝑖𝑖 = 1 − 𝑃𝑃 no requests to 𝑖𝑖

= 1 − 1 − 𝑝𝑝𝑖𝑖 𝑛𝑛 = 𝑘𝑘 −�
𝑖𝑖=1

𝑘𝑘

1 − 𝑝𝑝𝑖𝑖 𝑛𝑛

𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖

Note: 𝐴𝐴𝑖𝑖 are dependent!



Coupon collector’s problem – Hash tables
The coupon collector’s problem in probability theory:
• You buy 𝑛𝑛 boxes of cereal.
• There are 𝑘𝑘 different types of coupons
• For each box you buy, you “collect”

a coupon of type 𝑖𝑖.
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𝑛𝑛 requests
𝑘𝑘 servers

Servers

request to
server 𝑖𝑖

𝑛𝑛 strings
𝑘𝑘 buckets

Hash Tables

hashed to
bucket 𝑖𝑖

What is the expected number of strings to hash
until each bucket has ≥ 1 string?



Hash Tables
Consider a hash table with 𝑛𝑛 buckets.
• Strings are equally likely to get hashed into any bucket (independently).
• Let 𝑌𝑌 = # strings to hash until each bucket ≥ 1 string.

What is 𝐸𝐸 𝑌𝑌 ?
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1. Define additional
random variables.

Let: 𝑌𝑌𝑖𝑖 = # of trials to get 
success after 𝑖𝑖-th success
• Success: hash string to

previously empty bucket

• If 𝑖𝑖 non-empty buckets:

𝑃𝑃 success =
𝑘𝑘 − 𝑖𝑖
𝑘𝑘

𝑃𝑃 𝑌𝑌𝑖𝑖 = 𝑛𝑛 =
𝑖𝑖
𝑘𝑘

𝑛𝑛−1 𝑘𝑘 − 𝑖𝑖
𝑘𝑘

Equivalently, 𝑌𝑌𝑖𝑖~Geo 𝑝𝑝 = 𝑘𝑘−𝑖𝑖
𝑘𝑘

𝐸𝐸 𝑌𝑌𝑖𝑖 =
1
𝑝𝑝

=
𝑘𝑘

𝑘𝑘 − 𝑖𝑖

2. Solve.

𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖



Hash Tables
Consider a hash table with 𝑘𝑘 buckets.
• Strings are equally likely to get hashed into any bucket (independently).
• Let 𝑌𝑌 = # strings to hash until each bucket ≥ 1 string.

What is 𝐸𝐸 𝑌𝑌 ?
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1. Define additional
random variables.

Let: 𝑌𝑌𝑖𝑖 = # of trials to get 
success after 𝑖𝑖-th success
• Success: hash string to

previously empty bucket

𝑌𝑌𝑖𝑖~Geo 𝑝𝑝 =
𝑘𝑘 − 𝑖𝑖
𝑘𝑘

𝐸𝐸 𝑌𝑌𝑖𝑖 =
1
𝑝𝑝

=
𝑘𝑘

𝑘𝑘 − 𝑖𝑖

2. Solve.

𝑌𝑌 = 𝑌𝑌0 + 𝑌𝑌1 + ⋯+ 𝑌𝑌𝑛𝑛−1
𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝑌𝑌0 + 𝐸𝐸 𝑌𝑌1 + ⋯+ 𝐸𝐸 𝑌𝑌𝑛𝑛−1

=
𝑘𝑘
𝑘𝑘

+
𝑘𝑘

𝑘𝑘 − 1
+

𝑘𝑘
𝑘𝑘 − 2

+ ⋯+
𝑘𝑘
1

= 𝑘𝑘
1
𝑘𝑘

+
1

𝑘𝑘 − 1
+ ⋯+ 1 = 𝑂𝑂 𝑘𝑘 log 𝑘𝑘

𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖

𝑌𝑌𝑖𝑖’s are dependent!



Announcements
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Midquarter feedback (optional but appreciated)

Link posted in announcement on CS109 webpage
https://forms.gle/6JC6a4oyrH5hEGTy7

Closes: Today, 11:59pm

Midterm exam

It’s done! 
Grades: Friday 2/14
Solutions: Friday 2/14

Problem Set 4

Due: Wednesday 2/19

https://forms.gle/6JC6a4oyrH5hEGTy7


Today’s plan

More expectations of sums of random variables

Conditional Expectation

Law of Total Expectation

Mixing discrete and continuous random variables
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Conditional expectation
Recall the the conditional PMF of 𝑋𝑋 given 𝑌𝑌 = 𝑦𝑦: 

𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦 =
𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦
𝑝𝑝𝑌𝑌 𝑦𝑦

The conditional expectation of 𝑋𝑋 given 𝑌𝑌 = 𝑦𝑦 is

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = �
𝑥𝑥

𝑥𝑥𝑥𝑥 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦 = �
𝑥𝑥

𝑥𝑥𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦

For continuous random variables:

𝑓𝑓𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦 =
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦
𝑓𝑓𝑌𝑌 𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = �
−∞

∞
𝑥𝑥𝑓𝑓𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦 𝑑𝑑𝑑𝑑
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It’s been so long, our dice friends
• Roll two 6-sided dice, yielding values 𝐷𝐷1 and 𝐷𝐷2.
• Let 𝑋𝑋 = value of 𝐷𝐷1 + 𝐷𝐷2

𝑌𝑌 = value of 𝐷𝐷2
1. What is 𝐸𝐸 𝑋𝑋|𝑌𝑌 = 6 ?
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𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = �
𝑥𝑥

𝑥𝑥𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦



Quick check

1. 𝐸𝐸 𝑋𝑋

2. 𝐸𝐸 𝑋𝑋,𝑌𝑌

3. 𝐸𝐸 𝑋𝑋|𝑌𝑌

4. 𝐸𝐸 𝑋𝑋|𝑌𝑌 = 6

5. 𝐸𝐸 𝑌𝑌|𝑋𝑋

6. 𝐸𝐸 𝑋𝑋 = 1
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A. number
B. function of 𝑌𝑌, 𝑔𝑔 𝑌𝑌
C. function of 𝑋𝑋, 𝑔𝑔 𝑋𝑋
D. function of 𝑋𝑋 and 𝑌𝑌, 𝑔𝑔 𝑋𝑋,𝑌𝑌
E. doesn’t make sense



It’s been so long, our dice friends
• Roll two 6-sided dice, yielding values 𝐷𝐷1 and 𝐷𝐷2.
• Let 𝑋𝑋 = value of 𝐷𝐷1 + 𝐷𝐷2

𝑌𝑌 = value of 𝐷𝐷2
1. What is 𝐸𝐸 𝑋𝑋|𝑌𝑌 = 6 ?
2. What is 𝐸𝐸 𝑋𝑋|𝑌𝑌 ?
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A. A function of 𝑌𝑌
B. A function of 𝑋𝑋
C. A number

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = �
𝑥𝑥

𝑥𝑥𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 6 = 9.5



It’s been so long, our dice friends
• Roll two 6-sided dice, yielding values 𝐷𝐷1 and 𝐷𝐷2.
• Let 𝑋𝑋 = value of 𝐷𝐷1 + 𝐷𝐷2

𝑌𝑌 = value of 𝐷𝐷2
1. What is 𝐸𝐸 𝑋𝑋|𝑌𝑌 = 6 ?
2. What is 𝐸𝐸 𝑋𝑋|𝑌𝑌 ?
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A. A function of 𝑌𝑌
B. A function of 𝑋𝑋
C. A number

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = �
𝑥𝑥

𝑥𝑥𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 6 = 9.5

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = 𝐸𝐸 𝑊𝑊 + 𝑌𝑌|𝑌𝑌 = 𝑦𝑦
Let 𝑊𝑊 = value of 𝐷𝐷1. 𝑊𝑊 and 𝑌𝑌 are independent.

= 𝑦𝑦 + �
𝑤𝑤

𝑤𝑤𝑤𝑤 𝑊𝑊 = 𝑤𝑤|𝑌𝑌 = 𝑦𝑦

= 𝐸𝐸 𝑊𝑊 + 𝑦𝑦|𝑌𝑌 = 𝑦𝑦 = 𝑦𝑦 + 𝐸𝐸 𝑊𝑊|𝑌𝑌 = 𝑦𝑦

= 𝑦𝑦 + �
𝑤𝑤

𝑤𝑤𝑤𝑤 𝑊𝑊 = 𝑤𝑤

= 𝑦𝑦 + 𝐸𝐸 𝑊𝑊 = 3.5 + 𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 3.5 + 𝑌𝑌



Today’s plan

More expectations of sums of random variables

Conditional Expectation

Law of Total Expectation

Mixing discrete and continuous random variables
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Properties of conditional expectation
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1. LOTUS:

𝐸𝐸 𝑔𝑔 𝑋𝑋 |𝑌𝑌 = 𝑦𝑦 = �
𝑥𝑥

𝑔𝑔 𝑥𝑥 𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥|𝑦𝑦) or �
−∞

∞
𝑔𝑔 𝑥𝑥 𝑓𝑓𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦 𝑑𝑑𝑑𝑑

2. Linearity of conditional expectation:

𝐸𝐸 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 | 𝑌𝑌 = 𝑦𝑦 = �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸 𝑋𝑋𝑖𝑖|𝑌𝑌 = 𝑦𝑦

3. Law of total expectation:

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌
For any RV 𝑋𝑋 and discrete RV 𝑌𝑌, 

𝐸𝐸 𝑋𝑋 = �
𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 𝑃𝑃 𝑌𝑌 = 𝑦𝑦



Proof of Law of Total Expectation
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𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌

𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝐸𝐸 𝑔𝑔 𝑌𝑌 = �
𝑦𝑦

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 (𝑔𝑔 𝑌𝑌 = 𝐸𝐸 𝑋𝑋|𝑌𝑌 )

= �
𝑦𝑦

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 �
𝑥𝑥

𝑥𝑥𝑥𝑥 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦
(def of 

conditional 
expectation)

= �
𝑦𝑦

�
𝑥𝑥

𝑥𝑥𝑥𝑥 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 = �
𝑦𝑦

�
𝑥𝑥

𝑥𝑥𝑥𝑥 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 (chain rule)

= �
𝑥𝑥

�
𝑦𝑦

𝑥𝑥𝑥𝑥 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 = �
𝑥𝑥

𝑥𝑥�
𝑦𝑦

𝑃𝑃 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 (switch order of 
summations)

= �
𝑥𝑥

𝑥𝑥𝑃𝑃 𝑋𝑋 = 𝑥𝑥 (marginalization)

= 𝐸𝐸 𝑋𝑋



Analyzing recursive code

20

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌𝑌 = return value of recurse().
What is 𝐸𝐸 𝑌𝑌 ?

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌 = �
𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 𝑃𝑃 𝑌𝑌 = 𝑦𝑦
If 𝑌𝑌 discrete



Analyzing recursive code

21

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌𝑌 = return value of recurse().
What is 𝐸𝐸 𝑌𝑌 ?

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌 = �
𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 𝑃𝑃 𝑌𝑌 = 𝑦𝑦
If 𝑌𝑌 discrete

When 𝑋𝑋 = 1, return 3.
𝐸𝐸 𝑌𝑌|𝑋𝑋 = 1 = 3

𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 1 𝑃𝑃 𝑋𝑋 = 1 + 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 2 𝑃𝑃 𝑋𝑋 = 2 + 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 3 𝑃𝑃 𝑋𝑋 = 3



Analyzing recursive code

22

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌𝑌 = return value of recurse().
What is 𝐸𝐸 𝑌𝑌 ?

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌 = �
𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 𝑃𝑃 𝑌𝑌 = 𝑦𝑦
If 𝑌𝑌 discrete

When 𝑋𝑋 = 2, return 5 +
a future return value of recurse().

What is 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 2 ?
A. 𝐸𝐸 5 + 𝑌𝑌
B. 𝐸𝐸 𝑌𝑌 + 5 = 5 + 𝐸𝐸 𝑌𝑌
C. 𝐸𝐸 5 + 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 2

𝐸𝐸 𝑌𝑌|𝑋𝑋 = 1 = 3

𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 1 𝑃𝑃 𝑋𝑋 = 1 + 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 2 𝑃𝑃 𝑋𝑋 = 2 + 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 3 𝑃𝑃 𝑋𝑋 = 3



Analyzing recursive code
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def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌𝑌 = return value of recurse().
What is 𝐸𝐸 𝑌𝑌 ?

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌 = �
𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 𝑃𝑃 𝑌𝑌 = 𝑦𝑦
If 𝑌𝑌 discrete

𝐸𝐸 𝑌𝑌|𝑋𝑋 = 1 = 3 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 2 = 5 + 𝐸𝐸 𝑌𝑌 When 𝑋𝑋 = 3, return 
7 + a future return value 
of recurse().

𝐸𝐸 𝑌𝑌|𝑋𝑋 = 3 = 7 + 𝐸𝐸 𝑌𝑌

𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 1 𝑃𝑃 𝑋𝑋 = 1 + 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 2 𝑃𝑃 𝑋𝑋 = 2 + 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 3 𝑃𝑃 𝑋𝑋 = 3



Analyzing recursive code
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def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌𝑌 = return value of recurse().
What is 𝐸𝐸 𝑌𝑌 ?

𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌 = �
𝑦𝑦

𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 𝑃𝑃 𝑌𝑌 = 𝑦𝑦
If 𝑌𝑌 discrete

𝐸𝐸 𝑌𝑌 = 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 1 𝑃𝑃 𝑋𝑋 = 1 + 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 2 𝑃𝑃 𝑋𝑋 = 2 + 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 3 𝑃𝑃 𝑋𝑋 = 3

𝐸𝐸 𝑌𝑌 = 3 1/3 + 5 + 𝐸𝐸 𝑌𝑌 1/3 + 7 + 𝐸𝐸 𝑌𝑌 1/3

𝐸𝐸 𝑌𝑌 = 1/3 15 + 2𝐸𝐸 𝑌𝑌 = 5 + 2/3 𝐸𝐸 𝑌𝑌

𝐸𝐸 𝑌𝑌 = 15

𝐸𝐸 𝑌𝑌|𝑋𝑋 = 1 = 3 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 2 = 5 + 𝐸𝐸 𝑌𝑌 𝐸𝐸 𝑌𝑌|𝑋𝑋 = 3 = 7 + 𝐸𝐸 𝑌𝑌



Law of Total Expectation, a summary

Conditional expectation of 𝑋𝑋 given 𝑌𝑌:
• 𝐸𝐸 𝑋𝑋|𝑌𝑌 is a function of 𝑌𝑌.
• To evaluate at 𝑌𝑌 = 𝑦𝑦,  𝐸𝐸 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = ∑𝑥𝑥 𝑥𝑥𝑥𝑥 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦

Law of total expectation:
𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝐸𝐸 𝑋𝑋|𝑌𝑌

• Helps us analyze recursive code.
• Pro tip: use this more in CS161
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Today’s plan

More expectations of sums of random variables

Conditional Expectation

Law of Total Expectation

Mixing discrete and continuous random variables

26



For discrete RVs 𝑋𝑋 and 𝑌𝑌, the 
conditional PMF of 𝑋𝑋 given 𝑌𝑌 is

𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦 =
𝑝𝑝𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦
𝑝𝑝𝑌𝑌 𝑦𝑦

Bayes’ Theorem:

𝑝𝑝𝑌𝑌|𝑋𝑋 𝑦𝑦|𝑥𝑥 =
𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦 𝑝𝑝𝑌𝑌 𝑦𝑦

𝑝𝑝𝑋𝑋 𝑥𝑥

Conditional distributions
For continuous RVs 𝑋𝑋 and 𝑌𝑌, the 
conditional PDF of 𝑋𝑋 given 𝑌𝑌 is

𝑓𝑓𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦 =
𝑓𝑓𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦
𝑓𝑓𝑌𝑌 𝑦𝑦

Bayes’ Theorem:

𝑓𝑓𝑌𝑌|𝑋𝑋 𝑦𝑦|𝑥𝑥 =
𝑓𝑓𝑋𝑋|𝑌𝑌 𝑥𝑥|𝑦𝑦 𝑓𝑓𝑌𝑌 𝑦𝑦

𝑓𝑓𝑋𝑋 𝑥𝑥
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Review

Conditioning with a continuous RV feels 
weird at first, but then it gets good



Mixing discrete and continuous
Let 𝑋𝑋 be a continuous random variable, and

𝑁𝑁 be a discrete random variable.

28

The conditional PDF of 𝑋𝑋 given 𝑁𝑁 is:

𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥|𝑛𝑛

The conditional PMF of 𝑁𝑁 given 𝑋𝑋 is:

𝑝𝑝𝑁𝑁|𝑋𝑋 𝑛𝑛|𝑥𝑥



Mixing discrete and continuous
Let 𝑋𝑋 be a continuous random variable for person’s height (inches), and

𝑁𝑁 be a discrete random variable for person’s age (10, 13, 15, or 20).
Matching: A. 𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥|𝑛𝑛 , conditional PDF of 𝑋𝑋 given 𝑁𝑁

B. 𝑝𝑝𝑁𝑁|𝑋𝑋 𝑛𝑛|𝑥𝑥 , conditional PMF of 𝑁𝑁 given 𝑋𝑋
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Mixing discrete and continuous
Let 𝑋𝑋 be a continuous random variable, and

𝑁𝑁 be a discrete random variable.

30

The conditional PDF of 𝑋𝑋 given 𝑁𝑁 is:

𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥|𝑛𝑛

The conditional PMF of 𝑁𝑁 given 𝑋𝑋 is:

𝑝𝑝𝑁𝑁|𝑋𝑋 𝑛𝑛|𝑥𝑥

𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥|𝑛𝑛 =
𝑝𝑝𝑁𝑁|𝑋𝑋 𝑛𝑛|𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥

𝑝𝑝𝑁𝑁 𝑛𝑛

Intuition:

Bayes’ 
Theorem:

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑁𝑁 = 𝑛𝑛 =
𝑃𝑃 𝑁𝑁 = 𝑛𝑛|𝑋𝑋 = 𝑥𝑥 𝑃𝑃 𝑋𝑋 = 𝑥𝑥

𝑃𝑃 𝑁𝑁 = 𝑛𝑛 𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥 𝑛𝑛 𝜀𝜀𝑋𝑋 =
𝑝𝑝𝑁𝑁|𝑋𝑋 𝑛𝑛|𝑥𝑥 ⋅ 𝑓𝑓𝑋𝑋 𝑥𝑥 𝜀𝜀𝑥𝑥

𝑝𝑝𝑁𝑁 𝑛𝑛



Bayes in all its forms
Let 𝑋𝑋,𝑌𝑌 be continuous

OG Bayes: 𝑝𝑝𝑀𝑀|𝑁𝑁 𝑚𝑚|𝑛𝑛 = 𝑝𝑝𝑁𝑁|𝑀𝑀 𝑛𝑛|𝑚𝑚 𝑝𝑝𝑀𝑀 𝑚𝑚
𝑝𝑝𝑁𝑁 𝑛𝑛

Mix Bayes #1: 𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥 𝑛𝑛 = 𝑝𝑝𝑁𝑁|𝑋𝑋 𝑛𝑛|𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥
𝑝𝑝𝑁𝑁 𝑛𝑛

Mix Bayes #2: 𝑝𝑝𝑁𝑁|𝑋𝑋 𝑛𝑛|𝑥𝑥 = 𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥|𝑛𝑛 𝑝𝑝𝑁𝑁 𝑛𝑛
𝑓𝑓𝑋𝑋 𝑥𝑥

All continuous: 𝑓𝑓𝑋𝑋|𝑌𝑌 𝑥𝑥 𝑦𝑦 = 𝑓𝑓𝑌𝑌|𝑋𝑋 𝑦𝑦|𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥
𝑓𝑓𝑌𝑌 𝑦𝑦
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and𝑀𝑀,𝑁𝑁 be discrete random variables.



Preview for next time

We are going to learn something unintuitive,
beautiful, and useful!

We are going to think of probabilities as
random variables.

Mixing discrete and continuous random variables, 
combined with Bayes’ Theorem, allows us to reason about 

probabilities as random variables.
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A new definition of probability
Flip a coin 𝑛𝑛 + 𝑚𝑚 times, comes up with 𝑛𝑛 heads.
We don’t know the probability 𝑋𝑋 that the coin
comes up with heads.

33

The world’s first coin

Frequentist

𝑋𝑋 is a single value.

𝑋𝑋 = lim
𝑛𝑛+𝑚𝑚→∞

𝑛𝑛
𝑛𝑛 + 𝑚𝑚

≈
𝑛𝑛

𝑛𝑛 + 𝑚𝑚

Bayesian

𝑋𝑋 is a random variable.

𝑋𝑋’s support: (0, 1)



Flip a coin with unknown probability
Flip a coin 𝑛𝑛 + 𝑚𝑚 times, comes up with 𝑛𝑛 heads.
• Before our experiment, 𝑋𝑋 (the probability that the coin

comes up heads) can be any probability.
• Let 𝑁𝑁 = number of heads.
• Given 𝑋𝑋 = 𝑥𝑥, coin flips are independent.

What is our updated belief of 𝑋𝑋 after we observe 𝑁𝑁 = 𝑛𝑛?
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What are the distributions of the following?
1. 𝑋𝑋
2. 𝑁𝑁|𝑋𝑋
3. 𝑋𝑋|𝑁𝑁

A. Uni 0,1
B. Bin(𝑛𝑛 + 𝑚𝑚, 𝑥𝑥)
C. Use Bayes’
D. Subjective 

opinion

𝑝𝑝𝑁𝑁|𝑋𝑋 𝑛𝑛|𝑥𝑥

𝑓𝑓𝑋𝑋 𝑥𝑥

𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥 𝑛𝑛



Flip a coin with unknown probability
Flip a coin 𝑛𝑛 + 𝑚𝑚 times, comes up with 𝑛𝑛 heads.
• Before our experiment, 𝑋𝑋 (the probability that the coin

comes up heads) can be any probability.
• Let 𝑁𝑁 = number of heads.
• Given 𝑋𝑋 = 𝑥𝑥, coin flips are independent.

What is our updated belief of 𝑋𝑋 after we observe 𝑁𝑁 = 𝑛𝑛?
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What are the distributions of the following?
1. 𝑋𝑋
2. 𝑁𝑁|𝑋𝑋
3. 𝑋𝑋|𝑁𝑁

Bayesian prior 𝑋𝑋~Uni 0,1

Likelihood 𝑁𝑁|𝑋𝑋~Bin(𝑛𝑛 + 𝑚𝑚, 𝑥𝑥)

Bayesian posterior. Use Bayes’

𝑝𝑝𝑁𝑁|𝑋𝑋 𝑛𝑛|𝑥𝑥

𝑓𝑓𝑋𝑋 𝑥𝑥

𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥 𝑛𝑛

A. Uni 0,1
B. Bin(𝑛𝑛 + 𝑚𝑚, 𝑥𝑥)
C. Use Bayes’
D. Subjective 

opinion



Flip a coin with unknown probability
Flip a coin 𝑛𝑛 + 𝑚𝑚 times, comes up with 𝑛𝑛 heads.
• Before our experiment, 𝑋𝑋 (the probability that the coin

comes up heads) can be any probability.
• Let 𝑁𝑁 = number of heads.
• Given 𝑋𝑋 = 𝑥𝑥, coin flips are independent.

What is our updated belief of 𝑋𝑋 after we observe 𝑁𝑁 = 𝑛𝑛?
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Posterior: 𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥 𝑛𝑛

Likelihood:
𝑁𝑁|𝑋𝑋~Bin(𝑛𝑛 + 𝑚𝑚, 𝑥𝑥)

Prior:
𝑋𝑋~Uni 0,1

𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥 𝑛𝑛 =
𝑝𝑝𝑁𝑁|𝑋𝑋 𝑛𝑛|𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥

𝑝𝑝𝑁𝑁 𝑛𝑛 =
𝑛𝑛 + 𝑚𝑚
𝑛𝑛 𝑥𝑥𝑛𝑛 1 − 𝑥𝑥 𝑚𝑚 ⋅ 1

𝑝𝑝𝑁𝑁 𝑛𝑛

=
𝑛𝑛 + 𝑚𝑚
𝑛𝑛

𝑝𝑝𝑁𝑁 𝑛𝑛
𝑥𝑥𝑛𝑛 1 − 𝑥𝑥 𝑚𝑚

constant,
doesn’t depend on 𝑥𝑥

=
1
𝑐𝑐
𝑥𝑥𝑛𝑛 1 − 𝑥𝑥 𝑚𝑚, where 𝑐𝑐 = �

0

1
𝑥𝑥𝑛𝑛 1 − 𝑥𝑥 𝑚𝑚𝑑𝑑𝑑𝑑



Flip a coin with unknown probability
• Start with a 𝑋𝑋~Uni 0,1 over probability
• Observe 𝑛𝑛 successes and 𝑚𝑚 failures
• Your new belief about the probability of 𝑋𝑋 is:

𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥 𝑛𝑛 =
1
𝑐𝑐
𝑥𝑥𝑛𝑛 1 − 𝑥𝑥 𝑚𝑚, where 𝑐𝑐 = �

0

1
𝑥𝑥𝑛𝑛 1 − 𝑥𝑥 𝑚𝑚𝑑𝑑𝑑𝑑

37

𝑓𝑓 𝑋𝑋
𝑥𝑥

Prior belief, 𝑋𝑋

𝑥𝑥

Suppose our experiment
is 8 flips of a coin. We observe:
• 𝑛𝑛 = 7 heads (successes)
• 𝑚𝑚 = 1 tail (failure)
What is our posterior belief, 𝑋𝑋|𝑁𝑁?



Flip a coin with unknown probability
• Start with a 𝑋𝑋~Uni 0,1 over probability
• Observe 𝑛𝑛 = 7 successes and 𝑚𝑚 = 1 failures
• Your new belief about the probability of 𝑋𝑋 is:

𝑓𝑓𝑋𝑋|𝑁𝑁 𝑥𝑥 𝑛𝑛 =
1
𝑐𝑐
𝑥𝑥7 1 − 𝑥𝑥 1, where 𝑐𝑐 = �

0

1
𝑥𝑥7 1 − 𝑥𝑥 1𝑑𝑑𝑑𝑑
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𝑓𝑓 𝑋𝑋
𝑥𝑥

Prior belief, 𝑋𝑋

𝑥𝑥
𝑓𝑓 𝑋𝑋

|𝑁𝑁
𝑥𝑥|
𝑛𝑛

Posterior belief, 𝑋𝑋|𝑁𝑁

𝑥𝑥
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