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Bayes in all its forms

Let X,Y be continuous and M, N be discrete random variables.

pnm(n|m)pp (m)

OG Bayes: D) y(mln) = o

Mix Bayes #1.: fX|N(x|Tl) _ N x(x)f x(x)
pn(n)

Mix Bayes #2: pN|X(n|X) _ fxin(xIn)py(n)
fx(x)

All continuous: leY(xb’) _ frixlx)f x(x)
fry)
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Today’s Plan

We a

re going to learn something unintuitive,
beautiful, and useful!

We are going to think of probabilities as

Mixing ¢
combined w

random variables.

Iscrete and continuous random variables,
ith Bayes’ Theorem, allows us to reason about
orobabilities as random variables.
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Today's plan

=) Thinking of probabilities as random variables

Beta distribution
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A new definition of probability

Flip a coin n + m times, comes up with n heads.

We don’t know the probability X that the coin
comes up with heads.

The world’s first coin

Frequentist Bayesian
X is a single value. X is a random variable.
o n n
X_n+l71nn—l>oon+m~n+m X’s support: (0, 1)
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Flip a coin with unknown probability

Flip a coin n + m times, comes up with n heads.
Before our experiment, X (the probability that the coin
comes up heads) can be any probability.
Let N = number of heads.
Given X = x, coin flips are independent.

What is our updated belief of X after we observe N = n?

What are the distributions of the following?
X
N|X
X|N

fx(x)

PN|X(n|X)
fX|N(x|n)

Uni(0,1)
Bin(n + m, x)
Use Bayes’
Subjective
opinion

Stanford University 6



Flip a coin with unknown probability

Flip a coin n + m times, comes up with n heads.
Before our experiment, X (the probability that the coin
comes up heads) can be any probability.
Let N = number of heads.
Given X = x, coin flips are independent.

What is our updated belief of X after we observe N = n?

What are the distributions of the following?
X Bayesian prior X~Uni(0,1)
N|X Likelihood N|X~Bin(n + m, x)

X|N Bayesian posterior. Use Bayes’

fx(x)

PN|X(7’1|X)
fX|N(x|n)

Uni(0,1)
Bin(n + m, x)
Use Bayes’
Subjective
opinion
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Flip a coin with unknown probability

Flip a coin n + m times, comes up with n heads.

Before our experiment, X (the probability that the coin 1Pl
comes up heads) can be any probability. X~Uni(0,1)
Let N = number of heads. Likelihood:
Given X = x, coin flips are independent. N|X~Bin(n + m, x)

What is our updated belief of X after we observe N = n?  Posterior: fyy(x|n)

pN|X(n|x)fX(x) (n _;m) x"(1—x)™-1

pn (1) B pn(n)

( )
n n m 1 1
— X (1 — X) — _ 4N - m _ n _ m
D (n) = - X (1 x) , where ¢ = JO X (1 x) dx

fX|N(x|n) =

constant,

doesn’t depend on x Stanford University s



Flip a coin with unknown probability

Start with a X~Uni(0,1) over probability
Observe n successes and m failures
Your new belief about the probability of X is:

1 1
fxn(xIn) = B x™(1 — x)™,where ¢ = f x™(1 — x)™dx
0

40 - Prior belief, X

a0 Suppose our experiment
R 0o is 8 flips of a coin. We observe:
:5 = n = 7 heads (successes)

1.0 + m = 1 tail (failure)

0.0 . . . What is our posterior belief, X|N?

00 02 04 06 08 1.0

X Stanford University o




Flip a coin with unknown probability

Start with a X~Uni(0,1) over probability
Observe n = 7 successes and m = 1 failures
Your new belief about the probability of X is:

1

1
fxin(x|n) = - x’(1—x)',wherec = f x’(1—x)tdx
0

4.0 - Prior belief, X 10 - Posterior belief, X|N
3.0 A _
_ E 3.0
& 20 - S 20 -
ey z
1.0 - < 1.0 -
0.0 ' ! ! ! ! 0.0 ——+ | I I |
00 02 04 06 08 10 00 02 04 06 08 1.0
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Announcements

4 )
Problem Set 4
Due: Wednesday 2/19
N /
4 )

Late Day Reminder

No late days permitted past
last day of the quarter, 3/13

o /
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Announcement: CS109 contest

Do something cool and creative
with probability

Genuinely optional extra credit

Due Monday 3/9, 11:59pm
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Today's plan

=) Beta distribution
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Beta random variable

def A Beta random variable X is defined as follows:

1
X~Beta(a, b) OF - f0) = 5 x@1(1 — x)b-1

a>0,b>0

where B(a, b) = fol x% 1(1 — x)?~1dx, normalizing constant
> Support of X: (0,1)
. a a—1
Expectation E[X] = o Mode mode(X) = —

Beta is a distribution for probabilities.

Stanford University 14




Beta is a distribution of probabilities

xa—l (1 . x)b—l

X~Beta(a,b) roF f(0)=

B(a,b)
a>0,b>0 )

Support of X: (0,1) where B(a,b) = [, x*~*(1 — x)’~'dx, normalizing constant
5.0 1 : 3.0 ~
40 - '| Beta(0.2,0.8) Beta(0.8.0.2) ;

. : ]
3.0 41 20 g L
' S~ - e

2.0 1\ 1.0 - S
L9 _--..\ Tt T PRSI - ee’}f“‘-@}\' """ TS S -
O_O ...--.I -------- | | - e I- - | 0.0 Lot | | | | - .

00 02 04 06 08 10 00 02 04 06 08 1.0
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CS109 focus: Beta where a, b both positive integers X~Beta(a b)

. . . . 5-0 _ .
Match PDF to distribution: 20 | Beu0208 21005, 02)
4.0 - 3.0 11
20 1, ;
3.0 1.0 INa Beta(0.8,0.8) 4
O_O .............. :-.'?I.-v-----lb"';"._ I_ -— —'I
2.0 00 02 04 006 08 1.0
3.0 -
10 20 —\B?EQE,Q) ........
0.0 10 Beta(1,1) --___'\ .....
g ’C-a.(.l_’.%) ...... ~ - -
0.0 4= T T T T = =

00 02 04 06 08 10
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CS109 focus: Beta where a, b both positive integers X~Beta(a b)

Match PDF to distribution:

4.0 1 B. Beta(2,8) C. Beta(8,2)
6 ,“\ Beta parameters a, b could
: \ come from an experiment:
2.0 1 Y :
! \
1.0 4 AN a = “successes” + 1
N T . ”
00 bt .. e N b = “failures” + 1
0.0 0.2 0.4 0.6 0.8 1.0
Beta(b,9)
Beta(2,8)
Beta(8,2)
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Back to tlipping coins

Start with a X~Uni(0,1) over probability
Observe n = 7 successes and m = 1 failures
Your new belief about the probability of X is:

1

1
fxin(x|n) = - x’(1—x)',wherec = f x’(1—x)tdx
0

Posterior belief, X|N

Posterior belief, X|N: 4.0 -
Beta(a = 8,b = 2) = 30 1
1 S 20 |
fxin(xIn) = - x%7H(1 —x)* é o
— — OO 1 I T | | |
Beta(a=n+1b=m+1) 00 02 04 06 08 1.0
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Understanding Beta

Start with a X~Uni(0,1) over probability
Observe n successes and m failures
Your new belief about the probability of X is:

X|N~Beta(a=n+1,b=m+1)
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Understanding Beta

Start with a X~Uni(0,1) over probability <,]:

Check this out:
Beta(a = 1,b = 1) has PDF:
1
fol 1dx

So our prior X~Beta(a = 1,b = 1)! where 0 <x <1

x4 (1 —x)P71 = B(; 5 x0(1—-x)° =

flx) = B(a.b)
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If the prior is a Beta...

Let X be our random variable for probability of success

* If our prior belief about X is beta: X~Beta(a, b)
0
" and if we observe n successes and m failures: N|X~Bin(n + m, x)
* ...then our posterior belief about X X|N~Beta(a +n, b + m)
IS also beta. ’

This is the main takeaway of today.
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If the prior is a Beta...

...then our posterior belief about X X|N~Beta(a + 1, b +m)
IS also beta. ,
Proof: n i - , - )
fxin(xIn) = Prix(X)fx(x) (" )=o) Bapt A-07

=C-x"(1—x)"-x%1(1—-x)P1!

—C - xn+a—1(1 _ x)m+b—1
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If the prior is a Beta...

If our prior belief about X is beta: X~Beta(a, b)
...then our posterior belief about X X|N~Beta(a +n,b + m)
IS also beta.

Beta is a conjugate distribution for Binomial.
Prior and posterior parametric forms are the same

Practically, conjugate means easy update:
Add number of “heads” and “tails” seen
to Beta parameter.
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If the prior is a Beta...

If our prior belief about X is beta: X~Beta(a, b)

You can set the prior to reflect how biased you think the coin is a priori.
This is a subjective probability!

X~Beta(a, b): have seen (a + b — 2) imaginary trials, where
(a — 1) are heads, (b — 1) tails

Then Beta(1,1) = Uni(0, 1) means we haven’t seen any imaginary trials
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If the prior is a Beta...

Let X be our random variable for probability of success

If our prior belief about X is beta: X~Beta(a, b)
00
" and if we observe n successes and m failures: N|X~Bin(n + m, x)
...then our posterior belief about X X|N~Beta(a +n, b + m)
IS also beta. ’

Prior Beta(a = njpag + 1,0 = Myppgqy + 1)

Posterior Beta(a = Nijmag TN+ 1, b = Mimaqg T M + 1)

This is the main takeaway of Beta.
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Medicinal Beta

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Frequentist Bayesian
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Medicinal Beta

* Before being tested, a medicine is believed to “work” 80% of the time.
* The medicine is tried on 20 patients.
* |t “works” for 14, “doesn’t work” for ©.

What is your new belief that the drug “works”?

Frequentist

Let p be the probability
your drug works.

14

20 A frequentist view will not incorporate
prior/expert belief about probability.
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Medicinal Beta

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Bayesian
Let X be the probability

your drug works.
X IS a random variable.
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Prior Beta(a = Nypag + 1,0 = Mypqey + 1)

Medicinal Beta Posterior Beta(a = Nypgg + N+ 1, b = Mypqy + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)
What is the prior distribution of X7 (select all that apply)

X~Beta(1,1) = Uni(0,1)

X~Beta(81,101)

X~Beta(80, 20)

X~Beta(81,21)

X~Beta(5,2)
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Prior Beta(a = njpgg + 1,0 = Mypeq + 1)

Medicinal Beta Posterior Beta(a = Nypgg + N+ 1,b = Mypqy + m + 1)

* Before being tested, a medicine is believed to “work” 80% of the time.
* The medicine is tried on 20 patients.
* |t “works” for 14, “doesn’t work” for ©.

What is your new belief that the drug “works”? (Bayesian interpretation)

What is the prior distribution of X7 (select all that apply)
X~Beta(1,1) = Uni(0,1)
X~Beta(81,101)

X~Beta(80, 20)

A.
B.
C.
% KBl ) nford ocuciase/c8106) domos/betatm!

X~Beta(5, 2) (We choose E on next slide)
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http://web.stanford.edu/class/cs109/demos/beta.html

Prior Beta(a = Nypag + 1,0 = Mypqey + 1)

MediCinal Beta Posterior Beta(a = Nypgg + N+ 1, b = Mypqy + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)
Prior: X~Beta(a =5,b = 2) i-g :
Posterior: X~Beta(a=5+14,b=24+6) 30- Posterior
~Beta(a = 19,b = 8) 2.0 - e\,
1.0 - - .
OO ........ T T |
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Prior Beta(a = Nypag + 1,0 = Mypqey + 1)

MediCinal Beta Posterior Beta(a = Nypgg + N+ 1, b = Mypqy + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)
Prior: X~Beta(a =5,b =2) i:g : mode
Posterior: X~Beta(a =5+ 14,b=2+6) 30- Posterior
~Beta(a = 19,b = 8) 20 |
What do you report to pharmacists? ;:8 | e .

Expectation of posterior 00 02 04 06
Mode of posterior

Distribution of posterior

Nothing
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Prior Beta(a = Nypag + 1,0 = Mypqey + 1)

MediCinal Beta Posterior Beta(a = Nypgg + N+ 1, b = Mypqy + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)
mode
Prior: X~Beta(a =5,b = 2) i-g ‘
Posterior: X~Beta(a =5+14,b=2+4+6) 30- Posterior
~Beta(a = 19,b = 8) 20 -
What do you report to pharmacists? ;'8 | e
Expectation of posterior 00 02 04 06 x
Mode of posterior E[X] = —— = 19 o070
Distribution of posterior atb I+8
Nothing mode(X) = . ~ 0.72

a+b—2 18+7
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Food for thought

In this lecture: If we don’t know the parameter p,
Bayesian statisticians will:
Treat the parameter as a random variable X

Y~Ber(p) with a Beta distribution

Perform an experiment
Based on experiment outcomes, update the
distribution of X

Food for thought:

Any parameter for a “parameterized”
random variable can be thought of as Y~N(/,l, 0-2)
a random variable.
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Next time: Central Limit Theorem!

Consider n independent and identically distributed (i.i.d.) variables X4, X5, ..., X,
with E[X;] = u and Var(X;) = o*.

Asn — oo

2 X; ~N (nu,no*)

The sum of n i.i.d. random variables is normally distributed with mean nu
and variance no?.
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