20: Inference

David Varodayan February 24, 2020 Adapted from slides by Lisa Yan

Bootstrapping

- For a statistic
- For a p-value

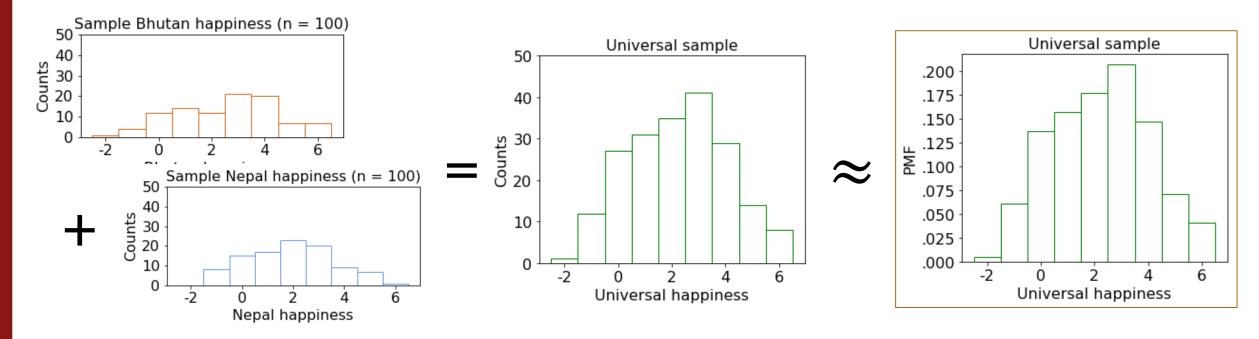
Definition: Bayesian Networks

Inference:

- 1. Math
- 2. Rejection sampling ("joint" sampling)

Null hypothesis test

Nepal Happiness	Bhutan Happiness
4.44	4.44
3.36	3.36
5.87	5.87
2.31	2.31
3.70	3.70
$\mu_1 = 3.1$	$\mu_2 = 2.4$


Claim: The difference in mean happiness between Nepal and Bhutan is 0.7 happiness points. <u>def</u> null hypothesis – Even if there is no pattern (i.e., the two samples are from identical distributions), your claim might have arisen by chance.

<u>def</u> **p-value** – What is the probability that, under the null hypothesis, the observed difference occurs?

Claim: The difference in mean happiness between Nepal and Bhutan is 0.7 happiness points.

1. Create a universal sample using your two samples

Recreate the null hypothesis

- 1. Create a universal sample using your two samples
- 2. Repeat **10,000** times:
 - a. Resample **both samples**
 - b. Recalculate the **mean absolute difference** between the resamples

3. p-value =

(mean absolute diff >= observed absolute diff)
10,000

Probability that observed difference arose by chance

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
```

```
uni_sample = combine bhutan_sample and nepal_sample
count = 0
```

```
repeat 10,000 times:
```

```
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff:
    count += 1
```

pValue = **count** / 10,000

<pre>def pvalue_boot(bhutan_sample, nepal_sample):</pre>	
N = size of the bhutan_sample	
M = size of the nepal_sample	
observed_diff = mean of bhutan_sample – mean of nepal_sample	

uni_sample = combine bhutan_sample and nepal_sample
count = 0

```
repeat 10,000 times:
```

```
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff:
    count += 1
```

1. Create a universal sample using your two samples

pValue = **count** / 10,000

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
```

```
uni_sample = combine bhutan_sample and nepal_sample
count = 0
```

```
repeat 10,000 times:
```

```
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff:
    count += 1
2. a. Resample both samples
with replacement
```

pValue = **count** / 10,000

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
```

```
uni_sample = combine bhutan_sample and nepal_sample
count = 0
```

```
repeat 10,000 times:
```

```
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff:
    count += 1
2. b. Recalculate the mean difference
between resamples
```

```
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|
```

```
uni_sample = combine bhutan_sample and nepal_sample
count = 0
```

repeat 10,000 times:

```
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff:
    count += 1
3. p-value =
```

(mean diffs >= observed diff)

10,000

pValue = **count** / 10,000

Try it yourself!

http://web.stanford.edu/class/cs109/demos/bootstrap.zip

Null hypothesis test

Nepal Happiness	Bhutan Happiness
4.44	4.44
3.36	3.36
5.87	5.87
2.31	2.31
•••	•••
3.70	3.70
$\mu_1 = 3.1$	$\mu_2 = 2.4$

Claim: The happiness of Nepal and Bhutan are from different distributions with a 0.7 difference of means (p < 0.01).

Problem Set 5

Due:Friday 2/28Covers:Up to Lecture 19

Late Day Reminder

No late days permitted past last day of the quarter, 3/13

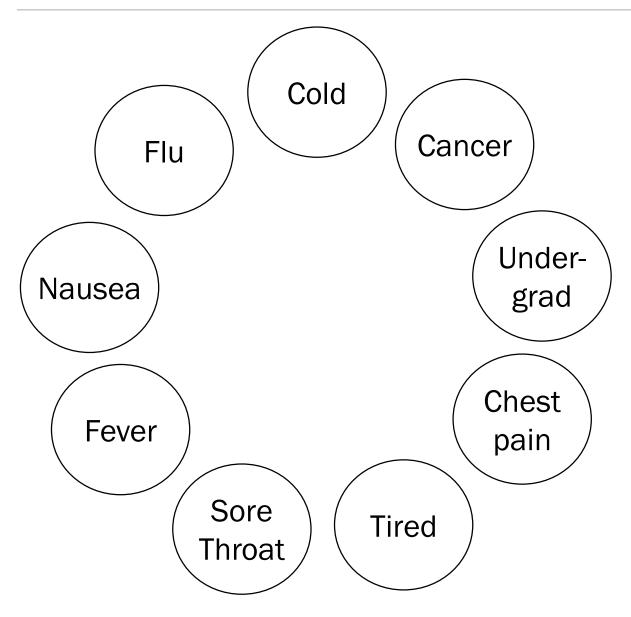
CS109 Contest	
Due:	Monday 3/9 11:59pm

Bootstrapping – Use code to compute statistics when you only have data, not the underlying distribution.

What if you have the underlying distribution of **joint random variables** (via an expert), but finding closed forms of joint probabilities is intractable?

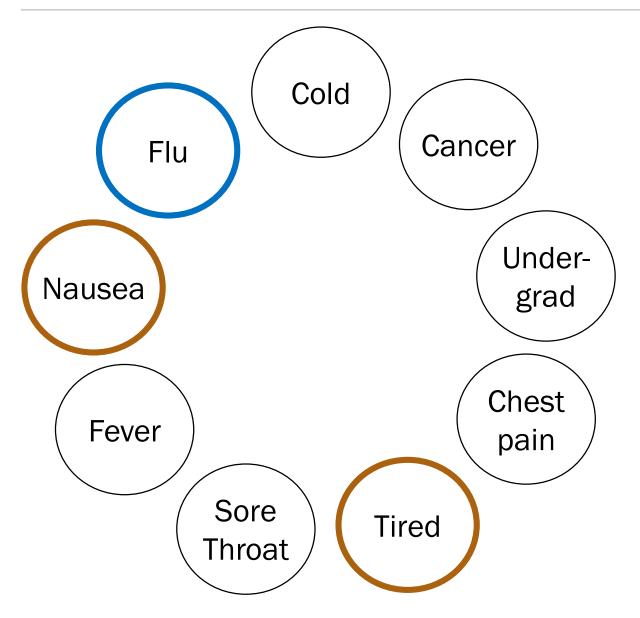
Today's plan

Bootstrapping


- For a statistic
- For a p-value

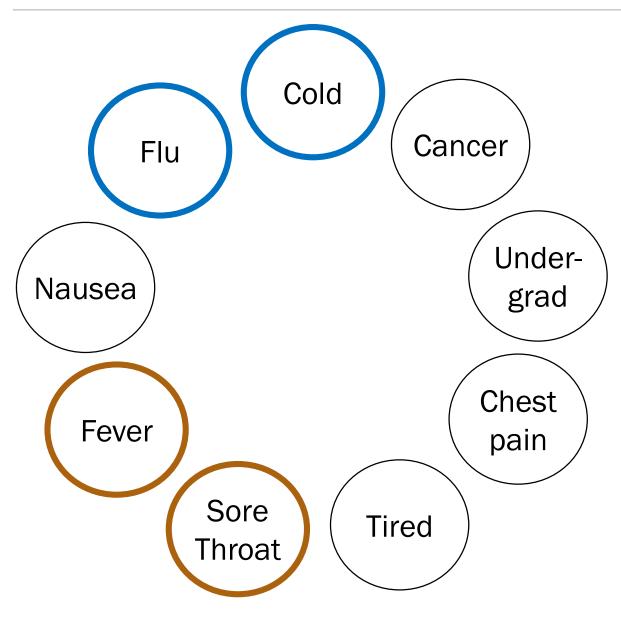
Definition: Bayesian Networks

Inference:

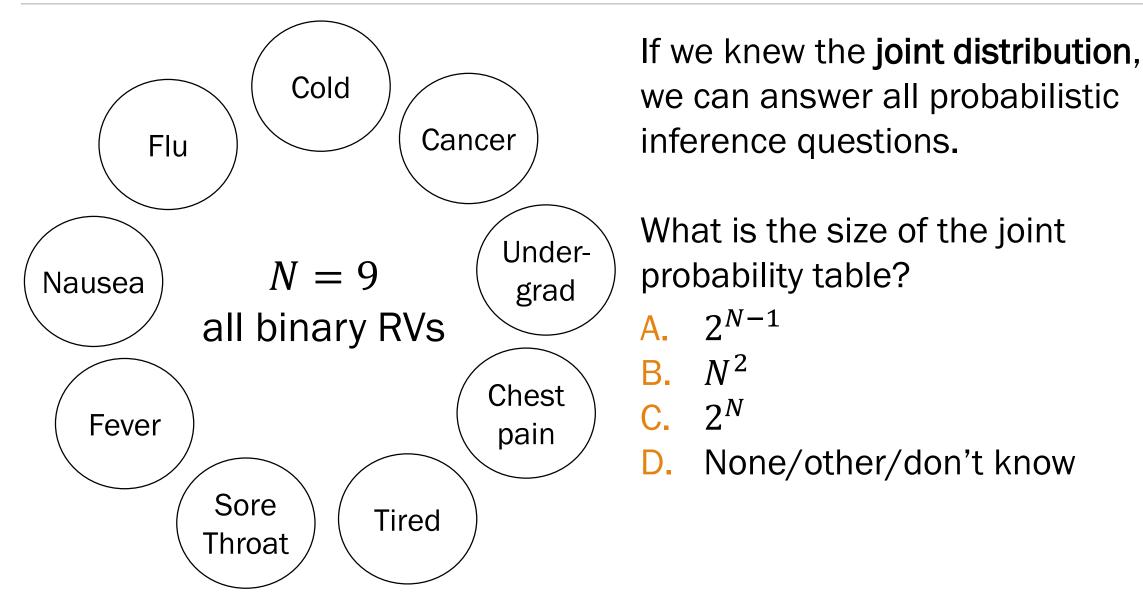

- 1. Math
- 2. Rejection sampling ("joint" sampling)
- **3.** Optional: Gibbs sampling (MCMC algorithm)

INFO	SYMPTO	OMS	QUESTIONS	CONDITIONS	DETAILS	TREATMEN
What is	your ma	in sympt	om?		AGE 28	GENDER Female
Type you	ur main symp	tom here				
or Choose	common syn	nptoms				×
bloating	cough	diarrhea	dizziness	atigue	No sympto	me addad
fever	headache	muscle crar	np nausea		No sympto	ins added
	tation					
throat irri	Labon					

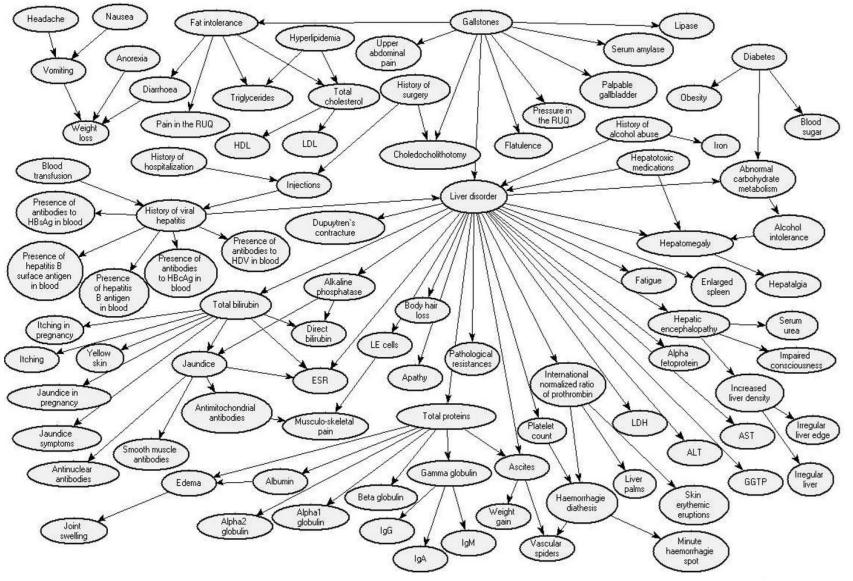
<u>General inference question:</u>


Given the values of some random variables, what is the conditional distribution of some other random variables?

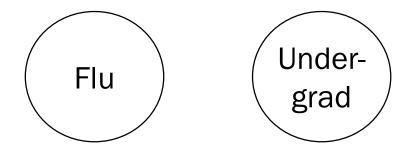
One inference question:

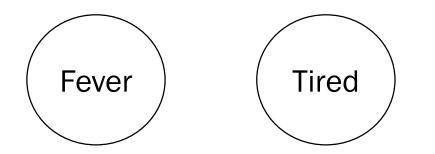

$$P(F = 1 | N = 1, T = 1)$$

$$=\frac{P(F=1, N=1, T=1)}{P(N=1, T=1)}$$

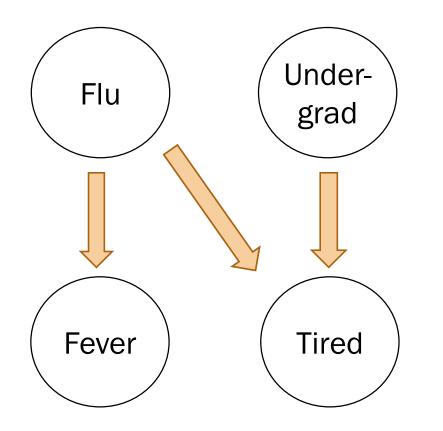


Another inference question:


$$P(C_o = 1, F_{lu} = 1 | S = 0, F_e = 0)$$
$$= \frac{P(C_o = 1, F_{lu} = 1, S = 0, F_e = 0)}{P(S = 0, F_e = 0)}$$

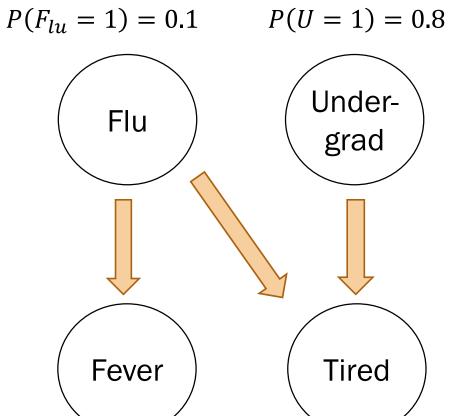

N can be large...

A simpler WebMD



Great! Just specify $2^4 = 16$ joint probabilities...?

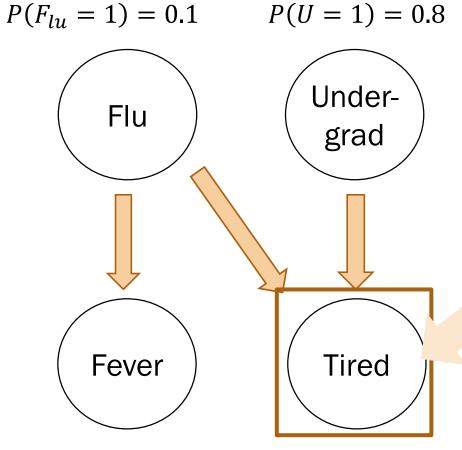
$$P(F_{lu} = a, F_{ev} = b, U = c, T = d)$$


What would a Stanford flu expert do?

What would a Stanford flu expert do?

1. Describe the joint distribution using causality

$$P(F_{lu} = a, F_{ev} = b, U = c, T = d)$$



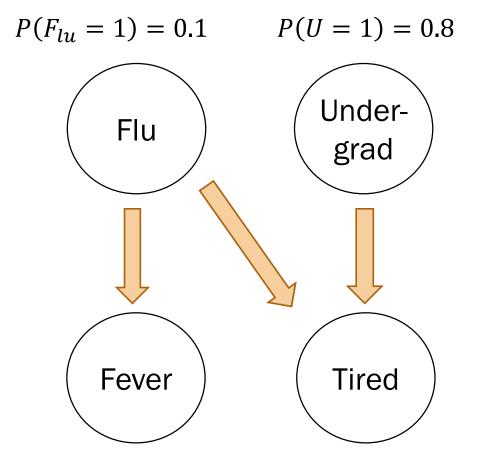
) = 0.8 What would a Stanford flu expert do?

- L. Describe the joint distribution using causality
- 2. Provide *P*(values|parents) for each random variable

 $P(F_{ev} = 1 | F_{lu} = 1) = 0.9$ $P(F_{ev} = 1 | F_{lu} = 0) = 0.05$

$$P(F_{lu} = a, F_{ev} = b, U = c, T = d)$$

 $P(F_{ev} = 1 | F_{lu} = 1) = 0.9$ $P(F_{ev} = 1 | F_{lu} = 0) = 0.05$ ^{0.8} What would a Stanford flu expert do?


- 1. Describe the joint distribution using causality
- 2. Provide *P*(values|parents) for each random variable

What conditional probabilities should our expert specify?

A.
$$P(T = 1 | F_{lu} = 0, U = 0)$$
 G. $P(T = 0 | F_{lu} = 0, U = 0)$
B. $P(T = 1 | F_{lu} = 0, U = 1)$ H. $P(T = 0 | F_{lu} = 0, U = 1)$
C. $P(T = 1 | F_{lu} = 1, U = 0)$ I. $P(T = 0 | F_{lu} = 1, U = 0)$
D. $P(T = 1 | F_{lu} = 1, U = 1)$ J. $P(T = 0 | F_{lu} = 1, U = 1)$
E. $P(T = 1 | F_{lu} = 0)$ K. $P(T = 1 | U = 1)$
F. $P(T = 1 | F_{lu} = 1)$ L. $P(T = 1 | U = 1)$

(select all

that apply)

What would a CS109 student do?

 Populate a Bayesian network by asking a Stanford flu expert or by using reasonable assumptions

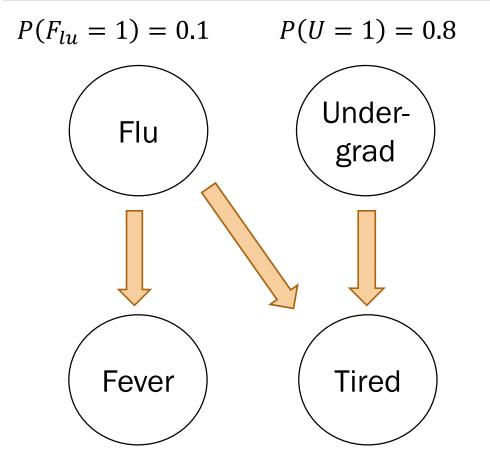
2. Answer inference questions

 $P(F_{ev} = 1 | F_{lu} = 1) = 0.9$ $P(F_{ev} = 1 | F_{lu} = 0) = 0.05$ $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(T = 1 | F_{lu} = 1, U = 0) = 0.9$ $P(T = 1 | F_{lu} = 1, U = 1) = 1.0$

Bootstrapping

- For a statistic
- For a p-value

Definition: Bayesian Networks

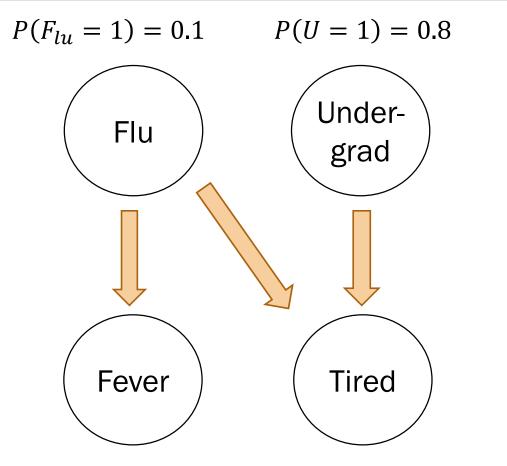

Inference:

- 1. Math
- 2. Rejection sampling ("joint" sampling)

 $P(F_{lu} = 1) = 0.1$ P(U = 1) = 0.8Under-Flu grad Fever Tired

In a Bayesian Network, each random variable is conditionally independent of its non-descendants, given its parents.

 $P(F_{ev} = 1 | F_{lu} = 1) = 0.9$ $P(F_{ev} = 1 | F_{lu} = 0) = 0.05$ $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(T = 1 | F_{lu} = 1, U = 0) = 0.9$ $P(T = 1 | F_{lu} = 1, U = 1) = 1.0$



1. $P(F_{lu} = 0, U = 1, F_{ev} = 0, T = 1)$?

Compute joint probabilities using chain rule.

$$P(F_{lu} = 0) \cdot P(U = 1)$$

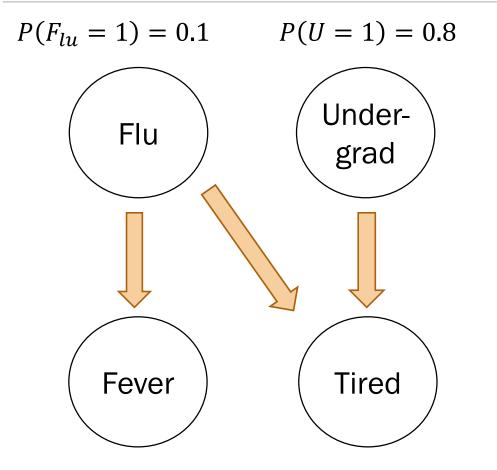
$$\cdot P(F_{ev} = 0 | F_{lu} = 0)$$

$$\cdot P(T = 1 | U = 1, F_{lu} = 0)$$

$$= 0.5472$$

 $P(F_{ev} = 1 | F_{lu} = 1) = 0.9$ $P(F_{ev} = 1 | F_{lu} = 0) = 0.05$ $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(T = 1 | F_{lu} = 1, U = 0) = 0.9$ $P(T = 1 | F_{lu} = 1, U = 1) = 1.0$

 $P(F_{ev} = 1 | F_{lu} = 1) = 0.9$ $P(F_{ev} = 1 | F_{lu} = 0) = 0.05$ $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(T = 1 | F_{lu} = 1, U = 0) = 0.9$ $P(T = 1 | F_{lu} = 1, U = 1) = 1.0$


2.
$$P(F_{lu} = 1 | F_{ev} = 0, U = 0, T = 1)$$
?

1. Compute joint probabilities $P(F_{lu} = 1, F_{ev} = 0, U = 0, T = 1)$ $P(F_{lu} = 0, F_{ev} = 0, U = 0, T = 1)$

2. Definition of conditional probability

$$\frac{P(F_{lu} = 1, F_{ev} = 0, U = 0, T = 1)}{\sum_{x} P(F_{lu} = x, F_{ev} = 0, U = 0, T = 1)}$$

= 0.095

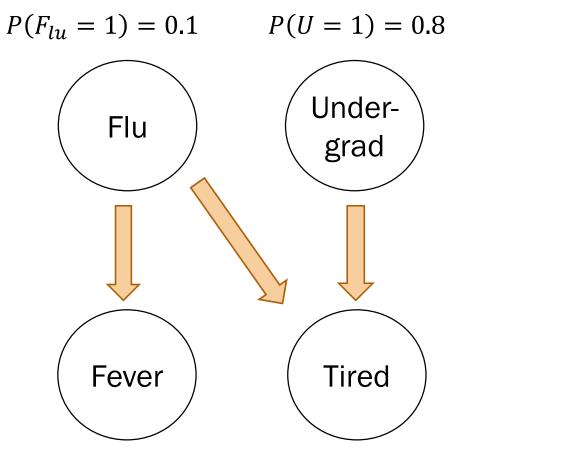
 $P(F_{ev} = 1|F_{lu} = 1) = 0.9$

 $P(F_{ev} = 1 | F_{lv} = 0) = 0.05$

 $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(T = 1 | F_{lu} = 1, U = 0) = 0.9$ $P(T = 1 | F_{lu} = 1, U = 1) = 1.0$

3.
$$P(F_{lu} = 1 | U = 1, T = 1)$$
?

1. Compute joint probabilities


 $P(F_{lu} = 1, U = 1, F_{ev} = 1, T = 1)$

 $P(F_{lu} = 0, U = 1, F_{ev} = 0, T = 1)?$

2. Definition of conditional probability

$$\frac{\sum_{y} P(F_{lu} = 1, U = 1, F_{ev} = y, T = 1)}{\sum_{x} \sum_{y} P(F_{lu} = x, U = 1, F_{ev} = y, T = 1)}$$

= 0.122

Solving inference questions precisely is possible, but sometimes tedious.

Can we use sampling to do approximate inference?

 $\begin{aligned} P(F_{ev} &= 1 | F_{lu} = 1) = 0.9 \\ P(F_{ev} &= 1 | F_{lu} = 0) = 0.05 \end{aligned}$

 $P(T = 1 | F_{lu} = 0, U = 0) = 0.1$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(T = 1 | F_{lu} = 1, U = 0) = 0.9$ $P(T = 1 | F_{lu} = 1, U = 1) = 1.0$ Bootstrapping

- For a statistic
- For a p-value

Definition: Bayesian Networks

Inference:

1. Math

2. Rejection sampling ("joint" sampling)

Rejection sampling algorithm

 $P(F_{lu} = 1) = 0.1$ P(U = 1) = 0.8Under-Flu grad Fever Tired $P(T = 1 | F_{l_{11}} = 0, U = 0) = 0.1$ $P(F_{ev} = 1 | F_{lu} = 1) = 0.9$ $P(T = 1 | F_{lu} = 0, U = 1) = 0.8$ $P(F_{ev} = 1 | F_{lv} = 0) = 0.05$ $P(T = 1 | F_{ly} = 1, U = 0) = 0.9$ $P(T = 1 | F_{ly} = 1, U = 1) = 1.0$ Stanford University 35

Step 0: Have a fully specified

Bayesian Network

Rejection sampling algorithm

```
Inference question: What is P(F_{lu} = 1 | U = 1, T = 1)?
```

```
def rejection_sampling(event, observation):
```

```
samples = sample_a_ton()
```

Probability =

```
samples_observation =
    reject_inconsistent(samples, observation)
```

```
samples_event =
    reject_inconsistent(samples_observation, event)
```

return len(samples_event)/len(samples_observation)

samples with ($F_{lu} = 1, U = 1, T = 1$) # samples with (U = 1, T = 1)

Inference question: What is $P(F_{lu} = 1 | U = 1, T = 1)$?

def rejection_sampling(event, observation):

```
samples = sample_a_ton()
```

samples_observation =
 reject_inconsistent(samples, observation)

samples_event =
 reject_inconsistent(samples_observation, event)

return len(samples_event)/len(samples_observation)

N_SAMPLES = 100000

Method: Sample a ton

create N_SAMPLES with likelihood proportional

to the joint distribution

def sample_a_ton():

samples = []

```
for i in range(N_SAMPLES):
```

sample = make_sample() # a particle

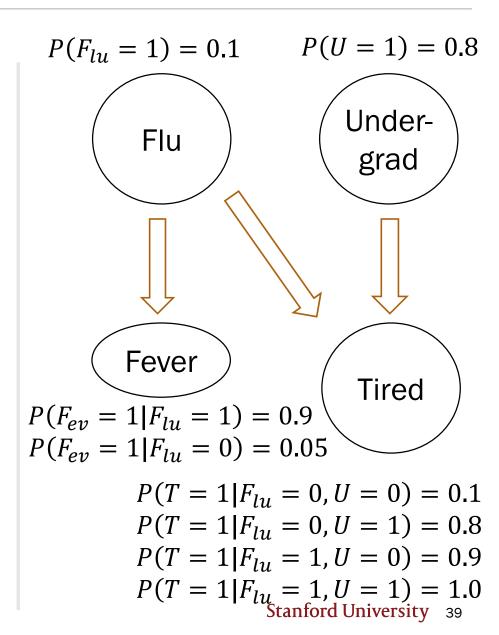
samples.append(sample)

return samples

How do we make a sample $(F_{lu} = a, U = b, F_{ev} = c, T = d)$ according to the joint probability?

Method: Make Sample

create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network
def make_sample():


prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8) # undergraduate

choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else: fev = bernoulli(0.05)

```
# choose tired based on (undergrad and flu)
#
# TODO: fill in
...
```

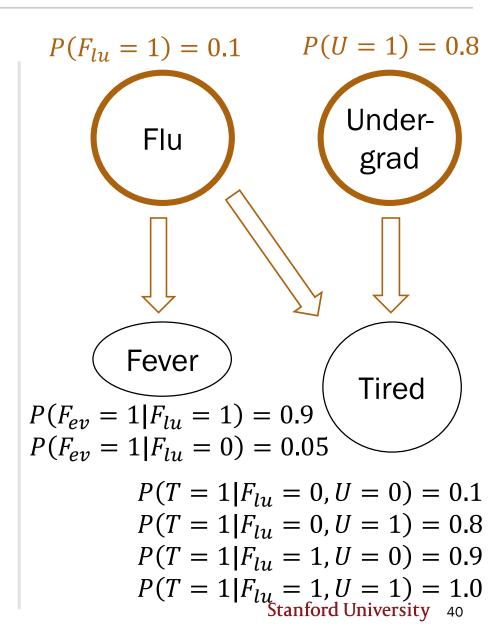
#

#

Method: Make Sample

create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network
def make_sample():

prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8) # undergraduate


choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else: fev = bernoulli(0.05)

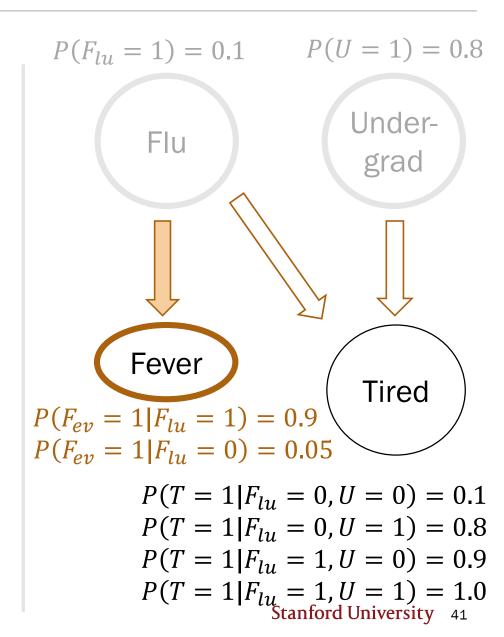
```
# choose tired based on (undergrad and flu)
#
```

TODO: fill in

#

#

Method: Make Sample


create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network
def make_sample():

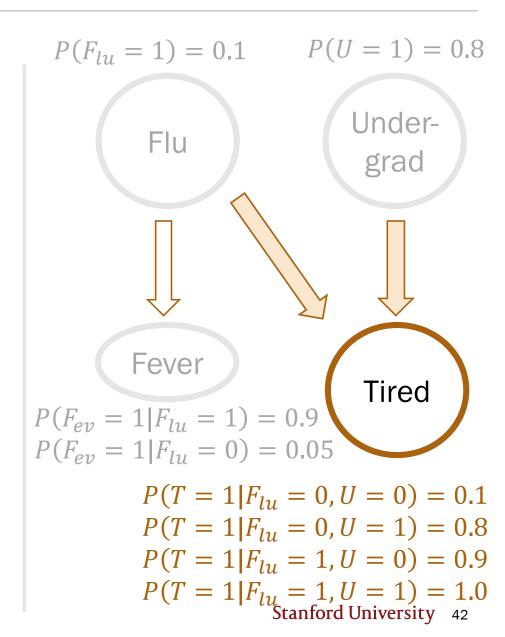
prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8) # undergraduate

choose fever based on flu

if flu == 1: fev = bernoulli(0.9)
else: fev = bernoulli(0.05)

```
# choose tired based on (undergrad and flu)
#
# TODO: fill in
#
#
```


Method: Make Sample


create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network
def make_sample():

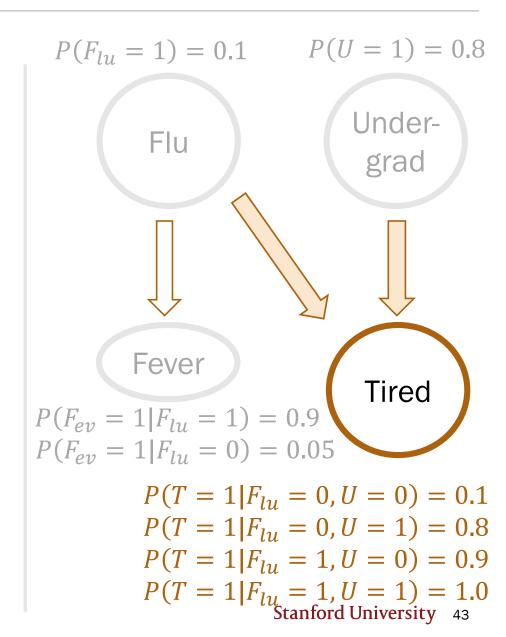
prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8) # undergraduate

choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else: fev = bernoulli(0.05)

choose tired based on (undergrad and flu)
#
TODO: fill in
#

#

Method: Make Sample



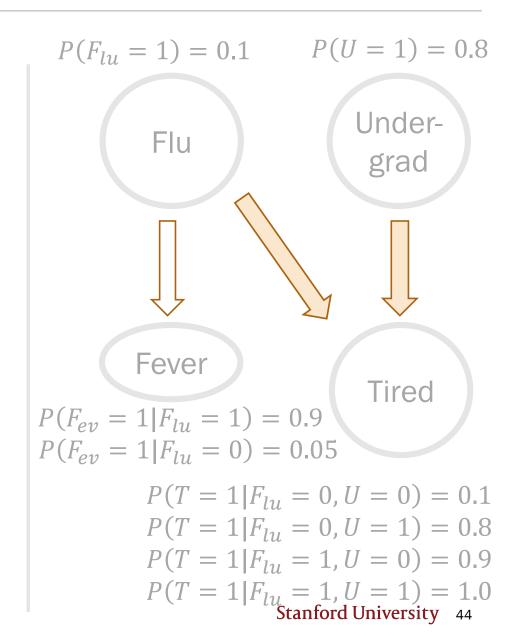
create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network
def make_sample():

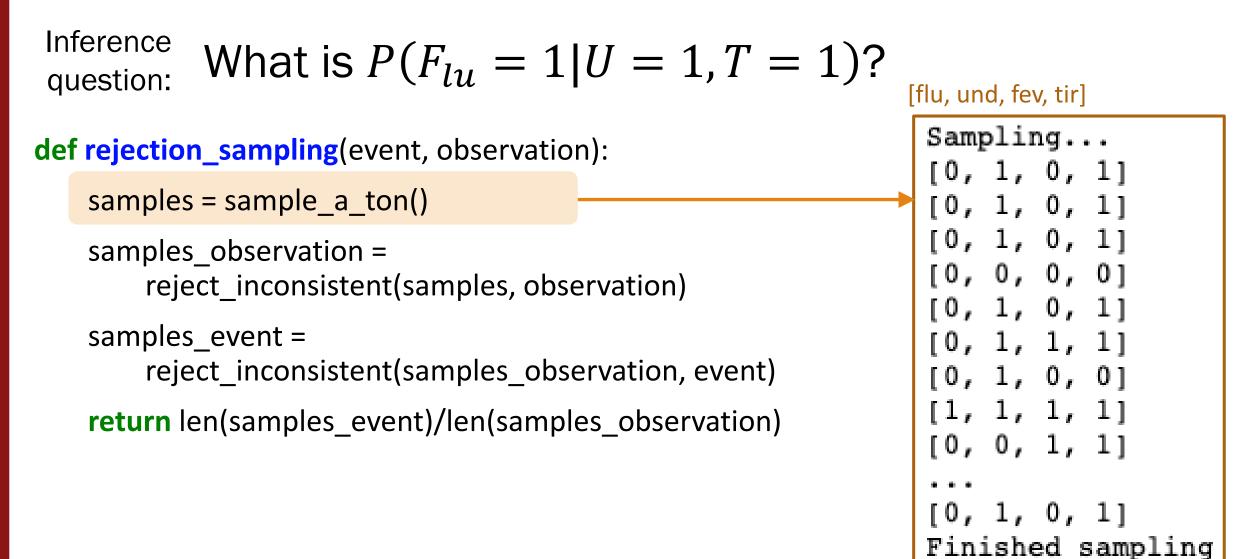
prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8) # undergraduate

choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else: fev = bernoulli(0.05)

choose tired based on (undergrad and flu)
if flu == 0 and und == 0: tir = bernoulli(0.1)
elif flu == 0 and und == 1: tir = bernoulli(0.8)
elif flu == 1 and und == 0: tir = bernoulli(0.9)
else: tir = bernoulli(1.0)

Method: Make Sample


create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network
def make_sample():


prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8) # undergraduate

choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else: fev = bernoulli(0.05)

choose tired based on (undergrad and flu)

if flu == 0 and und == 0: tir = bernoulli(0.1)
elif flu == 0 and und == 1: tir = bernoulli(0.8)
elif flu == 1 and und == 0: tir = bernoulli(0.9)
else: tir = bernoulli(1.0)

Inference question: What is $P(F_{lu} = 1 | U = 1, T = 1)$?

def rejection_sampling(event, observation):

```
samples = sample_a_ton()
```

samples_observation =
 reject_inconsistent(samples, observation)

samples_event =
 reject_inconsistent(samples_observation, event)

return len(samples_event)/len(samples_observation)

Keep only samples that are consistent with the observation (U = 1, T = 1).

```
Inference question: What is P(F_{lu} = 1 | U = 1, T = 1)?
```

def rejection_sampling(event, observation):

```
samples = sample_a_ton()
```

```
samples_observation =
    reject_inconsistent(samples, observation)
```

```
samples_event =
    reject_inconsistent(samples_observation, event)
```

return len(samples_event)/len(samples_observation)

Conditional event = samples with ($F_{lu} = 1, U = 1, T = 1$).

```
Inference question: What is P(F_{lu} = 1 | U = 1, T = 1)?
```

def rejection_sampling(event, observation):

```
samples = sample_a_ton()
```

Probability =

```
samples_observation =
```

reject_inconsistent(samples, observation)

```
samples_event =
    reject inconsistent(samples observation, event)
```

return len(samples_event)/len(samples_observation)

samples with ($F_{lu} = 1, U = 1, T = 1$) # samples with (U = 1, T = 1)

Rejection sampling

Try it yourself!

http://web.stanford.edu/class/cs109/demos/webmd.zip

Stanford University 49

Rejection sampling

If you can sample enough from the joint distribution, you can answer any probability inference question.

With enough samples, you can correctly compute:

- Probability estimates
- Conditional probability estimates
- Expectation estimates

Because your samples are a representation of the joint distribution!

```
[flu, und, fev, tir]
```

```
Sampling...
[0, 1, 0, 1]
[0, 1, 0, 1]
[0, 1, 0, 1]
[0, 0, 0, 0]
[0, 1, 0, 1]
[0, 1, 1, 1]
[0, 1, 0, 0]
[1, 1, 1, 1]
[0, 0, 1, 1]
[0, 1, 0, 1]
Finished sampling
```

P(has flu | undergrad and is tired) = 0.122