21: Parameters and MLE

David Varodayan January 26, 2020 Adapted from slides by Lisa Yan

Rejection sampling algorithm

```
Inference question: What is P(F_{lu}=1|U=1,T=1)?
```

def rejection_sampling(event, observation):
 samples = sample_a_ton()
 samples_observation =
 reject_inconsistent(samples, observation)
 samples_event =
 reject_inconsistent(samples_observation, event)
 return len(samples_event)/len(samples_observation)

[flu, und, fev, tir]

```
Sampling...
[0, 1, 0, 1]
[0, 0, 0, 0]
[0, 1, 1, 1]
[0, 1, 0, 0]
Finished sampling
```

Rejection sampling

If you can sample enough from the joint distribution, you can answer any probability inference question.

With enough samples, you can correctly compute:

- Probability estimates
- Conditional probability estimates
- Expectation estimates

Because your samples are a representation of the joint distribution!

[flu, und, fev, tir]

```
Sampling...
[0, 1, 0, 1]
[0, 1, 0, 1]
[0, 1, 0, 1]
[0, 0, 0, 0]
[0, 1, 0, 1]
[0, 1, 1, 1]
[0, 1, 0, 0]
[1, 1, 1, 1]
[0, 0, 1, 1]
[0, 1, 0, 1]
Finished sampling
```

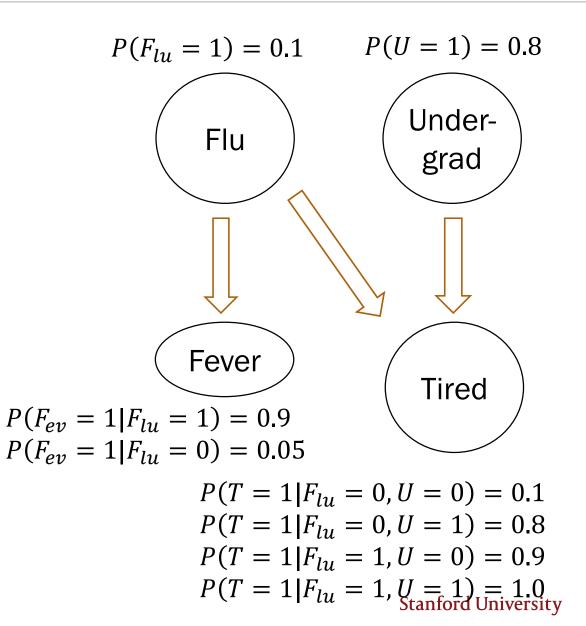
P(has flu | undergrad and is tired) = 0.122

Disadvantages of rejection sampling

$$P(F_{lu} = 1 | F_{ev} = 1)$$
?

What if we never encounter some samples?

[flu=0, und, fev=1, tir]

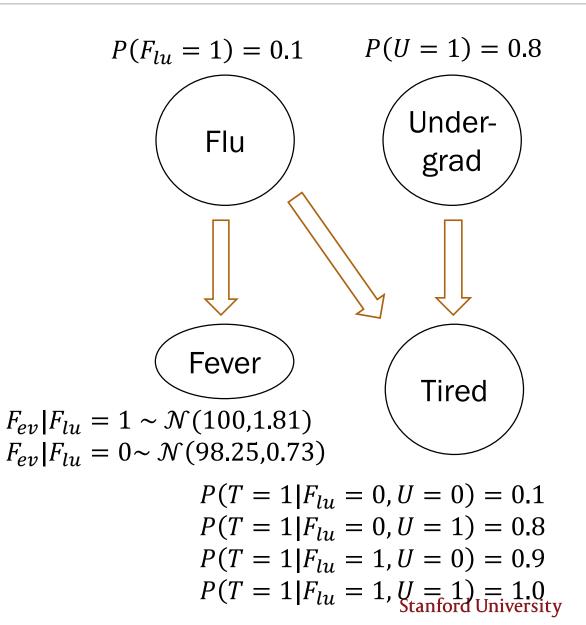


Disadvantages of rejection sampling

$$P(F_{lu} = 1 | F_{ev} = 99.4)$$
?

What if we never encounter some samples?

What if random variables are continuous?



Gibbs Sampling (not covered)

Basic idea:

- Fix all observed events
- Incrementally sample a new value for each random variable
- Difficulty: More coding for computing different posterior probabilities

Learn in extra notebook! (or by taking CS228/CS238)

Announcements

Problem Set 5

Due: Friday 2/28

Covers: Up to Lecture 19

Late Day Reminder

No late days permitted past last day of the quarter, 3/13

<u>Autograded Coding Problems</u>

Run your code in the command line, not just in a Jupyter notebook cell

CS109 Contest

Due: Monday 3/9 11:59pm

Today's plan

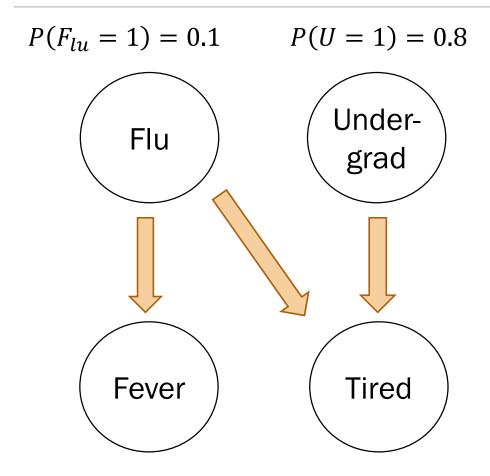
Inference:

- 1. Math
- 2. Rejection sampling ("joint" sampling)
- 3. Optional: Gibbs sampling (MCMC algorithm) (extra notebook)

Intro to Parameter Estimation

Maximum Likelihood Estimation (MLE)

Where do the numbers come from?



Given experiment data, how do we come up with a reasonable probabilistic model?

$$P(F_{ev} = 1|F_{lu} = 1) = 0.9$$

 $P(F_{ev} = 1|F_{lu} = 0) = 0.05$
 $P(T = 1|F_{lu} = 0, U = 0) = 0.1$
 $P(T = 1|F_{lu} = 0, U = 1) = 0.8$
 $P(T = 1|F_{lu} = 1, U = 0) = 0.9$
 $P(T = 1|F_{lu} = 1, U = 1) = 1.0$

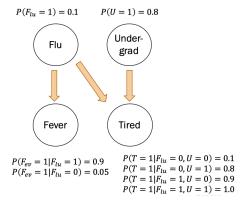
Story so far

At this point:

If you are given a model with all the necessary probabilities, you can make predictions.

$$Y \sim Poi(5)$$

$$X_1, \dots, X_n$$
 i.i.d.
 $X \sim \text{Ber}(0.2),$
 $X = \sum_{i=1}^n X_i$

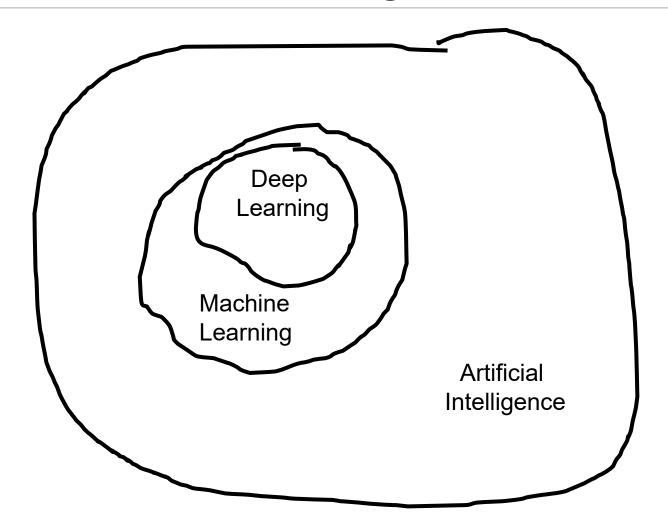


But what if you want to **learn** the probabilities in the model?

What if you want to learn the structure of the model, too?

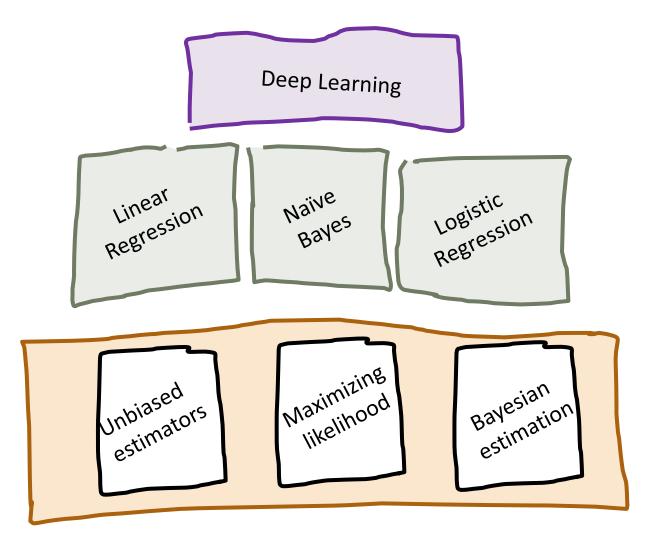
Machine Learning

AI and Machine Learning



ML: Rooted in probability theory

Our path from here



 Understand the theory to help you debug.

 Understand the theory to push on the grander challenges.

Parameter Estimation

What are parameters?

<u>def</u> Many random variables we have learned so far are parametric models:

Distribution = model + parameter θ

<u>ex</u> The distribution Ber(0.2) = Bernoulli model, parameter $\theta = 0.2$.

For each of the distributions below, what is the parameter θ ?

Ber(p)

 $\theta = p$

- $Poi(\lambda)$
- 3. Uni(α , β)
- 4. $\mathcal{N}(\mu, \sigma^2)$
- 5. Y = mX + b

What are parameters?

<u>def</u> Many random variables we have learned so far are parametric models:

Distribution = model + parameter θ

<u>ex</u> The distribution Ber(0.2) = Bernoulli model, parameter $\theta = 0.2$.

For each of the distributions below, what is the parameter θ ?

1. Ber(
$$p$$
) $\theta = p$

2.
$$Poi(\lambda)$$
 $\theta = \lambda$

3. Uni
$$(\alpha, \beta)$$
 $\theta = (\alpha, \beta)$

4.
$$\mathcal{N}(\mu, \sigma^2)$$
 $\theta = (\mu, \sigma^2)$

5.
$$Y = mX + b$$
 $\theta = (m, b)$

 θ is the parameter of a distribution. θ can be a vector of parameters!

Why do we care?

In real world, we don't know the "true" parameters.

But we do get to observe data:

(# times coin comes up heads, lifetimes of disk drives produced, # visitors to website per day, etc.)

def estimator $\hat{\theta}$: random variable estimating parameter θ from data.

In parameter estimation,

We use the **point estimate** of parameter estimate (best single value):

- Better understanding of the process producing data
- Future predictions based on model
- Simulation of future processes

Today's plan

Inference:

- 1. Math
- 2. Rejection sampling ("joint" sampling)
- 3. Optional: Gibbs sampling (MCMC algorithm)

Intro to Parameter Estimation

Maximum Likelihood Estimation (MLE)

Recall some estimators

Consider n i.i.d. random variables $X_1, X_2, ..., X_n$.

- The sequence $X_1, X_2, ..., X_n$ is a sample from distribution F.
- X_i have distribution F with $E[X_i] = \mu$, $Var(X_i) = \sigma^2$.

Sample mean:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

unbiased **estimate** of
$$\mu$$

$$E[\overline{X}] = \mu$$

Sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

unbiased estimate of
$$\sigma^2$$

 $E[S^2] = \sigma^2$

Estimating a Bernoulli parameter

Consider n i.i.d. random variables $X_1, X_2, ..., X_n$.

- The sequence $X_1, X_2, ..., X_n$ is a **sample** from distribution F.
- X_i have distribution F with $E[X_i] = \mu$, $Var(X_i) = \sigma^2$.
- Suppose distribution $F = Ber(\theta)$ with unknown parameter θ .
- Say you have three estimates $\hat{\theta}$: $\hat{\theta} = 0.5$, $\hat{\theta} = 0.8$, or $\hat{\theta} = 1$

Which estimate is most likely to give you the following sample (n = 10)?

Estimating a Bernoulli parameter

Consider n i.i.d. random variables $X_1, X_2, ..., X_n$.

- The sequence $X_1, X_2, ..., X_n$ is a **sample** from distribution F.
- X_i have distribution F with $E[X_i] = \mu$, $Var(X_i) = \sigma^2$.
- Suppose distribution $F = Ber(\theta)$ with unknown parameter θ .
- Say you have three estimates $\hat{\theta}$: $\hat{\theta} = 0.5$, $\hat{\theta} = 0.8$, or $\hat{\theta} = 1$

Which estimate is most likely to give you the following sample (n = 10)?

$$P(\text{sample}|\theta = 0.5) = (0.5)^2(0.5)^8 = 0.00097$$

 $P(\text{sample}|\theta = 0.8) = (0.2)^2(0.8)^8 = 0.00671$ Estimate $\hat{\theta} = 0.8$
 $P(\text{sample}|\theta = 1.0) = (0)^2(1.0)^8 = 0$

Defining the likelihood of data

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

- X_i was drawn from a distribution with density function $f(X_i | \theta)$.
- Observed data: $(x_1, x_2, ..., x_n)$

Note: now explicitly specify parameter θ of distribution

Likelihood question:

How likely is the observed data $(x_1, x_2, ..., x_n)$ given parameter θ ?

Likelihood function, $L(\theta)$:

$$L(\theta) = \prod_{i=1}^{n} f(X_i | \theta)$$

This is just a product, since X_i are i.i.d.

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

<u>def</u> The Maximum Likelihood Estimator (MLE) of θ is the value of θ that maximizes $L(\theta)$.

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg\,max}} \ L(\theta)$$

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

<u>def</u> The Maximum Likelihood Estimator (MLE) of θ is the value of θ that maximizes $L(\theta)$.

$$\theta_{MLE} = \arg\max_{\theta} \frac{L(\theta)}{L(\theta)}$$

Likelihood Function

$$L(\theta) = \prod_{i=1}^{n} f(X_i | \theta)$$

For continuous X_i , $f(X_i|\theta)$ is PDF; for discrete X_i , $f(X_i|\theta)$ is PMF

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

<u>def</u> The Maximum Likelihood Estimator (MLE) of θ is the value of θ that maximizes $L(\theta)$.

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg\,max}} L(\theta)$$

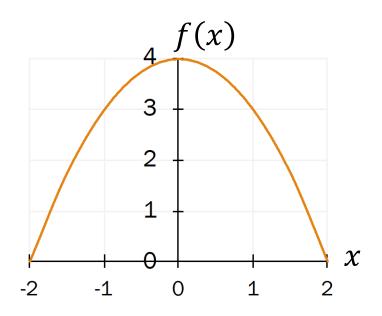
The argument θ that maximizes $L(\theta)$

New function: arg max

$$\underset{x}{\operatorname{arg max}} f(x)$$

The *x* that maximizes the function f(x).

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.



 $\max_{x} f(x)$?

arg max f(x)?

Argmax properties

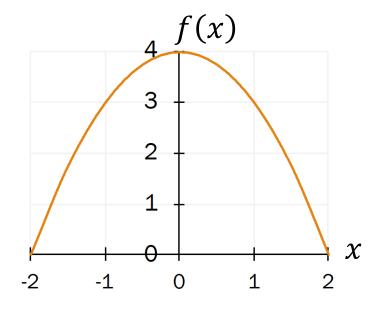
$$\underset{x}{\operatorname{arg max}} f(x)$$

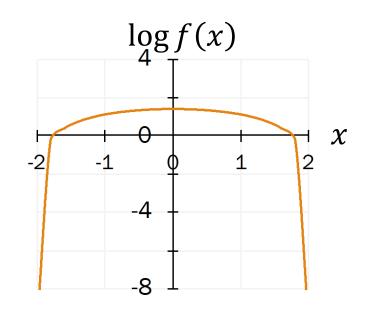
The *x* that maximizes the function f(x).

$$= \underset{x}{\operatorname{arg max}} \log f(x)$$

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.

$$\arg\max_{x} f(x) = 0$$





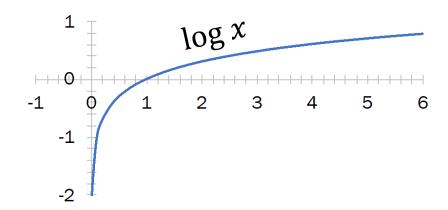
Argmax properties

$$\arg \max_{x} f(x) \qquad \text{The } x \text{ that maximizes} \\ \text{the function } f(x).$$

$$= \arg \max_{x} \log f(x)$$

Log is monotonic:

$$x \le y \iff \log x \le \log y$$



Log of product = sum of logs:

$$\log(ab) = \log a + \log b$$

Argmax properties

$$\underset{x}{\operatorname{arg max}} f(x) \qquad \underset{x}{\operatorname{The } x \text{ that maximizes}}$$

$$= \underset{x}{\operatorname{arg max}} \log f(x)$$

(log is monotonic:
$$x \le y \Leftrightarrow \log x \le \log y$$
)

$$= \arg\max_{x} (c \log f(x))$$

$$(x \le y \Longleftrightarrow c \log x \le c \log y)$$

for any positive constant *c*

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

def The Maximum Likelihood Estimator (MLE) of θ is the value of θ that maximizes $L(\theta)$.

$$\theta_{MLE} = \underset{\theta}{\arg\max} \ L(\theta)$$

 θ_{MLE} also maximizes the log-likelihood function $LL(\theta)$:

$$LL(\theta) = \log L(\theta) = \log \left(\prod_{i=1}^{n} f(X_i | \theta) \right) = \sum_{i=1}^{n} \log f(X_i | \theta)$$

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg\,max}} \ LL(\theta)$$

(log is monotonic)

Story so far

- We want to estimate a parameter θ for a density $f(X_i|\theta)$.
- Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Likelihood
$$L(\theta) = \prod_{i=1}^{n} f(X_i | \theta)$$
 Log-likelihood $LL(\theta) = \sum_{i=1}^{n} \log f(X_i | \theta)$

We can choose θ by finding the argmax of the log-likelihood of data:

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg max}} LL(\theta) = \underset{\theta}{\operatorname{arg max}} \sum_{i=1}^{N} \log f(X_i | \theta)$$

Computing the MLE

General approach for finding θ_{MLE} , the MLE of θ :

- Determine formula for $LL(\theta)$
- $LL(\theta) = \sum_{i} \log f(X_i | \theta)$
- 2. Differentiate $LL(\theta)$ w.r.t. (each) θ

$$\frac{\partial LL(\theta)}{\partial \theta}$$

To maximize:
$$\frac{\partial LL(\theta)}{\partial \theta} = 0$$

3. Solve resulting (simultaneous) equations

> (algebra or computer)

- 4. Make sure derived $\hat{\theta}_{MLE}$ is a maximum
 - Check $LL(\theta_{MLE} \pm \epsilon) < LL(\theta_{MLE})$
 - Often ignored in expository derivations
 - We'll ignore it here too (and won't require it in class)

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let $X_i \sim \text{Ber}(p)$.

What is
$$\theta_{MLE} = p_{MLE}$$
?

1. Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i|p)$$

2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0

What is the PMF $f(X_i|p)$?

B.
$$1 - p$$

C.
$$\begin{cases} p & \text{if } X_i = 1 \\ 1 - p & \text{if } X_i = 0 \end{cases}$$

D.
$$p^{X_i}(1-p)^{1-X_i}$$
 where $X_i \in \{0,1\}$

(simultaneous) equations

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let $X_i \sim \text{Ber}(p)$.

What is
$$\theta_{MLE} = p_{MLE}$$
?

1. Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i|p)$$

- Is differentiable
- Valid PMF over discrete domain

- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0
- What is the PMF $f(X_i|p)$?

B.
$$1 - p$$

$$\begin{array}{ll}
\text{C.} & \text{if } X_i = 1 \\
1 - p & \text{if } X_i = 0
\end{array}$$

D) $p^{X_i}(1-p)^{1-X_i}$ where $X_i \in \{0,1\}$

equations

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$ where $X_i \in \{0,1\}$

What is $\theta_{MLE} = p_{MLE}$?

1. Determine formula for $LL(\theta)$

- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0
 - equations

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i|p)$$

$$= \sum_{i=1}^{n} \log(p^{X_i}(1-p_i)^{1-X_i}) = \sum_{i=1}^{n} [X_i \log p + (1-X_i) \log(1-p)]$$

$$= Y(\log p) + (n-Y) \log(1-p), \text{ where } Y = \sum_{i=1}^{n} X_i$$

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$ where $X_i \in \{0,1\}$

What is $\theta_{MLE} = p_{MLE}$?

- 1. Determine formula for $LL(\theta)$
- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0
 - equations

$$LL(\theta) = \sum_{i=1}^{n} [X_i \log p + (1 - X_i) \log(1 - p)] = Y(\log p) + (n - Y) \log(1 - p) \quad \text{where } \sum_{i=1}^{n} X_i$$

$$\frac{\partial LL(\theta)}{\partial p} = Y\frac{1}{p} + (n - Y)\frac{-1}{1 - p} = 0$$

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$ where $X_i \in \{0,1\}$

What is $\theta_{MLE} = p_{MLE}$?

- 1. Determine formula for $LL(\theta)$
- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0
 - equations

$$LL(\theta) = \sum_{i=1}^{n} [X_i \log p + (1 - X_i) \log(1 - p)] = Y(\log p) + (n - Y) \log(1 - p) \quad \text{where } \sum_{i=1}^{n} X_i$$

$$\frac{\partial LL(\theta)}{\partial p} = Y\frac{1}{p} + (n - Y)\frac{-1}{1 - p} = 0$$

$$p_{MLE} = \frac{1}{n}Y = \frac{1}{n}\sum_{i=1}^{n}X_{i}$$

MLE of the Bernoulli parameter, p_{MLE} , is the unbiased estimate of the mean, \bar{X} (sample mean) Stanford University 35

Quick check

• You draw n i.i.d. random variables $X_1, X_2, ..., X_n$ from the distribution F, yielding the following sample:

$$[0, 0, 1, 1, 1, 1, 1, 1, 1] (n = 10)$$

- Suppose distribution F = Ber(p) with unknown parameter p.
- 1. What is p_{MLE} , the MLE of the parameter p?
 - A. 1.0
 - B. 0.5
 - C. 0.8
 - D. 0.2
 - E. None/other

Quick check

• You draw n i.i.d. random variables $X_1, X_2, ..., X_n$ from the distribution F, yielding the following sample:

$$[0, 0, 1, 1, 1, 1, 1, 1, 1] (n = 10)$$

- Suppose distribution F = Ber(p) with unknown parameter p.
- 1. What is p_{MLE} , the MLE of the parameter p?
- 2. What is the likelihood $L(\theta)$ of this particular sample?

Quick check

• You draw n i.i.d. random variables $X_1, X_2, ..., X_n$ from the distribution F, yielding the following sample:

$$[0, 0, 1, 1, 1, 1, 1, 1, 1] (n = 10)$$

- Suppose distribution F = Ber(p) with unknown parameter p.
- 1. What is p_{MLE} , the MLE of the parameter p?
- 2. What is the likelihood $L(\theta)$ of this particular sample?

$$f(X_i|p) = p^{X_i}(1-p)^{1-X_i} \text{ where } X_i \in \{0,1\}$$

$$L(\theta) = \prod_{i=1}^n f(X_i|p) \quad \text{where } \theta = p$$

$$= p^8(1-p)^2$$

Maximum Likelihood Algorithm

Decide on a model for the distribution of your samples. Define the PMF/PDF for the distribution.

$$f(X_i|p)$$

2. Write out the log-likelihood function.

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i|p)$$

3. State that the optimal parameters are the argmax of the log-likelihood function.

$$\theta_{MLE} = \underset{\theta}{\arg\max} \ LL(\theta)$$

- 4. Use an optimization algorithm to calculate argmax:
 - Differentiate $LL(\theta)$ w.r.t (each) θ , set to 0
 - Solve resulting (simultaneous) equations

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

- Let $X_i \sim \text{Poi}(\lambda)$. PMF: $f(X_i|\lambda) = \frac{e^{-\lambda}\lambda^{X_i}}{X_i!}$

What is $\theta_{MLE} = \lambda_{MLE}$?

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$.

- Let $X_i \sim \text{Poi}(\lambda)$. PMF: $f(X_i|\lambda) = \frac{e^{-\lambda}\lambda^{X_i}}{X_i!}$

What is $\theta_{MLE} = \lambda_{MLE}$?

- 1. Determine
- 2. Differentiate $LL(\theta)$ 3. Solve resulting formula for $LL(\theta)$ w.r.t. (each) θ , set to 0
 - equations

$$LL(\theta) = \sum_{i=1}^{n} \log \left(\frac{e^{-\lambda} \lambda^{X_i}}{X_i!} \right) = \sum_{i=1}^{n} -\lambda \log e + X_i \log \lambda - \log X_i!$$

$$= -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!)$$
 (using natural log, $\ln e = 1$)

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$.

- Let $X_i \sim \text{Poi}(\lambda)$. PMF: $f(X_i|\lambda) = \frac{e^{-\lambda}\lambda^{X_i}}{X_i!}$

What is $\theta_{MLE} = \lambda_{MLE}$?

- 1. Determine formula for $LL(\theta)$
- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0
 - equations

$$LL(\theta) = -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!)$$

$$\frac{\partial LL(\theta)}{\partial \lambda} = -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i = 0 \qquad (\sum_{i=1}^{n} \log(X_i!) \text{ is a constant w.r.t } \lambda)$$

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

- Let $X_i \sim \text{Poi}(\lambda)$. PMF: $f(X_i|\lambda) = \frac{e^{-\lambda}\lambda^{X_i}}{X_i!}$

What is $\theta_{MLE} = \lambda_{MLE}$?

- 1. Determine formula for $LL(\theta)$
- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0
 - equations

$$LL(\theta) = -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!)$$

$$\frac{\partial LL(\theta)}{\partial \lambda} = -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i = 0 \quad \Longrightarrow \quad \lambda_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

MLE of the Poisson parameter, λ_{MLE} , is the unbiased estimate of the mean, \bar{X} (sample mean)

Maximum Likelihood with Uniform

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.
$$f(X_i | \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha \leq X_i \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

1. Determine formula for $L(\theta)$

Likelihood:

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq X_1, X_2, \dots, X_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

- 2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0
- A. Great, let's do it
- B. Differentiation is hard
- C. Constraint $\alpha \leq X_1, X_2, \dots, X_n \leq \beta$ makes differentiation hard

Example sample from a Uniform

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$.

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq X_1, X_2, \dots, X_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

[0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75]Suppose $X_i \sim Uni(0,1)$. You observe data:

Which parameters would give you maximum $L(\theta)$?

A. Uni(
$$\alpha = 0$$
 , $\beta = 1$)

B. Uni(
$$\alpha = 0.15, \beta = 0.75$$
)

C. Uni(
$$\alpha = 0.15, \beta = 0.70$$
)

Example sample from a Uniform

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq X_1, X_2, \dots, X_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

Suppose $X_i \sim Uni(0,1)$. You observe data:

[0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75]

Which parameters would give you maximum $L(\theta)$?

A. Uni(
$$\alpha = 0$$
 , $\beta = 1$) $(1)^7 = 1$

B. Uni(
$$\alpha = 0.15, \beta = 0.75$$
) $\left(\frac{1}{0.6}\right)^7 = 35.7$

C. Uni(
$$\alpha = 0.15, \beta = 0.70$$
) $\left(\frac{1}{0.55}\right)^6 \cdot 0 = 0$

Maximum Likelihood with Uniform

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq X_1, X_2, \dots, X_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

$$\theta_{MLE}$$
: $\alpha_{MLE} = \min(x_1, x_2, ..., x_n)$ $\beta_{MLE} = \max(x_1, x_2, ..., x_n)$

$$\beta_{MLE} = \max(x_1, x_2, \dots, x_n)$$

Intuition:

- Want interval size $(\beta \alpha)$ to be as small as possible to maximize likelihood function per datapoint
- Need to make sure all observed data is in interval (if not, then $L(\theta) = 0$)

(demo)

Small samples = problems with MLE

Maximum Likelihood Estimator θ_{MLE} :

 $\theta_{MLE} = \arg\max_{\theta} L(\theta)$

- Best explains data we have seen
- Does not attempt to generalize to unseen data.

$$= \arg\max_{\theta} LL(\theta)$$

In many cases,
$$\mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 Sample mean (MLE for Bernoulli p , Poisson λ , Normal μ)

• Unbiased $(E[\mu_{MLE}] = \mu \text{ regardless of size of sample, } n)$

 $\alpha_{MLE} \geq \alpha$, $\beta_{MLE} \leq \beta$ For some cases, like Uniform:

- Biased. Problematic for small sample size
- Example: If n=1 then $\alpha=\beta$, yielding an invalid distribution

Properties of MLE

Maximum Likelihood Estimator:

- Best explains data we have seen
- Does not attempt to generalize to unseen data.

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg max}} L(\theta)$$

$$= \underset{\theta}{\operatorname{arg max}} LL(\theta)$$

- Often used when sample size n is large relative to parameter space
- Potentially biased (though asymptotically less so, as $n \to \infty$)
- Consistent: $\lim_{n\to\infty} P(|\hat{\theta}-\theta|<\varepsilon)=1$ where $\varepsilon>0$ As $n \to \infty$ (i.e., more data), probability that $\hat{\theta}$ significantly differs from θ is zero