
21: 
Parameters and MLE
David Varodayan
January 26, 2020
Adapted from slides by Lisa Yan

1



What is 𝑃𝑃 𝐹𝐹𝑙𝑙𝑙𝑙 = 1|𝑈𝑈 = 1,𝑇𝑇 = 1 ?

Rejection sampling algorithm
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def rejection_sampling(event, observation):

samples = sample_a_ton()

samples_observation =
reject_inconsistent(samples, observation)

samples_event =
reject_inconsistent(samples_observation, event)

return len(samples_event)/len(samples_observation)

[flu, und, fev, tir]

Inference
question:

Review



Rejection sampling

With enough samples, you can correctly compute:
• Probability estimates
• Conditional probability estimates
• Expectation estimates

Because your samples are a representation
of the joint distribution!
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[flu, und, fev, tir]

P(has flu | undergrad and is tired) = 0.122

If you can sample enough from the joint distribution, 
you can answer any probability inference question.



Disadvantages of rejection sampling

What if we never encounter 
some samples?
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Flu Under-
grad

Tired
Fever

𝑃𝑃 𝐹𝐹𝑙𝑙𝑙𝑙 = 1 = 0.1 𝑃𝑃 𝑈𝑈 = 1 = 0.8

𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 0,𝑈𝑈 = 0 = 0.1
𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 0,𝑈𝑈 = 1 = 0.8
𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 1,𝑈𝑈 = 0 = 0.9
𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 1,𝑈𝑈 = 1 = 1.0

𝑃𝑃 𝐹𝐹𝑒𝑒𝑒𝑒 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 1 = 0.9
𝑃𝑃 𝐹𝐹𝑒𝑒𝑒𝑒 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 0 = 0.05

𝑃𝑃 𝐹𝐹𝑙𝑙𝑙𝑙 = 1|𝐹𝐹𝑒𝑒𝑒𝑒 = 1 ?

[flu=0, und, fev=1, tir]



Disadvantages of rejection sampling

What if we never encounter 
some samples?

What if random variables 
are continuous?
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Flu Under-
grad

Tired
Fever

𝑃𝑃 𝐹𝐹𝑙𝑙𝑙𝑙 = 1 = 0.1 𝑃𝑃 𝑈𝑈 = 1 = 0.8

𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 0,𝑈𝑈 = 0 = 0.1
𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 0,𝑈𝑈 = 1 = 0.8
𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 1,𝑈𝑈 = 0 = 0.9
𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 1,𝑈𝑈 = 1 = 1.0

𝐹𝐹𝑒𝑒𝑒𝑒|𝐹𝐹𝑙𝑙𝑙𝑙 = 1 ~ 𝒩𝒩(100,1.81)
𝐹𝐹𝑒𝑒𝑒𝑒|𝐹𝐹𝑙𝑙𝑙𝑙 = 0~ 𝒩𝒩 98.25,0.73

𝑃𝑃 𝐹𝐹𝑙𝑙𝑙𝑙 = 1|𝐹𝐹𝑒𝑒𝑒𝑒 = 99.4 ?



Gibbs Sampling (not covered)

Basic idea:
• Fix all observed events
• Incrementally sample a new value

for each random variable
• Difficulty: More coding for computing

different posterior probabilities

Learn in extra notebook!
(or by taking CS228/CS238)
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Announcements
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Late Day Reminder

No late days permitted past 
last day of the quarter, 3/13

Problem Set 5

Due: Friday 2/28
Covers: Up to Lecture 19

CS109 Contest

Due: Monday 3/9 11:59pm

Autograded Coding Problems

Run your code in the command line, 
not just in a Jupyter notebook cell



Today’s plan

Inference:
1. Math
2. Rejection sampling (“joint” sampling)
3. Optional: Gibbs sampling (MCMC algorithm)

Intro to Parameter Estimation

Maximum Likelihood Estimation (MLE)
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(extra notebook)



Given experiment data,
how do we come up
with a reasonable 
probabilistic model?

Where do the numbers come from?
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Flu Under-
grad

TiredFever

𝑃𝑃 𝐹𝐹𝑙𝑙𝑙𝑙 = 1 = 0.1

𝑃𝑃 𝐹𝐹𝑒𝑒𝑒𝑒 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 1 = 0.9
𝑃𝑃 𝐹𝐹𝑒𝑒𝑒𝑒 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 0 = 0.05

𝑃𝑃 𝑈𝑈 = 1 = 0.8

𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 0,𝑈𝑈 = 0 = 0.1
𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 0,𝑈𝑈 = 1 = 0.8
𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 1,𝑈𝑈 = 0 = 0.9
𝑃𝑃 𝑇𝑇 = 1|𝐹𝐹𝑙𝑙𝑙𝑙 = 1,𝑈𝑈 = 1 = 1.0



Story so far
At this point:

If you are given a model with all the
necessary probabilities, you can
make predictions.

But what if you want to learn the probabilities in the model?

What if you want to learn the structure of the model, too?

Machine Learning
10

𝑌𝑌~Poi 5

𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 i.i.d.
𝑋𝑋~Ber 0.2 ,
𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖



ML: Rooted in probability theory

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning

AI and Machine Learning



Our path from here

• Understand the theory to 
help you debug.

• Understand the theory
to push on the grander challenges.

Parameter Estimation



What are parameters?
def Many random variables we have learned so far are parametric models:

Distribution = model + parameter 𝜃𝜃
ex The distribution Ber 0.2

For each of the distributions below, what is the parameter 𝜃𝜃?

1. Ber 𝑝𝑝
2. Poi 𝜆𝜆
3. Uni 𝛼𝛼,𝛽𝛽
4. 𝒩𝒩(𝜇𝜇,𝜎𝜎2)
5. 𝑌𝑌 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏
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𝜃𝜃 = 𝑝𝑝

= Bernoulli model, parameter 𝜃𝜃 = 0.2.



What are parameters?
def Many random variables we have learned so far are parametric models:

Distribution = model + parameter 𝜃𝜃
ex The distribution Ber 0.2

For each of the distributions below, what is the parameter 𝜃𝜃?

1. Ber 𝑝𝑝
2. Poi 𝜆𝜆
3. Uni 𝛼𝛼,𝛽𝛽
4. 𝒩𝒩(𝜇𝜇,𝜎𝜎2)
5. 𝑌𝑌 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏
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𝜃𝜃 is the parameter of a distribution.
𝜃𝜃 can be a vector of parameters!

𝜃𝜃 = 𝑝𝑝
𝜃𝜃 = 𝜆𝜆
𝜃𝜃 = 𝛼𝛼,𝛽𝛽

𝜃𝜃 = 𝑚𝑚, 𝑏𝑏
𝜃𝜃 = 𝜇𝜇,𝜎𝜎2

= Bernoulli model, parameter 𝜃𝜃 = 0.2.



Why do we care?
In real world, we don’t know the “true” parameters.
• But we do get to observe data:

def estimator 𝜃̂𝜃: random variable estimating parameter 𝜃𝜃 from data.

In parameter estimation,
We use the point estimate of parameter estimate (best single value):
• Better understanding of the process producing data
• Future predictions based on model
• Simulation of future processes
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(# times coin comes up heads, lifetimes of 
disk drives produced, # visitors to website 
per day, etc.)



Today’s plan

Inference:
1. Math
2. Rejection sampling (“joint” sampling)
3. Optional: Gibbs sampling (MCMC algorithm)

Intro to Parameter Estimation

Maximum Likelihood Estimation (MLE)
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Recall some estimators
Consider 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• The sequence 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is a sample from distribution 𝐹𝐹.
• 𝑋𝑋𝑖𝑖 have distribution 𝐹𝐹 with 𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝜇𝜇, Var 𝑋𝑋𝑖𝑖 = 𝜎𝜎2.

Sample mean:
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�𝑋𝑋 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖

unbiased estimate of 𝜇𝜇
𝐸𝐸 �𝑋𝑋 = 𝜇𝜇

Sample variance:

𝑆𝑆2 =
1

𝑛𝑛 − 1
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − �𝑋𝑋 2

unbiased estimate of 𝜎𝜎2
𝐸𝐸 𝑆𝑆2 = 𝜎𝜎2



Estimating a Bernoulli parameter
Consider 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• The sequence 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is a sample from distribution 𝐹𝐹.
• 𝑋𝑋𝑖𝑖 have distribution 𝐹𝐹 with 𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝜇𝜇, Var 𝑋𝑋𝑖𝑖 = 𝜎𝜎2.

• Suppose distribution 𝐹𝐹 = Ber 𝜃𝜃 with unknown parameter 𝜃𝜃.
• Say you have three estimates 𝜃̂𝜃: 𝜃̂𝜃 = 0.5, 𝜃̂𝜃 = 0.8, or 𝜃̂𝜃 = 1

Which estimate is most likely to give you the following sample (𝑛𝑛 = 10)?
0, 0, 1, 1, 1, 1, 1, 1, 1, 1
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Estimating a Bernoulli parameter
Consider 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• The sequence 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 is a sample from distribution 𝐹𝐹.
• 𝑋𝑋𝑖𝑖 have distribution 𝐹𝐹 with 𝐸𝐸 𝑋𝑋𝑖𝑖 = 𝜇𝜇, Var 𝑋𝑋𝑖𝑖 = 𝜎𝜎2.

• Suppose distribution 𝐹𝐹 = Ber 𝜃𝜃 with unknown parameter 𝜃𝜃.
• Say you have three estimates 𝜃̂𝜃: 𝜃̂𝜃 = 0.5, 𝜃̂𝜃 = 0.8, or 𝜃̂𝜃 = 1

Which estimate is most likely to give you the following sample (𝑛𝑛 = 10)?
0, 0, 1, 1, 1, 1, 1, 1, 1, 1
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Estimate 𝜃̂𝜃 = 0.8
𝑃𝑃 sample|𝜃𝜃 = 0.5 = 0.5 2 0.5 8 = 0.00097
𝑃𝑃 sample|𝜃𝜃 = 0.8 = 0.2 2 0.8 8 = 0.00671
𝑃𝑃 sample|𝜃𝜃 = 1.0 = 0 2 1.0 8 = 0



Defining the likelihood of data
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• 𝑋𝑋𝑖𝑖 was drawn from a distribution with density function 𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃 .
• Observed data: 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛

Likelihood question:
How likely is the observed data 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 given parameter 𝜃𝜃? 

Likelihood function, 𝐿𝐿 𝜃𝜃 :
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Note: now explicitly 
specify parameter 𝜃𝜃
of distribution

𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃

This is just a product, since 𝑋𝑋𝑖𝑖 are i.i.d.



Maximum Likelihood Estimator
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
def The Maximum Likelihood Estimator (MLE) of 𝜃𝜃 is the value of 𝜃𝜃 that 

maximizes 𝐿𝐿 𝜃𝜃 .

21

𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝐿𝐿 𝜃𝜃



Maximum Likelihood Estimator
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
def The Maximum Likelihood Estimator (MLE) of 𝜃𝜃 is the value of 𝜃𝜃 that 

maximizes 𝐿𝐿 𝜃𝜃 .
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𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝐿𝐿 𝜃𝜃

𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃

Likelihood Function

For continuous 𝑋𝑋𝑖𝑖, 𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃 is PDF; for discrete 𝑋𝑋𝑖𝑖, 𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃 is PMF



Maximum Likelihood Estimator
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
def The Maximum Likelihood Estimator (MLE) of 𝜃𝜃 is the value of 𝜃𝜃 that 

maximizes 𝐿𝐿 𝜃𝜃 .
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𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝐿𝐿 𝜃𝜃

The argument 𝜃𝜃
that maximizes 𝐿𝐿 𝜃𝜃



New function: arg max

1. max
𝑥𝑥

𝑓𝑓 𝑥𝑥 ?

2. arg max
𝑥𝑥

𝑓𝑓 𝑥𝑥 ?
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arg max
𝑥𝑥

𝑓𝑓 𝑥𝑥 The 𝑥𝑥 that maximizes
the function 𝑓𝑓 𝑥𝑥 .

Let 𝑓𝑓 𝑥𝑥 = −𝑥𝑥2 + 4, 
where −2 < 𝑥𝑥 < 2.

𝑓𝑓 𝑥𝑥

𝑥𝑥



Argmax properties
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arg max
𝑥𝑥

𝑓𝑓 𝑥𝑥 The 𝑥𝑥 that maximizes
the function 𝑓𝑓 𝑥𝑥 .

Let 𝑓𝑓 𝑥𝑥 = −𝑥𝑥2 + 4, 
where −2 < 𝑥𝑥 < 2.

𝑓𝑓 𝑥𝑥

𝑥𝑥
arg max

𝑥𝑥
𝑓𝑓 𝑥𝑥 = 0

log 𝑓𝑓 𝑥𝑥

𝑥𝑥

= arg max
𝑥𝑥

log 𝑓𝑓 𝑥𝑥



Argmax properties
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arg max
𝑥𝑥

𝑓𝑓 𝑥𝑥 The 𝑥𝑥 that maximizes
the function 𝑓𝑓 𝑥𝑥 .

= arg max
𝑥𝑥

log 𝑓𝑓 𝑥𝑥

• Log is monotonic:
𝑥𝑥 ≤ 𝑦𝑦 ⟺ log 𝑥𝑥 ≤ log 𝑦𝑦

• Log of product = sum of logs:

log 𝑎𝑎𝑎𝑎 = log 𝑎𝑎 + log 𝑏𝑏



Argmax properties
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arg max
𝑥𝑥

𝑓𝑓 𝑥𝑥 The 𝑥𝑥 that maximizes
the function 𝑓𝑓 𝑥𝑥 .

= arg max
𝑥𝑥

log 𝑓𝑓 𝑥𝑥 (log is monotonic: 
𝑥𝑥 ≤ 𝑦𝑦 ⟺ log 𝑥𝑥 ≤ log 𝑦𝑦) 

= arg max
𝑥𝑥

𝑐𝑐 log 𝑓𝑓 𝑥𝑥

for any positive constant 𝑐𝑐

(𝑥𝑥 ≤ 𝑦𝑦 ⟺ 𝑐𝑐 log 𝑥𝑥 ≤ 𝑐𝑐 log 𝑦𝑦)



Maximum Likelihood Estimator
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
def The Maximum Likelihood Estimator (MLE) of 𝜃𝜃 is the value of 𝜃𝜃 that 

maximizes 𝐿𝐿 𝜃𝜃 .

𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 also maximizes the log-likelihood function 𝐿𝐿𝐿𝐿 𝜃𝜃 :
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𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝐿𝐿 𝜃𝜃

𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝐿𝐿𝐿𝐿 𝜃𝜃

𝐿𝐿𝐿𝐿 𝜃𝜃 = log 𝐿𝐿 𝜃𝜃 = log �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

log 𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃

(log is monotonic)



Story so far
• We want to estimate a parameter 𝜃𝜃 for a density 𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃 .

• Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.

• We can choose 𝜃𝜃 by finding the argmax of the log-likelihood of data:

29

𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃 𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

log 𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃

𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝐿𝐿𝐿𝐿 𝜃𝜃 = arg max
𝜃𝜃

�
𝑖𝑖=1

𝑛𝑛

log 𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃

Likelihood Log-likelihood



Computing the MLE

General approach for finding 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 , the MLE of 𝜃𝜃:
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𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝐿𝐿𝐿𝐿 𝜃𝜃

1. Determine 
formula for 𝐿𝐿𝐿𝐿 𝜃𝜃

2. Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃
w.r.t. (each) 𝜃𝜃

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

log 𝑓𝑓 𝑋𝑋𝑖𝑖|𝜃𝜃
𝜕𝜕𝜕𝜕𝜕𝜕 𝜃𝜃
𝜕𝜕𝜕𝜕

3. Solve resulting
(simultaneous) 
equations

To maximize:
𝜕𝜕𝜕𝜕𝜕𝜕 𝜃𝜃
𝜕𝜕𝜕𝜕

= 0

4. Make sure derived �𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 is a maximum 
• Check 𝐿𝐿𝐿𝐿 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 ± 𝜖𝜖 < 𝐿𝐿𝐿𝐿 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀
• Often ignored in expository derivations
• We’ll ignore it here too (and won’t require it in class)

(algebra or
computer)



Maximum Likelihood with Bernoulli
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• Let 𝑋𝑋𝑖𝑖~Ber 𝑝𝑝 .

What is 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀?
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What is the PMF 𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝 ?
A. 𝑝𝑝
B. 1 − 𝑝𝑝

C. �𝑝𝑝 if 𝑋𝑋𝑖𝑖 = 1
1 − 𝑝𝑝 if 𝑋𝑋𝑖𝑖 = 0

D. 𝑝𝑝𝑋𝑋𝑖𝑖 1 − 𝑝𝑝 1−𝑋𝑋𝑖𝑖 where 𝑋𝑋𝑖𝑖 ∈ {0,1}

1. Determine 
formula for 𝐿𝐿𝐿𝐿 𝜃𝜃

3. Solve resulting
(simultaneous) 
equations

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

log 𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝

2. Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃
w.r.t. (each) 𝜃𝜃, set to 0



Maximum Likelihood with Bernoulli
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• Let 𝑋𝑋𝑖𝑖~Ber 𝑝𝑝 .

What is 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀?
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• Is differentiable
• Valid PMF over

discrete domain

What is the PMF 𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝 ?
A. 𝑝𝑝
B. 1 − 𝑝𝑝

C. �𝑝𝑝 if 𝑋𝑋𝑖𝑖 = 1
1 − 𝑝𝑝 if 𝑋𝑋𝑖𝑖 = 0

D. 𝑝𝑝𝑋𝑋𝑖𝑖 1 − 𝑝𝑝 1−𝑋𝑋𝑖𝑖 where 𝑋𝑋𝑖𝑖 ∈ {0,1}

1. Determine 
formula for 𝐿𝐿𝐿𝐿 𝜃𝜃

3. Solve resulting
equations

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

log 𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝

2. Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃
w.r.t. (each) 𝜃𝜃, set to 0



Maximum Likelihood with Bernoulli
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• Let 𝑋𝑋𝑖𝑖~Ber 𝑝𝑝 . 
• 𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝 = 𝑝𝑝𝑋𝑋𝑖𝑖 1 − 𝑝𝑝 1−𝑋𝑋𝑖𝑖 where 𝑋𝑋𝑖𝑖 ∈ {0,1}

What is 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀?
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1. Determine 
formula for 𝐿𝐿𝐿𝐿 𝜃𝜃

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

log 𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝

= �
𝑖𝑖=1

𝑛𝑛

log 𝑝𝑝𝑋𝑋𝑖𝑖 1 − 𝑝𝑝𝑖𝑖 1−𝑋𝑋𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 log 𝑝𝑝 + 1 − 𝑋𝑋𝑖𝑖 log 1 − 𝑝𝑝

= 𝑌𝑌 log 𝑝𝑝 + 𝑛𝑛 − 𝑌𝑌 log 1 − 𝑝𝑝 , where 𝑌𝑌 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖

2. Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃
w.r.t. (each) 𝜃𝜃, set to 0

3. Solve resulting
equations



Maximum Likelihood with Bernoulli
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• Let 𝑋𝑋𝑖𝑖~Ber 𝑝𝑝 . 
• 𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝 = 𝑝𝑝𝑋𝑋𝑖𝑖 1 − 𝑝𝑝 1−𝑋𝑋𝑖𝑖 where 𝑋𝑋𝑖𝑖 ∈ {0,1}

What is 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀?
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1. Determine 
formula for 𝐿𝐿𝐿𝐿 𝜃𝜃

= 𝑌𝑌 log 𝑝𝑝 + 𝑛𝑛 − 𝑌𝑌 log 1 − 𝑝𝑝

2. Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃
w.r.t. (each) 𝜃𝜃, set to 0

𝑌𝑌 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖
where

3. Solve resulting
equations

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 log 𝑝𝑝 + 1 − 𝑋𝑋𝑖𝑖 log 1 − 𝑝𝑝

𝜕𝜕𝜕𝜕𝜕𝜕 𝜃𝜃
𝜕𝜕𝜕𝜕

= 𝑌𝑌
1
𝑝𝑝

+ 𝑛𝑛 − 𝑌𝑌
−1

1 − 𝑝𝑝
= 0



Maximum Likelihood with Bernoulli
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• Let 𝑋𝑋𝑖𝑖~Ber 𝑝𝑝 . 
• 𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝 = 𝑝𝑝𝑋𝑋𝑖𝑖 1 − 𝑝𝑝 1−𝑋𝑋𝑖𝑖 where 𝑋𝑋𝑖𝑖 ∈ {0,1}

What is 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀?
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1. Determine 
formula for 𝐿𝐿𝐿𝐿 𝜃𝜃

3. Solve resulting
equations

2. Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃
w.r.t. (each) 𝜃𝜃, set to 0

𝜕𝜕𝜕𝜕𝜕𝜕 𝜃𝜃
𝜕𝜕𝜕𝜕

= 𝑌𝑌
1
𝑝𝑝

+ 𝑛𝑛 − 𝑌𝑌
−1

1 − 𝑝𝑝
= 0

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
𝑌𝑌 =

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖

MLE of the Bernoulli parameter, 
𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀, is the unbiased estimate of 
the mean, �𝑋𝑋 (sample mean)

= 𝑌𝑌 log 𝑝𝑝 + 𝑛𝑛 − 𝑌𝑌 log 1 − 𝑝𝑝 𝑌𝑌 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖
where

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 log 𝑝𝑝 + 1 − 𝑋𝑋𝑖𝑖 log 1 − 𝑝𝑝



Quick check
• You draw 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 from the distribution 𝐹𝐹,

yielding the following sample:
0, 0, 1, 1, 1, 1, 1, 1, 1, 1

• Suppose distribution 𝐹𝐹 = Ber 𝑝𝑝 with unknown parameter 𝑝𝑝.
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(𝑛𝑛 = 10)

A. 1.0
B. 0.5
C. 0.8
D. 0.2
E. None/other

1. What is 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀, the MLE of the parameter 𝑝𝑝?



Quick check
• You draw 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 from the distribution 𝐹𝐹, 

yielding the following sample:
0, 0, 1, 1, 1, 1, 1, 1, 1, 1

• Suppose distribution 𝐹𝐹 = Ber 𝑝𝑝 with unknown parameter 𝑝𝑝.
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(𝑛𝑛 = 10)

1. What is 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀, the MLE of the parameter 𝑝𝑝?
2. What is the likelihood 𝐿𝐿 𝜃𝜃 of this particular sample?



Quick check
• You draw 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 from the distribution 𝐹𝐹, 

yielding the following sample:
0, 0, 1, 1, 1, 1, 1, 1, 1, 1

• Suppose distribution 𝐹𝐹 = Ber 𝑝𝑝 with unknown parameter 𝑝𝑝.
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(𝑛𝑛 = 10)

𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝

1. What is 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀, the MLE of the parameter 𝑝𝑝?
2. What is the likelihood 𝐿𝐿 𝜃𝜃 of this particular sample?

𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝 = 𝑝𝑝𝑋𝑋𝑖𝑖 1 − 𝑝𝑝 1−𝑋𝑋𝑖𝑖 where 𝑋𝑋𝑖𝑖 ∈ {0,1}

= 𝑝𝑝8 1 − 𝑝𝑝 2

where 𝜃𝜃 = 𝑝𝑝



Maximum Likelihood Algorithm
1. Decide on a model for the distribution of your samples.

Define the PMF/PDF for the distribution.

2. Write out the log-likelihood function.

3. State that the optimal parameters are the
argmax of the log-likelihood function.

4. Use an optimization algorithm to calculate argmax:
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• Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃 w.r.t (each) 𝜃𝜃, set to 0
• Solve resulting (simultaneous) equations

𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

log 𝑓𝑓 𝑋𝑋𝑖𝑖|𝑝𝑝

𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝐿𝐿𝐿𝐿 𝜃𝜃



Maximum Likelihood with Poisson
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• Let 𝑋𝑋𝑖𝑖~Poi 𝜆𝜆 .
• PMF:

What is 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀?
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𝑓𝑓 𝑋𝑋𝑖𝑖|𝜆𝜆 =
𝑒𝑒−𝜆𝜆𝜆𝜆𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖!



Maximum Likelihood with Poisson
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• Let 𝑋𝑋𝑖𝑖~Poi 𝜆𝜆 .
• PMF:

What is 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀?

41

1. Determine 
formula for 𝐿𝐿𝐿𝐿 𝜃𝜃

3. Solve resulting
equations

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

log
𝑒𝑒−𝜆𝜆𝜆𝜆𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖!

2. Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃
w.r.t. (each) 𝜃𝜃, set to 0

= −𝑛𝑛𝜆𝜆 + log 𝜆𝜆 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 −�
𝑖𝑖=1

𝑛𝑛

log 𝑋𝑋𝑖𝑖!

𝑓𝑓 𝑋𝑋𝑖𝑖|𝜆𝜆 =
𝑒𝑒−𝜆𝜆𝜆𝜆𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖!

= �
𝑖𝑖=1

𝑛𝑛

−𝜆𝜆 log 𝑒𝑒 + 𝑋𝑋𝑖𝑖 log 𝜆𝜆 − log𝑋𝑋𝑖𝑖!

(using natural log, ln 𝑒𝑒 = 1)



Maximum Likelihood with Poisson
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• Let 𝑋𝑋𝑖𝑖~Poi 𝜆𝜆 .
• PMF:

What is 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀?
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1. Determine 
formula for 𝐿𝐿𝐿𝐿 𝜃𝜃

3. Solve resulting
equations

𝐿𝐿𝐿𝐿 𝜃𝜃 = −𝑛𝑛𝑛𝑛 + log 𝜆𝜆 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 −�
𝑖𝑖=1

𝑛𝑛

log 𝑋𝑋𝑖𝑖!

2. Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃
w.r.t. (each) 𝜃𝜃, set to 0

𝑓𝑓 𝑋𝑋𝑖𝑖|𝜆𝜆 =
𝑒𝑒−𝜆𝜆𝜆𝜆𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖!

(∑𝑖𝑖=1𝑛𝑛 log 𝑋𝑋𝑖𝑖! is a constant w.r.t 𝜆𝜆)
𝜕𝜕𝜕𝜕𝜕𝜕 𝜃𝜃
𝜕𝜕𝜆𝜆

= −𝑛𝑛 +
1
𝜆𝜆
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = 0



Maximum Likelihood with Poisson
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
• Let 𝑋𝑋𝑖𝑖~Poi 𝜆𝜆 .
• PMF:

What is 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀?
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1. Determine 
formula for 𝐿𝐿𝐿𝐿 𝜃𝜃

3. Solve resulting
equations

𝐿𝐿𝐿𝐿 𝜃𝜃 = −𝑛𝑛𝑛𝑛 + log 𝜆𝜆 �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 −�
𝑖𝑖=1

𝑛𝑛

log 𝑋𝑋𝑖𝑖!

2. Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃
w.r.t. (each) 𝜃𝜃, set to 0

𝑓𝑓 𝑋𝑋𝑖𝑖|𝜆𝜆 =
𝑒𝑒−𝜆𝜆𝜆𝜆𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖!

𝜕𝜕𝜕𝜕𝜕𝜕 𝜃𝜃
𝜕𝜕𝜆𝜆

= −𝑛𝑛 +
1
𝜆𝜆
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 = 0 𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 MLE of the Poisson parameter, 
𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀, is the unbiased estimate 
of the mean, �𝑋𝑋 (sample mean)



Maximum Likelihood with Uniform
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.

Let 𝑋𝑋𝑖𝑖~Uni 𝛼𝛼,𝛽𝛽 .
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𝑓𝑓 𝑋𝑋𝑖𝑖|𝛼𝛼,𝛽𝛽 = �
1

𝛽𝛽 − 𝛼𝛼
if 𝛼𝛼 ≤ 𝑋𝑋𝑖𝑖 ≤ 𝛽𝛽

0 otherwise

1. Determine 
formula for 𝐿𝐿 𝜃𝜃

2. Differentiate 𝐿𝐿𝐿𝐿 𝜃𝜃
w.r.t. (each) 𝜃𝜃, set to 0

𝐿𝐿 𝜃𝜃 = �
1

𝛽𝛽 − 𝛼𝛼

𝑛𝑛

if 𝛼𝛼 ≤ 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 ≤ 𝛽𝛽

otherwise

Likelihood: A. Great, let’s do it
B. Differentiation is hard
C. Constraint

𝛼𝛼 ≤ 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 ≤ 𝛽𝛽
makes differentiation hard0



Example sample from a Uniform
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.

Let 𝑋𝑋𝑖𝑖~Uni 𝛼𝛼,𝛽𝛽 .
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A. Uni 𝛼𝛼 = 0 ,𝛽𝛽 = 1

B. Uni 𝛼𝛼 = 0.15,𝛽𝛽 = 0.75

C. Uni 𝛼𝛼 = 0.15,𝛽𝛽 = 0.70

Suppose 𝑋𝑋𝑖𝑖~Uni 0,1 .
You observe data:

Which parameters
would give you
maximum 𝐿𝐿 𝜃𝜃 ?

0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75

𝐿𝐿 𝜃𝜃 = �
1

𝛽𝛽 − 𝛼𝛼

𝑛𝑛

if 𝛼𝛼 ≤ 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 ≤ 𝛽𝛽

otherwise0



Example sample from a Uniform
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.

Let 𝑋𝑋𝑖𝑖~Uni 𝛼𝛼,𝛽𝛽 .
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A. Uni 𝛼𝛼 = 0 ,𝛽𝛽 = 1

B. Uni 𝛼𝛼 = 0.15,𝛽𝛽 = 0.75

C. Uni 𝛼𝛼 = 0.15,𝛽𝛽 = 0.70

Suppose 𝑋𝑋𝑖𝑖~Uni 0,1 .
You observe data:

Which parameters
would give you
maximum 𝐿𝐿 𝜃𝜃 ?

0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75

1
0.55

6
⋅ 0 = 0

1 7 = 1
1
0.6

7
= 35.7

Original parameters may not yield maximum likelihood.

𝐿𝐿 𝜃𝜃 = �
1

𝛽𝛽 − 𝛼𝛼

𝑛𝑛

if 𝛼𝛼 ≤ 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 ≤ 𝛽𝛽

otherwise0



Maximum Likelihood with Uniform
Consider a sample of 𝑛𝑛 i.i.d. random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.

Let 𝑋𝑋𝑖𝑖~Uni 𝛼𝛼,𝛽𝛽 .
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𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀: 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 = min 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 = max 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛
Intuition:
• Want interval size 𝛽𝛽 − 𝛼𝛼 to be as small

as possible to maximize likelihood function 
per datapoint

• Need to make sure all observed data is in 
interval (if not, then 𝐿𝐿 𝜃𝜃 = 0)

(demo)

𝐿𝐿 𝜃𝜃 = �
1

𝛽𝛽 − 𝛼𝛼

𝑛𝑛

if 𝛼𝛼 ≤ 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 ≤ 𝛽𝛽

otherwise0



Small samples = problems with MLE
Maximum Likelihood Estimator 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 :
• Best explains data we have seen 
• Does not attempt to generalize to unseen data.

In many cases, 

• Unbiased (𝐸𝐸 𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇 regardless of size of sample, 𝑛𝑛)

For some cases, like Uniform:

• Biased. Problematic for small sample size
• Example: If 𝑛𝑛 = 1 then 𝛼𝛼 = 𝛽𝛽, yielding an invalid distribution
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𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 Sample mean (MLE for Bernoulli 𝑝𝑝, 
Poisson 𝜆𝜆, Normal 𝜇𝜇)

𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 𝛼𝛼, 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 𝛽𝛽

𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝐿𝐿 𝜃𝜃

= arg max
𝜃𝜃

𝐿𝐿𝐿𝐿 𝜃𝜃



Properties of MLE
Maximum Likelihood Estimator:
• Best explains data we have seen 
• Does not attempt to generalize to unseen data.

• Often used when sample size 𝑛𝑛 is large relative to parameter space

• Potentially biased (though asymptotically less so, as 𝑛𝑛 → ∞)

• Consistent:

As 𝑛𝑛 → ∞ (i.e., more data), probability that �𝜃𝜃 significantly differs from 𝜃𝜃 is zero
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𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝐿𝐿 𝜃𝜃

lim
𝑛𝑛→∞

𝑃𝑃 𝜃̂𝜃 − 𝜃𝜃 < 𝜀𝜀 = 1 where 𝜀𝜀 > 0

= arg max
𝜃𝜃

𝐿𝐿𝐿𝐿 𝜃𝜃
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