
25: Logistic Regression
David Varodayan
March 6, 2020
Adapted from slides by Lisa Yan

1

Announcements

2

Updated CS109 logistics and policies

We are implementing several changes to CS109 logistics and policies
in response to growing concern about Covid-19. These changes affect
lectures, section, office hours and the final exam.

Read the new policies in the announcements on the course webpage:
http://web.stanford.edu/class/cs109/

We welcome your questions on piazza

http://web.stanford.edu/class/cs109/

Announcements

3

Late Day Reminder

No late days permitted past
last day of the quarter, 3/13

Problem Set 6

Due: Wednesday 3/11
Covers: Up to Lecture 25
Extra Python Office Hours: Saturday 3/7, 3-5PM

Autograded Coding Problems

Run your code in the command line or
install Pycharm following directions on
Pset 6 webpage

Regrades

Pset 1 to 5 and
Midterm regrades to
close on 3/11 at 1pm

Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

4

Background: Weighted sum
If 𝑿𝑿 = 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚 :

Weighted sum
with an
intercept term:

5

= 𝜃𝜃1𝑋𝑋1 + 𝜃𝜃2𝑋𝑋2 + ⋯+ 𝜃𝜃𝑚𝑚𝑋𝑋𝑚𝑚

Weighted sum
(aka dot product)

𝑧𝑧 = 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑋𝑋𝑗𝑗

𝑧𝑧 = 𝜃𝜃𝑇𝑇𝑿𝑿 = �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑋𝑋𝑗𝑗

Define 𝑋𝑋0 = 1= 𝜃𝜃0𝑋𝑋0 + 𝜃𝜃1𝑋𝑋1 + 𝜃𝜃2𝑋𝑋2 + ⋯+ 𝜃𝜃𝑚𝑚𝑋𝑋𝑚𝑚

= 𝜃𝜃𝑇𝑇𝑿𝑿 New 𝑿𝑿 = 1,𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚

Background: Sigmoid function 𝜎𝜎 𝑧𝑧
• The sigmoid function:

• Sigmoid squashes 𝑧𝑧 to
a number between 0 and 1.

• Recall definition of probability:
A number between 0 and 1

6

𝜎𝜎 𝑧𝑧 can represent a probability.

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧

𝜎𝜎 𝑧𝑧

𝑧𝑧

Background: Chain Rule

7

𝜕𝜕𝜕𝜕 𝑥𝑥
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜕𝜕 𝑧𝑧
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

Calculus
Chain Rule

𝜕𝜕 𝑥𝑥 = 𝜕𝜕 𝑧𝑧 𝑥𝑥

Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

8

From Naïve Bayes to Logistic Regression

Classification goal: Model 𝑃𝑃 𝑌𝑌 | 𝑿𝑿

Naïve Bayes Classifier:
• Estimate 𝑃𝑃 𝑿𝑿 | 𝑌𝑌 and 𝑃𝑃 𝑌𝑌 because
• Actually modeling 𝑃𝑃 𝑿𝑿,𝑌𝑌
• Assume 𝑃𝑃 𝑿𝑿|𝑌𝑌 = 𝑃𝑃 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛|𝑌𝑌 = ∏𝑖𝑖=1

𝑚𝑚 𝑃𝑃 𝑋𝑋𝑖𝑖|𝑌𝑌

Can we model 𝑃𝑃 𝑌𝑌 | 𝑿𝑿 directly?
• Welcome our friend: Logistic Regression!

9

�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 Predict the 𝑌𝑌 that is most likely
given our observation 𝑿𝑿

arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑿𝑿|𝑌𝑌 𝑃𝑃 𝑌𝑌

Logistic Regression

10

�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 Predict the 𝑌𝑌 that is most likely
given our observation 𝑿𝑿

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
Logistic

Regression
Model

models
𝑃𝑃 𝑌𝑌 | 𝑿𝑿
directly

Logistic Regression

11

0.81
𝒙𝒙 = [0,1,1]

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙]
conditional likelihood𝑿𝑿

input features

𝜃𝜃 parameter

Slides courtesy of Chris Piech

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝑥𝑥 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

Logistic Regression Cartoon

12

𝜃𝜃 parameter

Slides courtesy of Chris Piech

Logistic Regression cartoon

13Slides courtesy of Chris Piech

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

+
𝑧𝑧 𝜎𝜎 𝑧𝑧

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

Logistic Regression input/output

14Slides courtesy of Chris Piech

𝑿𝑿, input features
0,1,1

�𝑌𝑌, output

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

+
𝑧𝑧 𝜎𝜎 𝑧𝑧

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

Components of Logistic Regression

15Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑧𝑧 𝜎𝜎 𝑧𝑧

𝜃𝜃 weights
(aka parameters)

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

Components of Logistic Regression

16Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑧𝑧 𝜎𝜎 𝑧𝑧

weighted sum

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

Components of Logistic Regression

17Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑧𝑧 𝜎𝜎 𝑧𝑧

squashing function
b/t 0 and 1

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

Components of Logistic Regression

18Slides courtesy of Chris Piech

+
𝑧𝑧 𝜎𝜎 𝑧𝑧

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

prediction

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

Different predictions for different inputs

19Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

𝑿𝑿, input features
0,1,1

Different predictions for different inputs

20Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

𝑿𝑿, input features
0,0,1

Parameters affect prediction

21Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

Parameters affect prediction

22Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

Logistic Regression Model

23

• 𝜎𝜎 𝑧𝑧 = 1
1+𝑒𝑒−𝑧𝑧

, the sigmoid function

• For simplicity, define 𝑥𝑥0 = 1:

• Since 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 + 𝑃𝑃 𝑌𝑌 = 0|𝑿𝑿 = 𝒙𝒙 = 1:

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

𝑃𝑃 𝑌𝑌 = 0|𝑿𝑿 = 𝒙𝒙 = 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗where

Predict the 𝑌𝑌 that is most likely
given our observation 𝑿𝑿 models 𝑃𝑃 𝑌𝑌 | 𝑿𝑿 directly

Classifying using the sigmoid function

24

𝑧𝑧

𝜎𝜎 𝑧𝑧

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧

�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗where
Logistic

Regression
Model

Logistic Regression uses the
sigmoid function to try and
distinguish 𝑦𝑦 = 1 (blue) points
from 𝑦𝑦 = 0 (red) points.

Classifying using the sigmoid function

When do we predict �𝑌𝑌 = 1?
A. If 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 > 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙
B. If 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 > 0.5
C. If 𝜃𝜃𝑇𝑇𝒙𝒙 > 0
D. All are valid, but C is easiest
E. None/Other

25

𝑧𝑧

𝜎𝜎 𝑧𝑧

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧

�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗where
Logistic

Regression
Model

Regression Algorithms

Linear Regression

Classification Algorithms

Naïve Bayes

Logistic Regression

26

Naming algorithms

Awesome classifier,
terrible name

Training: Learning the parameters
Logistic regression gets its intelligence from its parameters 𝜃𝜃 =
𝜃𝜃0,𝜃𝜃1, … ,𝜃𝜃𝑚𝑚 .

27

𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑖𝑖 |𝑿𝑿 = 𝒙𝒙 𝑖𝑖 ,𝜃𝜃

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

During training, find the 𝜃𝜃 that
maximizes log-conditional likelihood
of the training data. Use MLE!

• Logistic Regression Model:

• Want to predict training
data as correctly as possible:

• Therefore, choose 𝜃𝜃 that maximizes
the conditional likelihood of
observing i.i.d. training data:

arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌|𝑿𝑿 = 𝒙𝒙 𝑖𝑖 = 𝑦𝑦 𝑖𝑖 as often
as possible

Training: Learning the parameters via MLE

0. Add 𝑥𝑥0
𝑖𝑖 = 1 to each 𝒙𝒙 𝑖𝑖

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃𝜃𝑗𝑗 , 𝑗𝑗 = 0, 1, … ,𝑚𝑚:

28

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) + 1 − 𝑦𝑦(𝑖𝑖) log 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖)

𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

Gradient Ascent
Walk uphill and you will find a local maxima

(if your step is small enough).

29

𝐿𝐿
𝜃𝜃

𝜃𝜃1 𝜃𝜃2 Logistic regression 𝐿𝐿𝐿𝐿 𝜃𝜃
is convex

Review

Training: Gradient ascent step
4. Optimize.

30

𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅
𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃old

𝜕𝜕𝜃𝜃𝑗𝑗old

For all thetas:

= 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

What does this look like in code?

Repeat many times:

Training: Gradient Ascent

31

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

// compute all gradient[j]’s
// based on n training examples

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

Gradient
Ascent Step

Training: Gradient Ascent

32

// update gradient[j] for
// current (x,y) example

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

for each 0 ≤ j ≤ m:

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient

Ascent Step

Training: Gradient Ascent

What are important
implementation
details?

33

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] +=

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient

Ascent Step

Training: Gradient Ascent

34

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] +=

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

• 𝑥𝑥𝑗𝑗 is 𝑗𝑗-th feature of
input var 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

Gradient
Ascent Step 𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�

𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

Training: Gradient Ascent

35

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] +=

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

• 𝑥𝑥𝑗𝑗 is 𝑗𝑗-th feature of
input var 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

• Insert 𝑥𝑥0 = 1 before
training

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient

Ascent Step

Training: Gradient Ascent

36

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] +=

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

• 𝑥𝑥𝑗𝑗 is 𝑗𝑗-th feature of
input var 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

• Insert 𝑥𝑥0 = 1 before
training

• Finish computing
gradient before
updating any part of 𝜃𝜃

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient

Ascent Step

Training: Gradient Ascent

37

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] +=

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

• 𝑥𝑥𝑗𝑗 is 𝑗𝑗-th feature of
input var 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

• Insert 𝑥𝑥0 = 1 before
training

• Finish computing
gradient before
updating any part of 𝜃𝜃

• Learning rate 𝜂𝜂 is a
constant you set before
training

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient

Ascent Step

Training: Gradient Ascent

38

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] +=

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

• 𝑥𝑥𝑗𝑗 is 𝑗𝑗-th feature of
input var 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

• Insert 𝑥𝑥0 = 1 before
training

• Finish computing
gradient before
updating any part of 𝜃𝜃

• Learning rate 𝜂𝜂 is a
constant you set before
training

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient

Ascent Step

Testing: Classification with Logistic Regression

39

Testing

• Compute �𝑦𝑦 = 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 =
• Classify instance as:

�1 �𝑦𝑦 > 0.5, equivalently 𝜃𝜃𝑇𝑇𝒙𝒙 > 0
0 otherwise

Parameters 𝜃𝜃𝑗𝑗 are not updated during testing phase

Training
Learn parameters 𝜃𝜃 = 𝜃𝜃0,𝜃𝜃1, … ,𝜃𝜃𝑚𝑚
via gradient
ascent: 𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�

𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

1
1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙

Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

40

Introducing notation �𝑦𝑦

41

�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌|𝑿𝑿 = 𝒙𝒙Prediction: = �1 if �𝑦𝑦 > 0.5
0 otherwise

�𝑦𝑦 = 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙Logistic
Regression

model: 𝑃𝑃 𝑌𝑌 = 𝑦𝑦|𝑿𝑿 = 𝒙𝒙 = � �𝑦𝑦 if 𝑦𝑦 = 1
1 − �𝑦𝑦 if 𝑦𝑦 = 0

Training: Learning the parameters via MLE

0. Add 𝑥𝑥0
𝑖𝑖 = 1 to each 𝒙𝒙 𝑖𝑖

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃𝜃𝑗𝑗 , 𝑗𝑗 = 0, 1, … ,𝑚𝑚:

42

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) + 1 − 𝑦𝑦(𝑖𝑖) log 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖)

𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

How did we get this log-likelihood function?

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = �𝑦𝑦
�𝑦𝑦 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

Log-likelihood of data

43

Notes:
• Actually conditional likelihood
• Still correctly gets correct 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀

since 𝑿𝑿,𝜃𝜃 independent
• See lecture notes

(see Bernoulli
MLE PMF)

Logistic
Regression

model:

𝑃𝑃 𝑌𝑌 = 𝑦𝑦|𝑿𝑿 = 𝒙𝒙 = � �𝑦𝑦 if 𝑦𝑦 = 1
1 − �𝑦𝑦 if 𝑦𝑦 = 0

= �𝑦𝑦 𝑦𝑦 1 − �𝑦𝑦 1−𝑦𝑦

Likelihood
of training data: 𝐿𝐿 𝜃𝜃 = �

𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑖𝑖 |𝑿𝑿 = 𝒙𝒙 𝑖𝑖 ,𝜃𝜃

where �𝑦𝑦 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

(see Bernoulli
MLE PMF)

Log-likelihood of data

44

Logistic
Regression

model:

𝑃𝑃 𝑌𝑌 = 𝑦𝑦|𝑿𝑿 = 𝒙𝒙 = � �𝑦𝑦 if 𝑦𝑦 = 1
1 − �𝑦𝑦 if 𝑦𝑦 = 0

= �𝑦𝑦 𝑦𝑦 1 − �𝑦𝑦 1−𝑦𝑦

Likelihood
of training data: 𝐿𝐿 𝜃𝜃 = �

𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑖𝑖 |𝑿𝑿 = 𝒙𝒙 𝑖𝑖 ,𝜃𝜃

where �𝑦𝑦 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

= �
𝑖𝑖=1

𝑛𝑛

�𝑦𝑦 𝑖𝑖 𝑦𝑦 𝑖𝑖
1 − �𝑦𝑦 𝑖𝑖 1−𝑦𝑦 𝑖𝑖

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log �𝑦𝑦 𝑖𝑖 + 1 − 𝑦𝑦(𝑖𝑖) log 1 − �𝑦𝑦 𝑖𝑖Log-likelihood:

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) + 1 − 𝑦𝑦(𝑖𝑖) log 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖)

Training: Learning the parameters via MLE

0. Add 𝑥𝑥0
𝑖𝑖 = 1 to each 𝒙𝒙 𝑖𝑖

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃𝜃𝑗𝑗 , 𝑗𝑗 = 0, 1, … ,𝑚𝑚:

45

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) + 1 − 𝑦𝑦(𝑖𝑖) log 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖)

𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

How did we get this gradient?

Aside: Sigmoid has a beautiful derivative

What is 𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 ?

A. 𝜎𝜎 𝑥𝑥𝑗𝑗 1 − 𝜎𝜎 𝑥𝑥𝑗𝑗 𝑥𝑥𝑗𝑗
B. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝒙𝒙
C. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗
D. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗
E. None/other

46

Derivative:Sigmoid function:

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧
𝑑𝑑
𝑑𝑑𝑧𝑧

𝜎𝜎 𝑧𝑧 = 𝜎𝜎 𝑧𝑧 1 − 𝜎𝜎 𝑧𝑧

Aside: Sigmoid has a beautiful derivative

What is 𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 ?

A. 𝜎𝜎 𝑥𝑥𝑗𝑗 1 − 𝜎𝜎 𝑥𝑥𝑗𝑗 𝑥𝑥𝑗𝑗
B. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝒙𝒙
C. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗
D. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗
E. None/other

47

Derivative:Sigmoid function:

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧
𝑑𝑑
𝑑𝑑𝑧𝑧
𝜎𝜎 𝑧𝑧 = 𝜎𝜎 𝑧𝑧 1 − 𝜎𝜎 𝑧𝑧

Let 𝑧𝑧 = 𝜃𝜃𝑇𝑇𝒙𝒙

𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 =
𝜕𝜕
𝜕𝜕𝑧𝑧
𝜎𝜎 𝑧𝑧 ⋅

𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃𝑗𝑗

(Chain Rule)

= �
𝑘𝑘=0

𝑚𝑚

𝜃𝜃𝑘𝑘𝑥𝑥𝑘𝑘 .

= 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗

Compute gradient of log-conditional likelihood

48

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) + 1 − 𝑦𝑦(𝑖𝑖) log 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖)Log-conditional
Likelihood:

𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

where

Find:

Compute gradient of log-likelihood

49

Let �𝑦𝑦 𝑖𝑖 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊)𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛
𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

𝑦𝑦(𝑖𝑖) log �𝑦𝑦 𝑖𝑖 + 1 − 𝑦𝑦(𝑖𝑖) log 1 − �𝑦𝑦 𝑖𝑖

= �
𝑖𝑖=1

𝑛𝑛
𝜕𝜕

𝜕𝜕 �𝑦𝑦 𝑖𝑖 𝑦𝑦(𝑖𝑖) log �𝑦𝑦 𝑖𝑖 + 1 − 𝑦𝑦(𝑖𝑖) log 1 − �𝑦𝑦 𝑖𝑖 ⋅
𝜕𝜕 �𝑦𝑦 𝑖𝑖

𝜕𝜕𝜃𝜃𝑗𝑗
(Chain Rule)

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) 1
�𝑦𝑦 𝑖𝑖 − 1 − 𝑦𝑦(𝑖𝑖) 1

1 − �𝑦𝑦 𝑖𝑖 ⋅ �𝑦𝑦 𝑖𝑖 1 − �𝑦𝑦 𝑖𝑖 𝑥𝑥𝑗𝑗
𝑖𝑖 (calculus)

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − �𝑦𝑦 𝑖𝑖 𝑥𝑥𝑗𝑗
(𝑖𝑖) = �

𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑖𝑖 𝑥𝑥𝑗𝑗
(𝑖𝑖) (simplify)

Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

50

Logistic Regression is trying to fit
a line that separates data instances
where 𝑦𝑦 = 1 from those where 𝑦𝑦 = 0:

• We call such data (or functions
generating the data linearly separable.

• Naïve Bayes is linear too, because there is no interaction between
different features.

Intuition about Logistic Regression

51

𝜃𝜃𝑇𝑇𝒙𝒙 = 0

Logistic
Regression

Model
𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝜃𝜃𝑇𝑇𝒙𝒙 = �

𝑗𝑗=0

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗where

Data is often not linearly separable

• Not possible to draw a line that successfully separates all the
𝑦𝑦 = 1 points (green) from the 𝑦𝑦 = 0 points (red)

• Despite this fact, Logistic Regression and Naive Bayes still often work
well in practice

52

Many tradeoffs in choosing an algorithm

53

Naïve Bayes Logistic Regression
Modeling goal 𝑃𝑃 𝑿𝑿,𝑌𝑌 𝑃𝑃 𝑌𝑌|𝑿𝑿

Generative: could use joint
distribution to generate new
points (but you might not
need this extra effort)

Generative or
discriminative?

Discriminative: just tries to
discriminate 𝑦𝑦 = 0 vs 𝑦𝑦 = 1
(Cannot generate new points b/c
no 𝑃𝑃 𝑿𝑿,𝑌𝑌)

Continuous input
features?

Yes, easily

Needs parametric form
(e.g., Gaussian) or
discretized buckets (for
multinomial features)

Discrete input
features?

Yes, multi-value discrete
data = multinomial 𝑃𝑃 𝑋𝑋𝑖𝑖|𝑌𝑌

Multi-valued discrete data hard
(e.g., if 𝑋𝑋𝑖𝑖 ∈ {𝐴𝐴,𝐵𝐵,𝐶𝐶}, not
necessarily good to encode as
1, 2, 3

	25: Logistic Regression
	Announcements
	Announcements
	Today’s plan
	Background: Weighted sum
	Background: Sigmoid function 𝜎 𝑧
	Background: Chain Rule
	Today’s plan
	From Naïve Bayes to Logistic Regression
	Logistic Regression
	Logistic Regression
	Logistic Regression Cartoon
	Logistic Regression cartoon
	Logistic Regression input/output
	Components of Logistic Regression
	Components of Logistic Regression
	Components of Logistic Regression
	Components of Logistic Regression
	Different predictions for different inputs
	Different predictions for different inputs
	Parameters affect prediction
	Parameters affect prediction
	Logistic Regression Model
	Classifying using the sigmoid function
	Classifying using the sigmoid function
	Naming algorithms
	Training: Learning the parameters
	Training: Learning the parameters via MLE
	Gradient Ascent
	Training: Gradient ascent step
	Training: Gradient Ascent
	Training: Gradient Ascent
	Training: Gradient Ascent
	Training: Gradient Ascent
	Training: Gradient Ascent
	Training: Gradient Ascent
	Training: Gradient Ascent
	Training: Gradient Ascent
	Testing: Classification with Logistic Regression
	Today’s plan
	Introducing notation 𝑦
	Training: Learning the parameters via MLE
	Log-likelihood of data
	Log-likelihood of data
	Training: Learning the parameters via MLE
	Aside: Sigmoid has a beautiful derivative
	Aside: Sigmoid has a beautiful derivative
	Compute gradient of log-conditional likelihood
	Compute gradient of log-likelihood
	Today’s plan
	Intuition about Logistic Regression
	Data is often not linearly separable
	Many tradeoffs in choosing an algorithm

