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Announcements

/Updated CS109 logistics and policies \

We are implementing several changes to CS109 logistics and policies

in response to growing concern about Covid-19. These changes affect
lectures, section, office hours and the final exam.

Read the new policies in the announcements on the course webpage:
http://web.stanford.edu/class/cs109/

QVe welcome your questions on piazza /
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http://web.stanford.edu/class/cs109/

Announcements

4 N 2
Problem Set 6 Regrades
Due: Wednesday 3/11 Pset 1 to 5 and
Covers: Up to Lecture 25 Midterm regrades to
Extra Python Office Hours: Saturday 3/7, 3-5PM KCIOSG on 3/11 at 1pm

N O N

4 .
Autograded Coding Problems Late Day Reminder

Run your code in the command line or
install Pycharm following directions on
Gset 6 webpage

No late days permitted past
last day of the quarter, 3/13
2N %

Stanford University 3




Today's plan

Logistic Regression

= .

C

C
C
C

napter O: Background
napter 1: Big Picture
napter 2: Details

napter 3: Philosophy
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Background: Weighted sum

If X = (XlJXZJ ,Xm)

Weighted sum

—_ Ty — X
z=0"X= H]X] (aka dot product)

— 01X1 + 62X2 + .-+ Hme

Weighted sum m
with an zZ=10y+ 2 0;X;
Intercept term: =1

— HOXO + 91X1 + 02X2 + -+ Qme Define XO =1

o HTX New X = (1,X1,X2, ,Xm)
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Background: Sigmoid function ¢ (z)

The sigmoid function: 1“(_?)
1 08 +
Z p—

o) =1 0.6 1
0.4 A
Sigmoid squashes z to 07 |

a number between O and 1. '

| 1 ! i IO I | | | | 7

10 8 6 4 2 0 2 4 o6 8 10

Recall definition of probability:
A number between O and 1

0(z) can represent a probability.
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Background: Chain Rule

f(x) = f(z(x))

of(x) 0df(z)o0z Calculus
9x 0z Ox Chain Rule
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Today’s plan

napter 1: Big Picture
napter 2: Details
napter 3: Philosophy

PHON®
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From Naive Bayes to Logistic Regression

Classification goal: Model P(Y | X)
Y = argmaxP(Y | X) Predict the Y that is most likely
y={0,1} given our observation X

Naive Bayes Classifier:
Estimate P(X | Y) and P(Y) because arg maxP(Y | X) = arg max P(X|Y)P(Y)
Actually modeling P(X, Y) y=o y=ion
Assume P(X|Y) = P(Xy, Xy, ., X |Y) = [T, P(X;|Y)

Can we model P(Y | X) directly?
Welcome our friend: Logistic Regression!
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Logistic Regression

Y = argmaxP(Y | X) Predict the Y that is most likely
y={0,1} given our observation X
Logistic mn models
Regression P =1|X=x)=a(6,+ z 6ix; | P |X)
Model =1 directly
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Logistic Regression

A~ (081

6 parameter

P(Y =1|X = x])
conditional likelihood

input features

m
P(Yz 1|X:X) =0 90 +Z@1X]
j=1
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Logistic Regression Cartoon

6 parameter
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Logistic Regression cartoon

PY =1|X=x) = 0(90 + z ijj)

j=1

Slides courtesy of Chris Piech Stanford University 13




Logistic Regression input/output

m
P(Y=1|X=x)=a 90 +Z@1xj

X, input features =

10,1,1]
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Components of Logistic Regression

P(Y =1|x) ()

v

m
P(Y= 1|X=x) =0 60 +Z@1x]
j=1

6 weights
(aka parameters)

Slides courtesy of Chris Piech Stanford University 15




Components of Logistic Regression

weighted sum

PY =1|X=x) = 0(90 + z ijj)

J=1

Slides courtesy of Chris Piech Stanford University 16




Components of Logistic Regression

P(Y =1|x) ()

squashing function
b/t0and 1

v

m
P(Y= 1|X=x) =0 90 +29]x]
j=1

Slides courtesy of Chris Piech Stanford University 17




Components of Logistic Regression

prediction

PY =1|X=x) = 0(90 + z ijj)

J=1

Slides courtesy of Chris Piech Stanford University 18




Different predictions for different inputs

4@
2
P(Y = 1|x)
i PY=1X=x)=0]|0 +29-x-
X, input features ( 0 - j 1>

10,1,1]

Stanford University 19




Difterent predictions for different inputs

m
P(Y=1|X=x)=0 90 +Z@1XJ

X, input features =

10,0,1]
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Parameters affect prediction

PY =1|X=x) = 0(90 + z ijj)

j=1

Slides courtesy of Chris Piech Stanford University 21




Parameters affect prediction

PY =1|X=x) = 0(90 + z 91"“1‘)

j=1
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Logistic Regression Model

Y = argmaxP(Y | X) where PY=1X=x)=o0c| 6, + Z 0;x;
y={0,1} j

Predict the Y that is most likely
given our observation X

J=1

models P(Y | X) directly

1
1+e~2’

o(z) =
For simplicity, define x, = 1: PY=1|X=x)=0(0"x)

SinceP(Y =1|X=x)+P(Y =0|X=x) = 1:
PY=0|X=x)=1-0(0"x)

the sigmoid function
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Classifying using the sigmoid function

Logistic R m
RegreSSion Y = arg{lglgx P(Y | X) where P(Y = 1|X = x) =0 90 + . ij]
Model Yo J=1
a(z)

1 -

o(z) = 1

Logistic Regression uses the
sigmoid function to try and
distinguish y = 1 (blue) points
from y = 0 (red) points.

-10 8 6 4 2 0 2 4 6 8 10
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Classifying using the sigmoid function

Logistic R m
Model y={0,1} =1
o(z) .
1 1 eo a0e oses_oo When do we predict Y = 17
%) 1 08 fa(87x)>1—0(8"x)
o\Z) = - T
1+e7= 0.6 If (67x) > 0.5
h f0Tx > 0
0.4 / All are valid, but C is easiest
02 t None/Other

-10 8 6 4 2 0 2 4 6 8 10
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Naming algorithms

Regression Algorithms Classification Algorithms

Linear Regression O Naive Bayes O

Logistic Regression &%

L

Awesome classifier,
terrible name
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Training: Learning the parameters

Logistic regression gets its intelligence from its parameters 6 =
(69,04, ...,0,,).

Logistic Regression Model: P(Y =1|X = x) = (8T x)
Want to predict training | arg max P(Y|X = x®) = y(® as often
data as correctly as possible: y={0,1} as possible

Therefore, choose 6 that maximizes n
the conditional likelihood of L(6) = Hp(y = yD|x = x®,9)
=1

observing i.i.d. training data:
During training, find the 6 that

maximizes log-conditional likelihood
of the training data. Use MLE!
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Training: Learning the parameters via MLE

Add xS = 1 to each x®

Logistic Regression model: PY=1X=x)=0(0"x)
Compute 1 _ | |
log-likelihood LL(6) = Z yDloga(672®@) + (1 - y®)log (1 — o(672?))
of training data: i=1

aLL(H)

Zw - o(67x0)] "

Compute derivative of
log-likelihood with respect
toeach 6;,j=0,1,..,m
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Gradient Ascent Review

Walk uphill and you will find a local maxima
(if your step is small enough).

Logistic regression LL(60)
IS convex
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Training: Gradient ascent step

4. Optimize. aLL(H)

Z[y@ — o (07x®)] "

Repeat many times:

For all thetas:
OLL(6°9)

agold

Qold_l_n Z y(l) Holde(l))] ](')

What does this look like in code?
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Training: Gradient Ascent

Gradient

n

Ascent Step 9

wo_ Qold S Z [y(l) Qolde(l))] xj(i)

initialize 6; =0for0<j<m
repeat many times:

gradient[j]=0for0<j<m

// compute all gradient[j]’s
// based on n training examples

6; +=m * gradient|j] forall0O<j<m
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MR . Gradient grew o l T ;
Training: Gradient Ascent ascent Step " = 67+ Z[w (6947 £0)] £

initialize 6; =0for0<j<m
repeat many times:

gradient[j]=0for0<j<m
for each training example (x, y):

foreach0<j<m:

// update gradient]j] for
// current (x,y) example

0; +=m * gradient[j] forall0<j<m
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Gradient

Training: Gradient Ascent S g g . [0 (70 19

initialize 6; =0for0<j<m
repeat many times:

gradient[j]=0for0<j<m
for each training example (x, y):

foreach0<j<m:

radient[j] += [ . Z ] . What are important
: J Y Tt e0mx) Y implementation
details?

0; +=m * gradient[j] forall0<j<m
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S . Gradient gnew _ go l T ;
Training: Gradient Ascent Ascent Step O =&+ Z[w (9°1¢7x®)] £

initialize 6; =0for0<j<m xj Is j-th feature of
repeat many times: input var x = (x4, ..., X,)

gradient[j]=0for0<j<m
for each training example (x, y):

foreach0<j<m:

gradient[j] +=

0; +=m * gradient[j] forall0<j<m
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MR . Gradient grew o l T ;
Training: Gradient Ascent ascent Step " = 07 1 Z[w (6947 £0)] £

initialize 6; =0for0<j<m

repeat many times:
Insert x, = 1 before

i il = <i<
gradient[j]=0for0<j<m training

for each training example (x, y):

foreach0<j<m:

e 1
gradient[j] += [y— 1-I{e‘9l;§j

0; +=m * gradient[j] forall0<j<m
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« e . Gradient gnew _ go l T ;
Training: Gradient Ascent Ascent Step O =&+ Z[w (9°1¢7x®)] £

initialize 6; =0for0<j<m
repeat many times:

gradient[j]=0for0<j<m

for each training example (x, y): Finish computing
for each 0 <j < m: gradient before
. updating any part of 6
gradient|[j] += [y — = e—HTx] Xj
[ 0; +=n * gradient[j] forall0<j<m p
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MR . Gradient grew o l T ;
Training: Gradient Ascent ascent Step " = 07 1 Z[w (6947 £0)] £

initialize 6; =0for0<j<m
repeat many times:

gradient[j]=0for0<j<m
for each training example (x, y):

foreach0<j<m:

1 : .
gradient[j] += [y _ - ] X; Learning rate n is a
1+e 9% constant you set before
training

0; +=E adient[j] forall0<j<m
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Gradient

Training: Gradient Ascent poc e e a3 [y (57x0)] o

initialize 6; =0for0<j<m x;j Is j-th feature of
repeat many times: input var x = (xq, ..., X;;,)
gradient[j]=0for0<j<m Insert xo = 1 before
training
for each training example (x, y): Finish computing
for each 0 <j < m: gradient before
updating any part of 6
el = [y _ 1_ _ ] X, Learning rate 1) is a
1+e 9% constant you set before
training

0; +=n * gradient|j] forall0<j<m
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Testing: Classification with Logistic Regression

Training

Testing

Learn parameters 6 = (6, 64, ..., 0,,,)

via gradient n | | |
ascent: o7 =67+ Z [y(‘) —0 (9°1de(0)] x,.(l)
=1

Compute y =P(Y =1|X =x) = d(87x) =
Classify instance as:

{1 y > 0.5, equivalently 87x > 0

1+e-0'x

0 otherwise
Parameters 6; are not updated during testing phase
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Today's plan

> - Chapter 2: Details
* Chapter 3: Philosophy
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Introducing notation y

Logistic =P =1X=x) =0(08"x)
Regression
model: y ity =1

P<Y:y|x:x):{1—y ify = 0

Prediction: Y =argmaxP(Y|X =x) =

{1 if § > 0.5
y={0,1}

0 otherwise
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Training: Learning the parameters via MLE

2. Compute

log-likelihood B e N
of training data: LL(®) ;y 0ga(67x) + (1 -y )Og( o(67x ))

How did we get this log-likelihood function?
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Log-likelihood of data

Regression -y ny=
model: — (Y (1 — \1-y (see Bernoulli
= ()70 -3) MLE PMF)
Likelihood

n
— = yO|Ix = x®
of training data: L(6) HP(Y yUIX =x1,6)
1=

Notes:
Actually conditional likelihood
Still correctly gets correct 0,
since X, 6 independent
See lecture notes
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Log-likelihood of data

isti y ify=1 .
L0g|5.tlc P(Y=y|X=x) = {}1] A :fy — 0 where § = 0(6”x)
Regression y ny
: ~ L "
model: =)’ - y)l y I(\jig |F3)§/Ir|r:1)0u |

n
Likelihood - . . Ly 1y
— — DY = 4(0) — 5 (1) 1 — 5@
of training data: (& li_llp(y yIxX =, 0) lizll(y ) (1-3%)

Log-likelihood:  LL(§) = z yOlog 9@ + (1 — y®)log(1 — §O)

1=1

n
— Z y®loga(67x®) + (1 - y®)log (1 — o(67x®))

=1 Stanford University 44



Training: Learning the parameters via MLE

3. Compute derivative of aLL(Q)

log-likelihood with respect
toeach 6;,j=0,1,..,m

Zw ~o(07x0)] 5"

How did we get this gradient?
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Aside: Sigmoid has a beautiful derivative

Sigmoid function: Derivative:

1 d
0(z) = —0d(z) =0(2)[1-0(2)]

1+e72 dz

What is - o(87x)?
Y]

o(x;)[1 = a(x;)]x;
ag(0Tx)[1—0(0"x)]x
(0" x)[1 - a(6"x)]x;
o(0Tx)x;|1 — a(8Tx)x;]
None/other
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Aside: Sigmoid has a beautiful derivative

Sigmoid function: Derivative:
1 d
o(z) = T oz EG(Z) =0(z)[1-0(2)]
What is -2-0(67x)? Letz = 0Tx = ) O
J k=0
d d 0z

—g(0Tx) = — . (Chain Rule)
90; 0(8°x) =7,00) 90;

s(07x)[1 - a(872)]x;
= 0(07x)[1 - 6(87x)]x;
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Compute gradient of log-conditional likelihood

JdLL(6)

06,

Find:

where
Log-conditional o i l. l.
Likelihood: LL(B) = z yDloga(8Tx®) + (1 —yW)log (1 — (67! )))

=1
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Compute gradient of log-likelihood

n
aLaLg(-Q) _ 2 % [yDlog(®) + (1 — yD) log(1 — $D)] Let 9O = ¢ (67xD)
J : ]
- 9 a9
z [yPlog(9%) + (1 = y®P)log(1 - 9P)] - (Chain Rule)
0y 96;
n
2 [ _ A(l)] y(i)(l — ?(i))xj(i) (calculus)
= ) |
B Z[V O = 50] " - Z[y D — g(67xD)] " (simplify)
i=1 -
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Today’s plan

=> - Chapter 3: Philosophy

Stanford University 50




Intuition about Logistic Regression

Logistic . e
Regresson P(Y = 1|X =x) = a(87x) where 67x= zejxj
Model Jj=0

Logistic Regression is trying to fit
a line that separates data instances
where y = 1 from those where y = 0:

We call such data (or functions
generating the data linearly separable.

Naive Bayes is linear too, because there is no interaction between
different features.
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Data is often not linearly separable

= Ll
@ o
° o® .. o . o .' g ke
b o { " p— .%
Sl
e 869(590 A ¢
° ® ooecqg : 43—_%} :
b @ o 6]
e o° s} ‘ ¢’
.. 3 OOQ P % % ."
o o %, Vo
@ o @ ‘ ®, e
@ . @ * Qb%)% chO
a o @éda 2a® L]

Not possible to draw a line that successfully separates all the
y = 1 points (green) from the y = 0 points (red)

Despite this fact, Logistic Regression and Naive Bayes still often work
well in practice
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Many tradeoffs in choosing an algorithm

Naive Bayes Logistic Regression
Modeling goal P(X,Y) P(Y|X)
Generative or Generative: could use joint Discriminative: just tries to
discriminative? distribution to generate new discriminatey =0vsy =1
points (but you might not (Cannot generate new points b/c
need this extra effort) no P(X,Y))

Needs parametric form
Continuous input (e.g., Gaussian) or
features? discretized buckets (for

multinomial features)

Yes, easily

Multi-valued discrete data hard
Discrete input Yes, multi-value discrete (e.g., if X; € {A,B, C}, not
features? data = multinomial P(X;|Y) necessarily good to encode as

{1’ 2, 3} Stanford University 53
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