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Announcements
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Updated CS109 logistics and policies

We are implementing several changes to CS109 logistics and policies 
in response to growing concern about Covid-19. These changes affect 
lectures, section, office hours and the final exam.

Read the new policies in the announcements on the course webpage: 
http://web.stanford.edu/class/cs109/

We welcome your questions on piazza 

http://web.stanford.edu/class/cs109/


Announcements
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Late Day Reminder

No late days permitted past 
last day of the quarter, 3/13

Problem Set 6

Due: Wednesday 3/11
Covers: Up to Lecture 25
Extra Python Office Hours: Saturday 3/7, 3-5PM

Autograded Coding Problems

Run your code in the command line or 
install Pycharm following directions on 
Pset 6 webpage

Regrades

Pset 1 to 5 and 
Midterm regrades to 
close on 3/11 at 1pm



Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy
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Background: Weighted sum
If 𝑿𝑿 = 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚 :

Weighted sum
with an
intercept term: 

5

= 𝜃𝜃1𝑋𝑋1 + 𝜃𝜃2𝑋𝑋2 + ⋯+ 𝜃𝜃𝑚𝑚𝑋𝑋𝑚𝑚

Weighted sum
(aka dot product)

𝑧𝑧 = 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑋𝑋𝑗𝑗

𝑧𝑧 = 𝜃𝜃𝑇𝑇𝑿𝑿 = �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑋𝑋𝑗𝑗

Define 𝑋𝑋0 = 1= 𝜃𝜃0𝑋𝑋0 + 𝜃𝜃1𝑋𝑋1 + 𝜃𝜃2𝑋𝑋2 + ⋯+ 𝜃𝜃𝑚𝑚𝑋𝑋𝑚𝑚

= 𝜃𝜃𝑇𝑇𝑿𝑿 New 𝑿𝑿 = 1,𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚



Background: Sigmoid function 𝜎𝜎 𝑧𝑧
• The sigmoid function:

• Sigmoid squashes 𝑧𝑧 to
a number between 0 and 1.

• Recall definition of probability:
A number between 0 and 1
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𝜎𝜎 𝑧𝑧 can represent a probability.

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧

𝜎𝜎 𝑧𝑧

𝑧𝑧



Background: Chain Rule
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𝜕𝜕𝜕𝜕 𝑥𝑥
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜕𝜕 𝑧𝑧
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

Calculus 
Chain Rule

𝜕𝜕 𝑥𝑥 = 𝜕𝜕 𝑧𝑧 𝑥𝑥



Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy
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From Naïve Bayes to Logistic Regression

Classification goal: Model 𝑃𝑃 𝑌𝑌 | 𝑿𝑿

Naïve Bayes Classifier:
• Estimate 𝑃𝑃 𝑿𝑿 | 𝑌𝑌 and 𝑃𝑃 𝑌𝑌 because 
• Actually modeling 𝑃𝑃 𝑿𝑿,𝑌𝑌
• Assume 𝑃𝑃 𝑿𝑿|𝑌𝑌 = 𝑃𝑃 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛|𝑌𝑌 = ∏𝑖𝑖=1

𝑚𝑚 𝑃𝑃 𝑋𝑋𝑖𝑖|𝑌𝑌

Can we model 𝑃𝑃 𝑌𝑌 | 𝑿𝑿 directly?
• Welcome our friend: Logistic Regression!
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�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 Predict the 𝑌𝑌 that is most likely
given our observation 𝑿𝑿

arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑿𝑿|𝑌𝑌 𝑃𝑃 𝑌𝑌



Logistic Regression
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�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 Predict the 𝑌𝑌 that is most likely
given our observation 𝑿𝑿

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
Logistic 

Regression
Model

models 
𝑃𝑃 𝑌𝑌 | 𝑿𝑿
directly



Logistic Regression
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0.81
𝒙𝒙 = [0,1,1]

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙]
conditional likelihood𝑿𝑿

input features

𝜃𝜃 parameter

Slides courtesy of Chris Piech

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝑥𝑥 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗



Logistic Regression Cartoon
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𝜃𝜃 parameter

Slides courtesy of Chris Piech



Logistic Regression cartoon

13Slides courtesy of Chris Piech

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

+
𝑧𝑧 𝜎𝜎 𝑧𝑧

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙



Logistic Regression input/output

14Slides courtesy of Chris Piech

𝑿𝑿, input features
0,1,1

�𝑌𝑌, output

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

+
𝑧𝑧 𝜎𝜎 𝑧𝑧

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙



Components of Logistic Regression

15Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑧𝑧 𝜎𝜎 𝑧𝑧

𝜃𝜃 weights
(aka parameters)

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙



Components of Logistic Regression

16Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑧𝑧 𝜎𝜎 𝑧𝑧

weighted sum

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙



Components of Logistic Regression

17Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑧𝑧 𝜎𝜎 𝑧𝑧

squashing function
b/t 0 and 1

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙



Components of Logistic Regression

18Slides courtesy of Chris Piech

+
𝑧𝑧 𝜎𝜎 𝑧𝑧

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

prediction

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗



Different predictions for different inputs

19Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

𝑿𝑿, input features
0,1,1



Different predictions for different inputs

20Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙

𝑿𝑿, input features
0,0,1



Parameters affect prediction

21Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙



Parameters affect prediction

22Slides courtesy of Chris Piech

+

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

𝑃𝑃 𝑌𝑌 = 1|𝒙𝒙



Logistic Regression Model
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• 𝜎𝜎 𝑧𝑧 = 1
1+𝑒𝑒−𝑧𝑧

, the sigmoid function

• For simplicity, define 𝑥𝑥0 = 1:

• Since 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 + 𝑃𝑃 𝑌𝑌 = 0|𝑿𝑿 = 𝒙𝒙 = 1:

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

𝑃𝑃 𝑌𝑌 = 0|𝑿𝑿 = 𝒙𝒙 = 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗where

Predict the 𝑌𝑌 that is most likely
given our observation 𝑿𝑿 models 𝑃𝑃 𝑌𝑌 | 𝑿𝑿 directly



Classifying using the sigmoid function
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𝑧𝑧

𝜎𝜎 𝑧𝑧

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧

�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗where
Logistic 

Regression
Model

Logistic Regression uses the 
sigmoid function to try and 
distinguish 𝑦𝑦 = 1 (blue) points 
from 𝑦𝑦 = 0 (red) points.



Classifying using the sigmoid function

When do we predict �𝑌𝑌 = 1?
A. If 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 > 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙
B. If 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 > 0.5
C. If 𝜃𝜃𝑇𝑇𝒙𝒙 > 0
D. All are valid, but C is easiest
E. None/Other
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𝑧𝑧

𝜎𝜎 𝑧𝑧

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧

�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌 | 𝑿𝑿 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃0 + �
𝑗𝑗=1

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗where
Logistic 

Regression
Model



Regression Algorithms

Linear Regression

Classification Algorithms

Naïve Bayes

Logistic Regression

26

Naming algorithms

Awesome classifier, 
terrible name



Training: Learning the parameters
Logistic regression gets its intelligence from its parameters 𝜃𝜃 =
𝜃𝜃0,𝜃𝜃1, … ,𝜃𝜃𝑚𝑚 .
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𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑖𝑖 |𝑿𝑿 = 𝒙𝒙 𝑖𝑖 ,𝜃𝜃

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

During training, find the 𝜃𝜃 that 
maximizes log-conditional likelihood 
of the training data. Use MLE!

• Logistic Regression Model: 

• Want to predict training
data as correctly as possible:

• Therefore, choose 𝜃𝜃 that maximizes 
the conditional likelihood of
observing i.i.d. training data:

arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌|𝑿𝑿 = 𝒙𝒙 𝑖𝑖 = 𝑦𝑦 𝑖𝑖 as often
as possible



Training: Learning the parameters via MLE

0. Add 𝑥𝑥0
𝑖𝑖 = 1 to each 𝒙𝒙 𝑖𝑖

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃𝜃𝑗𝑗 , 𝑗𝑗 = 0, 1, … ,𝑚𝑚:
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𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) + 1 − 𝑦𝑦(𝑖𝑖) log 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖)

𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙



Gradient Ascent
Walk uphill and you will find a local maxima

(if your step is small enough).
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𝐿𝐿
𝜃𝜃

𝜃𝜃1 𝜃𝜃2 Logistic regression 𝐿𝐿𝐿𝐿 𝜃𝜃
is convex

Review



Training: Gradient ascent step
4. Optimize.
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𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅
𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃old

𝜕𝜕𝜃𝜃𝑗𝑗old

For all thetas:

= 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

What does this look like in code?

Repeat many times:



Training: Gradient Ascent
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𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

// compute all gradient[j]’s
// based on n training examples

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

Gradient 
Ascent Step



Training: Gradient Ascent
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// update gradient[j] for
// current (x,y) example

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

for each 0 ≤ j ≤ m:

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient 

Ascent Step



Training: Gradient Ascent

What are important 
implementation 
details?
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initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient 

Ascent Step



Training: Gradient Ascent
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initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

• 𝑥𝑥𝑗𝑗 is 𝑗𝑗-th feature of
input var 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

Gradient 
Ascent Step 𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�

𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)



Training: Gradient Ascent

35

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

• 𝑥𝑥𝑗𝑗 is 𝑗𝑗-th feature of
input var 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

• Insert 𝑥𝑥0 = 1 before 
training

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient 

Ascent Step



Training: Gradient Ascent
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initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

• 𝑥𝑥𝑗𝑗 is 𝑗𝑗-th feature of
input var 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

• Insert 𝑥𝑥0 = 1 before 
training

• Finish computing
gradient before
updating any part of 𝜃𝜃

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient 

Ascent Step



Training: Gradient Ascent

37

initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

• 𝑥𝑥𝑗𝑗 is 𝑗𝑗-th feature of
input var 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

• Insert 𝑥𝑥0 = 1 before 
training

• Finish computing
gradient before
updating any part of 𝜃𝜃

• Learning rate 𝜂𝜂 is a 
constant you set before 
training

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient 

Ascent Step



Training: Gradient Ascent
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initialize 𝜃𝜃𝑗𝑗 = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m

for each training example (x, y):

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃𝜃𝑗𝑗 += η * gradient[j] for all 0 ≤ j ≤ m

𝑦𝑦 −
1

1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙
𝑥𝑥𝑗𝑗

• 𝑥𝑥𝑗𝑗 is 𝑗𝑗-th feature of
input var 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚

• Insert 𝑥𝑥0 = 1 before 
training

• Finish computing
gradient before
updating any part of 𝜃𝜃

• Learning rate 𝜂𝜂 is a 
constant you set before 
training

𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)Gradient 

Ascent Step



Testing: Classification with Logistic Regression
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Testing

• Compute �𝑦𝑦 = 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 =
• Classify instance as:

�1 �𝑦𝑦 > 0.5, equivalently 𝜃𝜃𝑇𝑇𝒙𝒙 > 0
0 otherwise

Parameters 𝜃𝜃𝑗𝑗 are not updated during testing phase

Training
Learn parameters 𝜃𝜃 = 𝜃𝜃0,𝜃𝜃1, … ,𝜃𝜃𝑚𝑚
via gradient
ascent: 𝜃𝜃𝑗𝑗new = 𝜃𝜃𝑗𝑗old + 𝜂𝜂 ⋅�

𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃old𝑇𝑇𝒙𝒙(𝒊𝒊) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

1
1 + 𝑒𝑒−𝜃𝜃𝑇𝑇𝒙𝒙



Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy

40



Introducing notation �𝑦𝑦

41

�𝑌𝑌 = arg max
𝑦𝑦= 0,1

𝑃𝑃 𝑌𝑌|𝑿𝑿 = 𝒙𝒙Prediction: = �1 if �𝑦𝑦 > 0.5
0 otherwise

�𝑦𝑦 = 𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙Logistic 
Regression 

model: 𝑃𝑃 𝑌𝑌 = 𝑦𝑦|𝑿𝑿 = 𝒙𝒙 = � �𝑦𝑦 if 𝑦𝑦 = 1
1 − �𝑦𝑦 if 𝑦𝑦 = 0



Training: Learning the parameters via MLE

0. Add 𝑥𝑥0
𝑖𝑖 = 1 to each 𝒙𝒙 𝑖𝑖

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃𝜃𝑗𝑗 , 𝑗𝑗 = 0, 1, … ,𝑚𝑚:

42

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) + 1 − 𝑦𝑦(𝑖𝑖) log 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖)

𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

How did we get this log-likelihood function?

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = �𝑦𝑦
�𝑦𝑦 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙



Log-likelihood of data

43

Notes:
• Actually conditional likelihood
• Still correctly gets correct 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀

since 𝑿𝑿,𝜃𝜃 independent
• See lecture notes

(see Bernoulli 
MLE PMF)

Logistic 
Regression 

model:

𝑃𝑃 𝑌𝑌 = 𝑦𝑦|𝑿𝑿 = 𝒙𝒙 = � �𝑦𝑦 if 𝑦𝑦 = 1
1 − �𝑦𝑦 if 𝑦𝑦 = 0

= �𝑦𝑦 𝑦𝑦 1 − �𝑦𝑦 1−𝑦𝑦

Likelihood
of training data: 𝐿𝐿 𝜃𝜃 = �

𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑖𝑖 |𝑿𝑿 = 𝒙𝒙 𝑖𝑖 ,𝜃𝜃

where �𝑦𝑦 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙



(see Bernoulli 
MLE PMF)

Log-likelihood of data

44

Logistic 
Regression 

model:

𝑃𝑃 𝑌𝑌 = 𝑦𝑦|𝑿𝑿 = 𝒙𝒙 = � �𝑦𝑦 if 𝑦𝑦 = 1
1 − �𝑦𝑦 if 𝑦𝑦 = 0

= �𝑦𝑦 𝑦𝑦 1 − �𝑦𝑦 1−𝑦𝑦

Likelihood
of training data: 𝐿𝐿 𝜃𝜃 = �

𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑖𝑖 |𝑿𝑿 = 𝒙𝒙 𝑖𝑖 ,𝜃𝜃

where �𝑦𝑦 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

= �
𝑖𝑖=1

𝑛𝑛

�𝑦𝑦 𝑖𝑖 𝑦𝑦 𝑖𝑖
1 − �𝑦𝑦 𝑖𝑖 1−𝑦𝑦 𝑖𝑖

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log �𝑦𝑦 𝑖𝑖 + 1 − 𝑦𝑦(𝑖𝑖) log 1 − �𝑦𝑦 𝑖𝑖Log-likelihood:

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) + 1 − 𝑦𝑦(𝑖𝑖) log 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖)



Training: Learning the parameters via MLE

0. Add 𝑥𝑥0
𝑖𝑖 = 1 to each 𝒙𝒙 𝑖𝑖

1. Logistic Regression model:

2. Compute
log-likelihood
of training data:

3. Compute derivative of
log-likelihood with respect
to each 𝜃𝜃𝑗𝑗 , 𝑗𝑗 = 0, 1, … ,𝑚𝑚:

45

𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) + 1 − 𝑦𝑦(𝑖𝑖) log 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖)

𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖) 𝑥𝑥𝑗𝑗
(𝑖𝑖)

𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙

How did we get this gradient?



Aside: Sigmoid has a beautiful derivative

What is 𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 ?

A. 𝜎𝜎 𝑥𝑥𝑗𝑗 1 − 𝜎𝜎 𝑥𝑥𝑗𝑗 𝑥𝑥𝑗𝑗
B. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝒙𝒙
C. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗
D. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗
E. None/other

46

Derivative:Sigmoid function:

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧
𝑑𝑑
𝑑𝑑𝑧𝑧

𝜎𝜎 𝑧𝑧 = 𝜎𝜎 𝑧𝑧 1 − 𝜎𝜎 𝑧𝑧



Aside: Sigmoid has a beautiful derivative

What is 𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 ?

A. 𝜎𝜎 𝑥𝑥𝑗𝑗 1 − 𝜎𝜎 𝑥𝑥𝑗𝑗 𝑥𝑥𝑗𝑗
B. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝒙𝒙
C. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗
D. 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗
E. None/other

47

Derivative:Sigmoid function:

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧
𝑑𝑑
𝑑𝑑𝑧𝑧
𝜎𝜎 𝑧𝑧 = 𝜎𝜎 𝑧𝑧 1 − 𝜎𝜎 𝑧𝑧

Let 𝑧𝑧 = 𝜃𝜃𝑇𝑇𝒙𝒙

𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 =
𝜕𝜕
𝜕𝜕𝑧𝑧
𝜎𝜎 𝑧𝑧 ⋅

𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃𝑗𝑗

(Chain Rule)

= �
𝑘𝑘=0

𝑚𝑚

𝜃𝜃𝑘𝑘𝑥𝑥𝑘𝑘 .

= 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑥𝑥𝑗𝑗



Compute gradient of log-conditional likelihood
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𝐿𝐿𝐿𝐿 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) log𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊) + 1 − 𝑦𝑦(𝑖𝑖) log 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝑖𝑖)Log-conditional 
Likelihood:

𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

where

Find:



Compute gradient of log-likelihood

49

Let �𝑦𝑦 𝑖𝑖 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙(𝒊𝒊)𝜕𝜕𝐿𝐿𝐿𝐿 𝜃𝜃
𝜕𝜕𝜃𝜃𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛
𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

𝑦𝑦(𝑖𝑖) log �𝑦𝑦 𝑖𝑖 + 1 − 𝑦𝑦(𝑖𝑖) log 1 − �𝑦𝑦 𝑖𝑖

= �
𝑖𝑖=1

𝑛𝑛
𝜕𝜕

𝜕𝜕 �𝑦𝑦 𝑖𝑖 𝑦𝑦(𝑖𝑖) log �𝑦𝑦 𝑖𝑖 + 1 − 𝑦𝑦(𝑖𝑖) log 1 − �𝑦𝑦 𝑖𝑖 ⋅
𝜕𝜕 �𝑦𝑦 𝑖𝑖

𝜕𝜕𝜃𝜃𝑗𝑗
(Chain Rule)

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) 1
�𝑦𝑦 𝑖𝑖 − 1 − 𝑦𝑦(𝑖𝑖) 1

1 − �𝑦𝑦 𝑖𝑖 ⋅ �𝑦𝑦 𝑖𝑖 1 − �𝑦𝑦 𝑖𝑖 𝑥𝑥𝑗𝑗
𝑖𝑖 (calculus)

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − �𝑦𝑦 𝑖𝑖 𝑥𝑥𝑗𝑗
(𝑖𝑖) = �

𝑖𝑖=1

𝑛𝑛

𝑦𝑦(𝑖𝑖) − 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝑖𝑖 𝑥𝑥𝑗𝑗
(𝑖𝑖) (simplify)



Today’s plan

Logistic Regression
• Chapter 0: Background
• Chapter 1: Big Picture
• Chapter 2: Details
• Chapter 3: Philosophy
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Logistic Regression is trying to fit
a line that separates data instances
where 𝑦𝑦 = 1 from those where 𝑦𝑦 = 0:

• We call such data (or functions
generating the data linearly separable.

• Naïve Bayes is linear too, because there is no interaction between 
different features.

Intuition about Logistic Regression
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𝜃𝜃𝑇𝑇𝒙𝒙 = 0

Logistic 
Regression 

Model
𝑃𝑃 𝑌𝑌 = 1|𝑿𝑿 = 𝒙𝒙 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝒙𝒙 𝜃𝜃𝑇𝑇𝒙𝒙 = �

𝑗𝑗=0

𝑚𝑚

𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗where



Data is often not linearly separable

• Not possible to draw a line that successfully separates all the 
𝑦𝑦 = 1 points (green) from the 𝑦𝑦 = 0 points (red)

• Despite this fact, Logistic Regression and Naive Bayes still often work 
well in practice
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Many tradeoffs in choosing an algorithm
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Naïve Bayes Logistic Regression
Modeling goal 𝑃𝑃 𝑿𝑿,𝑌𝑌 𝑃𝑃 𝑌𝑌|𝑿𝑿

Generative: could use joint 
distribution to generate new 
points (but you might not 
need this extra effort)

Generative or
discriminative?

Discriminative: just tries to 
discriminate 𝑦𝑦 = 0 vs 𝑦𝑦 = 1
(Cannot generate new points b/c 
no 𝑃𝑃 𝑿𝑿,𝑌𝑌 )

Continuous input
features?

Yes, easily

Needs parametric form  
(e.g., Gaussian) or 
discretized buckets (for 
multinomial features)

Discrete input
features?

Yes, multi-value discrete 
data = multinomial 𝑃𝑃 𝑋𝑋𝑖𝑖|𝑌𝑌

Multi-valued discrete data hard 
(e.g., if 𝑋𝑋𝑖𝑖 ∈ {𝐴𝐴,𝐵𝐵,𝐶𝐶}, not 
necessarily good to encode as 
1, 2, 3
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