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Step 1: Defining Your Terms

* What’s a ‘success’? What’s the sample space?

* What does each random variable actually represent, in
English? Every definition of an event or a random variable
should have averb in it. (‘ =’ is a verb)

* Make sure units match - particularly important for A




Translating English to
Probability

What vyou should immediately
think:

What the problem asks:

“What’s the probability of ” P( )

“_ given ”, (11 if tH]

Flip it: could we use what we

“atleast _ ” know about everything less than
?

“approximate 7’ use an approximation!

“How many ways...” combinatorics

these are just a few, and these are why practice is the best way to prepare for the exam!




2 Maedical Testing [24 points]

In medicine, there are many circumstances where we would like to detect the presence of a disease
in a large population. Suppose that we would like to identify the number of individuals who have
measles in a population of 1000 people using a blood test. The test is completely accurate: that
is, if there are traces of measles in the blood sample, the test will return true 100% of the time
and will otherwise return false. The probability that an individual has measles is 1% for everyone,
independently of others.

a. (8 points) Suppose that we use a blood test on each person, in order, for a total of 1000 blood
tests. What is the probability that the tenth test is the first positive test (i.e., the first person
we identify with measles)?
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(preamble)

1.1000 people

2.P(test_positive | person_has_measles) = 1
3.P(person_has_measles) = 0.01

(part a)
1.1000 independent tests
2.P(tests 1-9 negative and test 10 is positive)
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2 Maedical Testing [24 points]

In medicine, there are many circumstances where we would like to detect the presence of a disease
in a large population. Suppose that we would like to identify the number of individuals who have
measles in a population of 1000 people using a blood test. The test is completely accurate: that
is, if there are traces of measles in the blood sample, the test will return true 100% of the time
and will otherwise return false. The probability that an individual has measles is 1% for everyone,
independently of others.

a. (8 points) Suppose that we use a blood test on each person, in order, for a total of 1000 blood
tests. What is the probability that the tenth test is the first positive test (i.e., the first person
we identify with measles)?

(part a solution)
1.Independent tests/trials
2.P(test positive) = 0.01
3.P(10 trials until “success”)
4.Implies use Geometric

5.Answer is: (0.9979)*(0.01"1)
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Code in CS 109

Code Analysis Coding Applications

Expectation of Dithering

binary tree depth

(“recursive” expectation) CO2

Bloom Filter Analysis Biometric

 evels

Keystrokes

Titanic

Expectation of

recursive die roll game Peer Grading

Thompson Sampling




Code in CS 109

int fairRandom() {
int rl, r2;
while (true) {
rl unknownRandom() ;
r2 unknownRandom() ;
if (rl '= r2) break;

}

return r2;

a. Show mathematically that fairRandom does indeed return a 0 or a 1 with equal
probability.




Code in CS 109

int fairRandom() {
int rl, r2;
while (true) {
rl unknownRandom() ;
r2 unknownRandom() ;
if (rl '= r2) break;

}

return r2;

a. Show mathematically that fairRandom does indeed return a 0 or a 1 with equal
probability.

. Need to prove P(fairR() = 1) = 0.5
. We know the function returns, so we break into cases:

. Case 1:r1 =1 and r2 = 0 => likelihood p*(1-p)
. Case 2:r1 =0 and r2 =1 => likelihood p*(1-p)
. These are equal => equally likely for r2 to be 0 or 1
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Counting

Sum Rule

Inclusion-Exclusion
Principle

outcomes = |A| + | B]
if|ANB| =0

|A|+|B|-|ANB]|
for any |A N B

Product Rule

Pigeonhole Principle

outcomes = |A| X | B|

if all outcomes of B are possible
regardless of the outcome of A

If m objects are placed into n
buckets, then at least one bucket
has at least ceiling(m / n) objects.




Combinatorics:
Arranging ltems

Are your objects all distinct from each other?

NP Q=x

All indistinct?

2 2 A4 A
v v vV V¢
Or is there a mix?
S-S
L/ v v
Do you care about the order of your objects? Should you consider

SR “ different from “ B ;




Combinatorics:
Arranging ltems

ordering n distinct objects

n!

choosing k out of n distinct objects
to go in an unordered group

(n) 3 n!
k]  kl(n-k)!

ordering n objects when some are
indistinct from each other

n!

k 'k, ! ..

k!

arranging n indistinct objects in r
containers

(n+r—1)
r—1




Probability basics

. n(E)
(E) = lim in the general case
x—>00 N




Probability basics

. n(E)
(E) = lim in the general case
x—>00 N

( Event Space ) if all outcomes
Cprobab"ity) — —AT€ €qually likely!

(use counting with

< Sample space ) distinct objects)




Probability basics

. n(E)
(E) = lim in the general case
x—>00 N

( Event Space ) if all outcomes
(Probab"ity) e — are equally likely!

(use counting with

< Sample space ) distinct objects)

Axioms: O0<PE)<]1 PS) =1 P(EC) = 1 — P(E)




d.

Probability basics

7. If we assume that all possible poker hands (comprised of 5 cards from a standard 52 card
deck) are equally likely, what is the probability of being dealt:

a flush? (A hand is said to be a flush if all 5 cards are of the same suit. Note that this
definition means that straight flushes (five cards of the same suit in numeric sequence)
are also considered flushes.)

two pairs? (This occurs when the cards have numeric values a, a, b, b, ¢, where a, b and
¢ are all distinct.)

three of a kind? (This occurs when the cards have numeric values a, a, a, b, ¢, where a,
b and c are all distinct.)




Probability basics

7. If we assume that all possible poker hands (comprised of 5 cards from a standard 52 card
deck) are equally likely, what is the probability of being dealt:

a. a flush? (A hand is said to be a flush if all 5 cards are of the same suit. Note that this
definition means that straight flushes (five cards of the same suit in numeric sequence)
are also considered flushes.)

. two pairs? (This occurs when the cards have numeric values a, a, b, b, ¢, where a, b and
¢ are all distinct.)

. three of a kind? (This occurs when the cards have numeric values a, a, a, b, ¢, where a,
b and c are all distinct.)

Part a:

1.Hand rearrangement OK => use unordered sample space
2.Sample space => 52C5

3.For event space: choose suit, choose cards => 4C1 * 13C5
4.Put it together: P(a flush) =4C1 * 13C5 / 52C5




Conditional Probability

definition:

P(E
P(E|F) =

Chain Rule:

P(EF) = P(E|F)P(F)

*P(EF)=P(ENF)




Law of Total Probability

P(A) = P(A| B)P(B) + P(A|B“P(B%)

Event W = we walk to class. Event B = we bike = WAC.
Event L = we are late to class.
P(L|W)=0.5 P(L|B)=0.1. walk

P(W) = 0.3.

P(L)="7 total shaded = ?%
f whol
of whole @’/ 50%

10%




Law of Total Probability

P(A) = P(A| B)P(B) + P(A|B“P(B%)

Event W = we walk to class. Event B = we bike = WAC.
Event L = we are late to class.
P(L|W)=0.5 P(L|B)=0.1. walk

P(W) = 0.3.
P(L)="7 total shaded = ?%

of whole % 50%
P(L) = P(L|W)P(W) + P(L| WHP(WS)

= (0.5)(0.3) + (0.1)(0.7) [
= 0.22




Law of Total Probability

P(A) = P(A| B)P(B) + P(A|B“P(B%)

Event W = we walk to class. Event B = we bike = WAC.
Event L = we are late to class.
P(L|W)=0.5 P(L|B)=0.1. walk

P(W) = 0.3.
P(L) = ?

what if we can bike, walk, or % 90%
take the Marguerite (> 2 options)?

10%




Law of Total Probability

P(A) = P(A| B)P(B) + P(A|B“P(B%)

Event W = we walk to class. Event B = we bike = WAC.
Event L = we are late to class.
P(L|W)=0.5 P(L|B)=0.1.

P(W) = 0.3.
P(L) = ?

what if we can bike, walk, or 50%
take the Marguerite (> 2 options)?
10%

events must be:
- mutually exclusive, and
- exhaustive




Bayes’ Rule

P(F|E)P(E)

P(E|F) = PR




Bayes’ Rule

posterior likelihood 7 c-prior

K P(F|E)P(E)

P(E|F) = PR
normalization
constant




Bayes’ Rule

P(F|E)P(E)
P(F)

P(E|F) =

/

P(F|E)P(E) + P(F| EC)P(EC)

divide the event F into all the possible ways it can happen; use LoTP




Old Principles, New Tricks

Name of Rule Original Rule Conditional Rule

First axiom of probability 0 < P(E) <1 OLPE|G)<1
Complement Rule P(E)=1-P(E®) P(E|G)=1-PE°|G)
Chain Rule P(EF) = P(E | F)P(F) P(EF |G)=P(E | FG)P(F | G)

Bayes Theorem P(E|F)= % P(E| FG) = P(Flgg’)f();()ElG)




Independence




Independence

Independence

Mutual Exclusion

P(EF) = P(E)P(F)

|IENF|=0

“AN D”

“OR”




Independence

Conditional
Independence

P(EF) = P(E)P(F) | P(EF|G) = P(E|G)P(F|G)

P(E|F) = P(E) P(E|FG) = P(E| G)

Independence

“AN D” “AND [if]”

If E and F are independent.....

.....that does not mean they’ll be
iIndependent if another event happens!

& vice versa




Beyond the basics

7. Consider a hash table with 15 buckets, of which 9 are empty (have no strings hashed to
them) and the other 6 buckets are non-empty (have at least one string hashed to each of them
already). Now, 2 new strings are independently hashed into the table, where each string is
equally likely to be hashed into any bucket. Later, another 2 strings are hashed into the table
(again, independently and equally likely to get hashed to any bucket). What is the probability
that both of the final 2 strings are each hashed to empty buckets in the table?
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them) and the other 6 buckets are non-empty (have at least one string hashed to each of them
already). Now, 2 new strings are independently hashed into the table, where each string is
equally likely to be hashed into any bucket. Later, another 2 strings are hashed into the table
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How do you begin to break down this problem?
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How do you begin to break down this problem?

Let event A = first of initial two strings hashed to empty bucket.
Let event B = second of initial two strings hashed to empty bucket.
Let event C = first of final two strings hashed to empty bucket.

Let event D = second of final two strings hashed to empty bucket.

Define events




Beyond the basics

7. Consider a hash table with 15 buckets, of which 9 are empty (have no strings hashed to
them) and the other 6 buckets are non-empty (have at least one string hashed to each of them
already). Now, 2 new strings are independently hashed into the table, where each string is
equally likely to be hashed into any bucket. Later, another 2 strings are hashed into the table
(again, independently and equally likely to get hashed to any bucket). What is the probability
that both of the final 2 strings are each hashed to empty buckets in the table?

How do you begin to break down this problem?

Let event A = first of initial two strings hashed to empty bucket.
Let event B = second of initial two strings hashed to empty bucket.
Let event C = first of final two strings hashed to empty bucket.

Let event D = second of final two strings hashed to empty bucket.

Define events

We compute P(CD) as follows:
P(CD) = P(CD | AB)P(AB) + P(CD | A°B)P(A°B) +
P(CD | AB“)P(AB®) + P(CD | A°B“)P(A®B)
= (7/15)(6/15)(9/15)(8/15) + (8/15)(7/15)(6/15)(9/15) +
(8/15)(7/15)(9/15)(7/15) + (9/15)(8/15)(6/15)(6/15) Use LOTP
= 12168/154 ~ 0.2404

What is the question
asking?
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Probability Distributions

Discrete

Continuous
PMF: PDF:
Binomial Distribution
n=10,p=05

0.30

0.25

0.20 —]) ‘
P(x) 0.15 '

0.10

0.05 [ | z

¥ + + - + + ¥ —
0.00 — -3 -2 -1 0 | 2 3
0 1 2 3 W4 5 6 7 8 9 10

Number of successes (x)




Probability Distributions

Discrete

Continuous
coF: P(X <= x) cor: P(X <=x)
Binomial Distributi
P(X <= 6) Semslaam  CDF(6) P(X <= 1) CDF(1)
0.30 <
025 — =
)
0.20 —7/ @
P(x) 0.15 — ? ™~
010 — é =
005 — ] S 4
\ 1 2 3 4 5 j 7 8 9 10 o T4 T T T T T T
Number of successes (x) 3 -2 1 0 1 2 3




Expectation & Variance

Discrete definition Continuous definition

E[X] = Z x * P(x) E[X] = J x * p(x)dx
x:P(x)>0 x




Expectation & Variance

Discrete definition Continuous definition

E[X] = Z x * P(x) E[X] = J x * p(x)dx
x:P(x)>0 x

Properties of Expectation

E[X+ Y] = E[X]+ E[Y]




Expectation & Variance

Discrete definition Continuous definition

E[X] = Z x * P(x) E[X] = I x * p(x)dx

x:P(x)>0 x

Properties of Expectation
EIX+ Y] =E[X]+ E[Y]
ElaX + b] = aE[X] + b
E[g(X)] = )’ () * px(®)




Expectation & Variance

Discrete definition Continuous definition

E[X] = Z x * P(x) E[X] = I x * p(x)dx

x:P(x)>0 x

Properties of Expectation Properties of Variance
E[X + Y] = E[X] + E[Y] Var(X) = E[(X — p)?]
ElaX + b] = aE[X] + b

E[g(X)] = )’ () * px(®)




Expectation & Variance

Discrete definition Continuous definition

E[X] = Z x * P(x) E[X] = I x * p(x)dx

x:P(x)>0 x

Properties of Expectation Properties of Variance
E[X + Y] = E[X] + E[Y] Var(X) = E[(X — p)?]
E[aX + bl = aE[X]+b  Var(X) = E[X?] — E[X]?
E[g(X)] = ) g(x)*px(x) Var(aX +b) = a*Var(X)







All our (discrete) friends

NegBin(r,
P)

k,—A
PXX)=p (:):ﬂ‘(l—p)""‘ Ake' (1-p*p f:i)p'(l—p)"-'

Ber(p) Bin(n, p) Poi(\) Geo(p)

Getting candy or
not at a random |
house




All our (discrete) friends

Ber(p)

Bin(n, p)

Poi(A)

Geo(p)

P(X) =p

N\ k1 \n—k
(k>p(1 p)

Aee =4
k!

(1-p)*'p

Getting candy or
not at a random
house

# houses out of 20
that give out candy

# houses in an
hour that give out
candy

# houses to visit
before getting
candy

# houses to visit
before getting
candy 3 times




All our (discrete) friends

Ber(p)

Bin(n, p)

Poi(A)

Geo(p)

P(X) =p

N\ k1 \n—k
(k>p(1 p)

Aee =4
k!

(1-p)*'p

E[X]=p

E[X] = np

E[X] = A

E[X]=1/p

Var(X) =
p(1-p)

Var(X) =
np(1-p)

Var(X) = A

l1-p
p2

Getting candy or
not at a random
house

# houses out of 20
that give out candy

# houses in an
hour that give out
candy

# houses to visit
before getting
candy

# houses to visit
before getting
candy 3 times




All our (continuous) friends

Uni(a, B) Exp(N)

fx) = ﬂl f(x) = de™

- Qa
Pa<X<b)y=2"°2 Fx)=1- e~

- Qa

thickness of sidewalk
pavement between houses




All our (continuous) friends

Exp(A)

N(y, o)

flx) = Ae™*

1 —(x — )

) = ——¢

Fx)=1—e™™

X—p
(0]

F(x) = @( )

thickness of sidewalk
pavement between houses

time until feet get too sore
to trick or treat

weight of filled candy
baskets




All our (continuous) friends

Uni(a, B)

Exp(A)

N(y, o)

&) =

flx) = Ae™*

1 —(x — )

) = ——¢

—-a
b—a

Pa<X<b) =
f—a

Fx)=1—-e*

X—p
(0]

F(x) = @( )

a+p

E[x]=1/A

E[x] = p

|
Var(x) = o

Var(x) = ¢*

thickness of sidewalk
pavement between houses

time until feet get too sore
to trick or treat

weight of filled candy
baskets




Approximations

When can we approximate a binomial?

Binomial




Approximations

When can we approximate a binomial?

Binomial

" /

(o)

co®




Continuity Correction

Discrete Continuous
PMF: PDF:
Binomial Distribution
n=10,p=05
0.30
0.25
0.20 ] ‘

P(x) 0.15 '

0.10
0.05 [ ‘ Z

: + 4 } + 4 : -
0.00 — -3 -2 -1 0 | 3

5 6 7 8 9 10

—_

Number of successes (x)

Only applies to




Binomial(n,p) i
(Eromaio Jo—si
e

p=M/N , n=k , No o

—
H=np , g2=np(1-p) , N~ oo
-

\ -
— = e =

\
\{ Hypergeometric(M,N,K) ]

S~
U=rA, 02=TA2,
[ —00

Exponential(}) Uniform(0,1)

Chi-squared(n)
Weibull(a,b) Uniform(a,b)

Double-Exponential(0,A,A)




Distribution onslaught!

Coin flip is heads




Distribution onslaught!

Number of heads in 10 coin flips




Distribution onslaught!

Coin flips until a heads




Distribution onslaught!

Chance of CS109 student sleeping in class is 70%

Number of CS109 students sleeping in class right now?




Distribution onslaught!

Chance of CS109 student sleeping is 70%

Number of CS109 students sleeping right now?
(approximate)




Distribution onslaught!

CS109 students fall asleep on average once a minute.

Time until a CS109 student falls asleep?




Distribution onslaught!

CS109 students fall asleep on average once a minute.

Number of CS109 students who fall asleep in the next 10
minutes?




Joint Distributions

* Discrete case: Prya,b) = PX=a,Y =Db)
- Marginalize a variable out:

®* Continuous case: b,

)
Plai<x<ay,b;<y<b)= J J Jx y(x, y)dydx
a, Jb,

- Marginalize a variable out:

* For joint distributions to be independent, both their joint
probability density functions must be factorable and the
bounds of the variables must be separable.




Joint Distributions

* Discrete case: Prya,b) = PX=a,Y =Db)
- Marginalize a variable out:

®* Continuous case: b,

)
Plai<x<ay,b;<y<b)= J J Jx y(x, y)dydx
a, Jb,

- Marginalize a variable out: fx(a) — on fX Y(a,y)dy

* For joint distributions to be independent, both their joint
probability density functions must be factorable and the
bounds of the variables must be separable.




Sums of Indep. RVs

X~Bin(n{,p),Y~Bin(n,,p) => X + Y~Bin(n; + n,,p)
X"’POi(Al), Y"’POl(Az) => X + YNPOL(A]_ + Az)
X~N(uy,07),Y~N(up,03) => X + Y~N(uy + p, 0f + 03)

fx+y(@) = f fx(a—y)fy(y)dy  (general case)

y=—0x




Sums of Indep. RVs

X~Bin(n{,p),Y~Bin(n,,p) => X + Y~Bin(n; + n,,p)
X"’POi(Al), Y"’POl(Az) => X + YNPOL(A]_ + Az)
X~N(uy,07),Y~N(up,03) => X + Y~N(uy + p, 0f + 03)

fx+y(@) = f fx(a—y)fy(y)dy  (general case)

y=—0x

Caveat: These rules only work for
independent X and Y!




Relationships Between
Random Variables

Covariance
the extent to which the deviation of one variable from its mean
matches the deviation of the other from its mean

Cov(X,Y) = E[XY] — E[Y]E[X]

Correlation
covariance normalized by the variance of each variable
(cancels the units out)

Cov(X,Y)
\/ Var(X)Var(Y)

pX,Y) =

if two random variables are independent, they have a covariance of 0
(but not necessarily true the other way around!)
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Beta

Ouir first look at the concept of estimating parameters by observing data!

https://seeing-theory.brown.edu/bayesian-inference/index.html#section3



Beta

Our first look at the concept of estimating parameters by observing data!

100101010100010101001010100

Updating belief about Bernoulli parameter p




Sampling From Populations

Challenge: we want to know what the distribution of
happiness looks like in Bhutan, but we have limited time and
resources and the landscape looks like this:

climb every mountain....




Sampling — Conceptual
orinciples

Take a representative sample as large as you can
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Sampling — Conceptual
orinciples

Take a representative sample as large as you can

Sample statistics can be helpful in understanding the population

Be careful in assuming things about population from sample statistics
(you can bootstrap to better understand your population and statistics)




Taking One Sample

Pick a random sample
if sample size is large enough and sampling methodology is good
enough, you can consider it representative of the population!

We have handy equations for the sample mean and sample variance,
which are unbiased estimators of the population mean and variance

_ makes the estimate  §t4d(X) ~ (
- n-1_ unbiased




Taking Many Samples

Unbiased Estimators
the expected value of the estimated statistic is the value of the
true population statistic (if many samples were to be taken)

Central Limit Theorem
if you sample from the same population a bunch of times, the mean and sum

of all your samples (or any IID RVs) will be normally distributed no matter what
your distribution looks like!

https://seeing-theory.brown.edu/probability-distributions/index.html#section3




Central Limit Theorem







Bootstrapping: Simulating Many Samples
From One

challenge
we want to better understand the distribution of our sample statistic(s),
but we only have one sample of data

insight
since our sample represents our population, we can sample from the
data we have and it’s as if we had gone out and collected more
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We sample with replacement from our data and calculate our statistic of interest each
time, ending up with many estimates for our statistic of interest. We can use these
estimates to answer new questions. For example: what was the probability of getting a
sample variance between 1.5 and 2?
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General Inference: Sampling from a
Bayesian Network to Find Joint Probability

Joint Sampling
generate many “particles” by tracing through
the network, generating values for children
based on their parents

Calculate Conditional Probability
we can calculate any conditional probability of
specific variable assignments by simply counting
the particles that match what we’re looking for

NX=a,Y=Dhb)

PX=a|Y=b)=—"




Think: What is reasonable to ask on a test
about these topics?

Remember the ideas of the algorithms, and practice turning
them into high-level pseudocode:

Computing sample statistics
Boot-strapping p values

Joint Sampling
Rejection Sampling
Thompson Sampling
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2.

Parameter Estimation

Maximum Likelihood Estimation

Find likelihood: product of likelihoods of each
sample/datapoint given theta

. Take the log of that expression
. Take the derivative of that with respect to the parameters

Either set to O and solve
(if it's a simple case with closed form solution)

or plug into gradient ascent to find a value for theta that
maximizes your likelihood

Maximum A Posteriori

Find likelihood: product of likelihoods of each
sample/datapoint given theta, times your prior likelihood of
that theta

- 4. same as above



Gradient Ascent
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Classifier Algorithms

Naive Bayes

Algorithm

Logistic Regression

All features in x are
conditionally independent
given classification

Assumption

Sigmoid gives us the
probability of class 1

At train: Best estimates
for prior ony and
conditional likelihood of
data

What are we
optimizing/figuring out?
At test: Whether y=0 or y=1 is the
best guess

At train: The value(s) for ©
such that the probability
of our data is maximized

Learn (from data)
estimates for

P¥Y=y),PX,=x|Y=y)

(ex. where X, = xandY =y) + 1

P(x|y)= :
(ex. where Y =y) + 2

. ex.whereY=y

total examples

How do we do that
mathematically?

Probability of 1 datapoint

P(y|x) = c(07x)Y - [1 - G(QY‘X)Jl-y
Use data & gradient
ascent to improve thetas

i=1
+ (1-y®) log [1- 6(0"x")]5,

oLL(0)

J

— (1) T (i) (1)
0. ; [} o(0'x )]xj




Logistic Regression

one neuron (logistic regression model)
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What weights do we have to learn for 81, 82, 83 to perfectly classify
data of the form (A OR B)?
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What weights do we have to learn for 81, 82, 83 to perfectly classify
data of the form (A AND B)?




