1 Lecture 14, 2-7-20: Conditional Distributions

1. True or False?

- (a) Given marginal distributions $p_X(x)$ and $p_Y(y)$, it is possible to compute the joint distribution $p_{X,Y}(x, y)$.
- (b) Given the joint distribution $p_{X,Y}(x, y)$, it is possible to compute marginal distributions $p_X(x)$ and $p_Y(y)$.
- (c) In a conditional distribution table, all the elements add to one.
- 2. Assume the random variables X and Y are independent. Fill in the values for *a* and *b* in the following joint distribution table.

	X = -3	X = 9076
Y = 112	0.1	0.3
Y = 147	а	b

- 1. (a) False. We don't know how dependent X and Y are on each other (or whether they are independent), so we don't know how their probabilities will interact in a joint distribution.
 - (b) True. The marginal for a value of X is the sum (or integral for continuous) of Y's across that value.
 - (c) False. Only rows (or columns) sum to one. All the elements add to one in a *joint* distribution table (see lecture 14 slide 20).
- 2. First, observe that the actual values for X and Y (-3, 9076 & 112, 147 respectively) do not factor into our calculations for filling the table. Since X and Y are independent, we know that the row sum times column sum is equal to the cell where they intersect.

$$p_{X,Y}(x,y) = p_X(x)p_Y(y) = \left(\sum_{j \in range(Y)} p_{X,Y}(x,j)\right) * \left(\sum_{i \in range(X)} p_{X,Y}(i,y)\right)$$

From this, it follows that

$$0.1 = (0.1 + 0.3)(0.1 + a)$$
$$0.3 = (0.1 + 0.3)(0.3 + b)$$

Solving each equation for its respective variable results in a = 0.15, b = 0.45.

2 Lecture 15, 2-10-20: Correlation and Covariance

1. True or False? The symbol Cov is covariance, and the symbol ρ is Pearson correlation.

$$\begin{array}{c|c} X \perp Y \implies Cov(X,Y) = 0 & Var(X+X) = 2Var(X) \\ \hline Cov(X,Y) = 0 \implies X \perp Y & X \sim \mathcal{N}(0,1) \wedge Y \sim \mathcal{N}(0,1) \implies \rho(X,Y) = 1 \\ \hline Y = X^2 \implies \rho(X,Y) = 1 & Y = 3X \implies \rho(X,Y) = 3 \end{array}$$

1. True or False?

True	False $(\dots = 4Var(X))$
False (antecedent necessary, not su	ufficient) False (don't know how independent X & Y are)
False $(Y = X \implies)$	False (= 1)

3 Lecture 16, 2-12-20: Great Expectations

1. Short Answer. Let $X \sim Geo(p)$. Use the Law of Total Expectation to prove that E[X] = 1/p, by conditioning on whether the first flip is heads or tails.

1.

$E[X] = E[X|H]P(H) + E[X|T]P(T) = 1 \cdot p + (E[1+X])(1-p)$

Solving yields E[X] = 1/p.