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Section 6 Solution

Adapted for Winter 2020 by Alex Tsun

1. Random Number of Random Variables: law of total expectation

Let N be a non-negative integer-valued random variable; that is, takes values in {0, 1,2,... }.
Let X1, X5, X3,... be an infinite sequence of iid random variables (independent of N), each
with mean y, and X = Zfi | X; be the sum of the first N of them. Before doing any work,
what do you think E[X] will turn out to be? Show it mathematically.
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Alternatively,
E[X] = E[E[X|N]] = E[Nu] = puE[N]

2. Beta Sum: beta distribution and sum of RVs
What is the distribution of the sum of 100 IID Betas? Let X be the sum

X = Z X; Where each X; ~ Beta(a = 3,b = 4)

Note the variance of a Beta:

ab
(a+by(a+b+1)

Var(X;) = Where X; ~ Beta(a, b)

By the Central Limit Theorem, the sum of equally weighted IID random variables will
be Normally distributed. We calculate the expectation and variance of X; using the beta




formulas:
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3. Medicine Doses:

Megha has a health condition that requires unpredictable amounts of medication. Every day,
there is a 20% chance that she feels perfectly fine and requires no medicine. Otherwise, she
needs to take a dose of medication. The necessary dose is equally likely to be any value
in the continuous range 1 to 5 ounces. How much medicine she needs on any given day is
independent of all other days.

Megha’s insurance will fully cover 90 ounces of medicine for each 30-day period. What is
the probability that 90 ounces will be enough for the next 30 days? Make your life easier by
using Central Limit Theorem.

Let M be the amount of medicine Megha will need in the next thirty days. Let M; be the
amount of medicine Megha needs on the ith day. M is a sum of M through M3( and can
be modeled with the CLT.

To use the CLT, we need to first know the mean and variance of M;. To do this, let D; be
the event that she needs to take a dose on the ith day. Note that M;|D; ~ Uni(1,5) and
MilDl.C = (. Using the law of total expectation, we have:

E[M;] = E[M;|D;]P(D;) + E[M;|DF1P(DF) =3 0.8+ 0% 0.2 = 2.4

To find the variance of M;, we need to know E [Ml.z]. We can use a similar approach as
the previous problem along with the law of the unconscious statistician:




E[M?] = E[M|Di]P(D;) + E[M}|D{ |P(D{)
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We then have Var(M;) = E[M?] — E[M;]* = 8.267 — 2.4* = 2.507. According to the
CLT:
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