David Varodayan CS 109 Section #6 February 19-21, 2020

Section 6 Solution

Adapted for Winter 2020 by Alex Tsun

4)

1. Random Number of Random Variables: law of total expectation

Let *N* be a non-negative integer-valued random variable; that is, takes values in $\{0, 1, 2, ...\}$. Let $X_1, X_2, X_3, ...$ be an infinite sequence of iid random variables (independent of *N*), each with mean μ , and $X = \sum_{i=1}^{N} X_i$ be the sum of the first *N* of them. Before doing any work, what do you think E[X] will turn out to be? Show it mathematically.

$$E[X] = E\left[\sum_{i=1}^{N} X_i\right] = \sum_{n} E\left[\sum_{i=1}^{N} X_i \mid N = n\right] p_N(n) = \sum_{n} E\left[\sum_{i=1}^{n} X_i \mid N = n\right] p_N(n)$$
$$= \sum_{n} E\left[\sum_{i=1}^{n} X_i\right] p_N(n) = \sum_{n} n\mu p_N(n) = \mu \sum_{n} np_N(n) = \mu E[N]$$
Alternatively,

$$E[X] = E[E[X|N]] = E[N\mu] = \mu E[N]$$

2. Beta Sum: beta distribution and sum of RVs

What is the distribution of the sum of 100 IID Betas? Let X be the sum

$$X = \sum_{i=1}^{100} X_i \qquad \text{Where each } X_i \sim \text{Beta}(a = 3, b = 3)$$

Note the variance of a Beta:

$$\operatorname{Var}(X_i) = \frac{ab}{(a+b)^2(a+b+1)}$$
 Where $X_i \sim \operatorname{Beta}(a,b)$

By the Central Limit Theorem, the sum of equally weighted IID random variables will be Normally distributed. We calculate the expectation and variance of X_i using the beta

formulas:	
$E(X_i) = \frac{a}{a+b}$	Expectation of a Beta
$=\frac{3}{7}\approx 0.43$	
$\operatorname{Var}(X_i) = \frac{ab}{(a+b)^2(a+b+1)}$	Variance of a Beta
$=\frac{3\cdot 4}{(3+4)^2(3+4+1)}$	
$=\frac{12}{49\cdot 8}\approx 0.03$	
$X \sim N(\mu = n \cdot E[X_i], \sigma^2 = n \cdot \operatorname{Var}(X_i))$	
$\sim N(\mu = 43, \sigma^2 = 3)$	

3. Medicine Doses:

Megha has a health condition that requires unpredictable amounts of medication. Every day, there is a 20% chance that she feels perfectly fine and requires no medicine. Otherwise, she needs to take a dose of medication. The necessary dose is equally likely to be any value in the continuous range 1 to 5 ounces. How much medicine she needs on any given day is independent of all other days.

Megha's insurance will fully cover 90 ounces of medicine for each 30-day period. What is the probability that 90 ounces will be enough for the next 30 days? Make your life easier by using Central Limit Theorem.

Let *M* be the amount of medicine Megha will need in the next thirty days. Let M_i be the amount of medicine Megha needs on the *i*th day. *M* is a sum of M_1 through M_{30} and can be modeled with the CLT.

To use the CLT, we need to first know the mean and variance of M_i . To do this, let D_i be the event that she needs to take a dose on the ith day. Note that $M_i|D_i \sim Uni(1,5)$ and $M_i|D_i^C = 0$. Using the law of total expectation, we have:

$$E[M_i] = E[M_i|D_i]P(D_i) + E[M_i|D_i^C]P(D_i^C) = 3 * 0.8 + 0 * 0.2 = 2.4$$

To find the variance of M_i , we need to know $E[M_i^2]$. We can use a similar approach as the previous problem along with the law of the unconscious statistician:

$$\begin{split} E[M_i^2] &= E[M_i^2|D_i]P(D_i) + E[M_i^2|D_i^C]P(D_i^C) \\ &= \frac{4}{5} \int_{m=1}^5 m^2 f_M(m) dm + 0 * .2 \\ &= \frac{4}{5} \int_{m=1}^5 m^2 \frac{1}{4} dt \approx 8.267 \end{split}$$

We then have $Var(M_i) = E[M_i^2] - E[M_i]^2 = 8.267 - 2.4^2 = 2.507$. According to the CLT:

$$\sum_{i=1}^{30} M_i \approx N(30*2.4, 30*2.507) \implies M \sim N(72, 75.21) P(M < 90) \approx \Phi\left(\frac{90 - 72}{\sqrt{75.21}}\right) \approx 0.98$$