David Varodayan CS 109

Section #6 February 19-21, 2020

Section 6 Solution

Adapted for Winter 2020 by Alex Tsun

1. **Random Number of Random Variables**: *law of total expectation*

Let *N* be a non-negative integer-valued random variable; that is, takes values in $\{0, 1, 2, \ldots\}$. Let X_1, X_2, X_3, \ldots be an infinite sequence of iid random variables (independent of *N*), each with mean μ , and $X = \sum_{i=1}^{N} X_i$ be the sum of the first *N* of them. Before doing any work, what do you think $F[X]$ will turn out to be? Show it mathematically what do you think $E[X]$ will turn out to be? Show it mathematically.

$$
E[X] = E\left[\sum_{i=1}^{N} X_i\right] = \sum_{n} E\left[\sum_{i=1}^{N} X_i \mid N = n\right] p_N(n) = \sum_{n} E\left[\sum_{i=1}^{n} X_i \mid N = n\right] p_N(n)
$$

$$
= \sum_{n} E\left[\sum_{i=1}^{n} X_i\right] p_N(n) = \sum_{n} n \mu p_N(n) = \mu \sum_{n} n p_N(n) = \mu E[N]
$$
Alternatively,

$$
E[X] = E[E[X|N]] = E[N\mu] = \mu E[N]
$$

2. **Beta Sum**: *beta distribution and sum of RVs*

What is the distribution of the sum of 100 IID Betas? Let *X* be the sum

$$
X = \sum_{i=1}^{100} X_i
$$
 Where each $X_i \sim \text{Beta}(a = 3, b = 4)$

Note the variance of a Beta:

$$
Var(X_i) = \frac{ab}{(a+b)^2(a+b+1)}
$$
 Where $X_i \sim Beta(a, b)$

By the Central Limit Theorem, the sum of equally weighted IID random variables will be Normally distributed. We calculate the expectation and variance of X_i using the beta formulas: $E(X_i) = \frac{a}{a+1}$ *a* + *b* Expectation of a Beta = 3 $\frac{3}{7} \approx 0.43$ $Var(X_i) = \frac{ab}{(x + h)^2(x + h)}$ $(a + b)^2(a + b + 1)$ Variance of a Beta = $3 \cdot 4$ $(3 + 4)^2(3 + 4 + 1)$ = 12 $\frac{12}{49 \cdot 8} \approx 0.03$ $X \sim N(\mu = n \cdot E[X_i], \sigma^2 = n \cdot \text{Var}(X_i))$ $\sim N(\mu = 43, \sigma^2 = 3)$

3. **Medicine Doses**:

Megha has a health condition that requires unpredictable amounts of medication. Every day, there is a 20% chance that she feels perfectly fine and requires no medicine. Otherwise, she needs to take a dose of medication. The necessary dose is equally likely to be any value in the continuous range 1 to 5 ounces. How much medicine she needs on any given day is independent of all other days.

Megha's insurance will fully cover 90 ounces of medicine for each 30-day period. What is the probability that 90 ounces will be enough for the next 30 days? Make your life easier by using Central Limit Theorem.

Let *M* be the amount of medicine Megha will need in the next thirty days. Let *Mⁱ* be the amount of medicine Megha needs on the *i*th day. *M* is a sum of M_1 through M_{30} and can be modeled with the CLT.

To use the CLT, we need to first know the mean and variance of *Mⁱ* . To do this, let *Dⁱ* be the event that she needs to take a dose on the ith day. Note that $M_i|D_i \sim Uni(1, 5)$ and $M_i|D_i^C = 0$. Using the law of total expectation, we have: $M_i|D_i^C$ $i_i^C = 0$. Using the law of total expectation, we have:

$$
E[M_i] = E[M_i|D_i]P(D_i) + E[M_i|D_i^C]P(D_i^C) = 3 * 0.8 + 0 * 0.2 = 2.4
$$

To find the variance of M_i , we need to know $E[M_i^2]$. We can use a similar approach as the previous problem along with the law of the unconscious statistician:

$$
E[M_i^2] = E[M_i^2|D_i]P(D_i) + E[M_i^2|D_i^C]P(D_i^C)
$$

= $\frac{4}{5} \int_{m=1}^5 m^2 f_M(m) dm + 0 * .2$
= $\frac{4}{5} \int_{m=1}^5 m^2 \frac{1}{4} dt \approx 8.267$

We then have $Var(M_i) = E[M_i^2] - E[M_i]^2 = 8.267 - 2.4^2 = 2.507$. According to the CLT:

$$
\sum_{i=1}^{30} M_i \approx N(30*2.4, 30*2.507) \implies M \sim N(72, 75.21)P(M < 90) \approx \Phi\left(\frac{90 - 72}{\sqrt{75.21}}\right) \approx 0.98
$$