Section #7 Concept Check Solutions

1 Lecture 19, 2-21-20: Sampling/Bootstrapping

- 1. Computing the sample mean is similar to the population mean: sum all available points and divide by the number of points. However, sample variance is slightly different from population variance.
 - (a) Consider the equation for population variance, and an analogous equation for sample variance.

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
 (1)
$$S_{biased}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
 (2)

 S_{biased}^2 is a random variable which estimates the constant σ^2 . Is $E[S_{biased}^2]$ greater or less than σ^2 ?

- (b) Write the equation for $S_{unbiased}^2$ (known simply as S^2 in the slides). This is known as *Bessel's correction*.
- 1. (a) $E[S_{biased}^2] < \sigma^2$. The intuition is that the spread of a sample of points is generally smaller than the spread of all the points considered together.

(b)
$$S_{unbiased}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

2 Lecture 20, 2-24-20: General Inference

Suppose $X_1, ..., X_4$ are discrete random variables. We will abuse notation and write $p(x_1, x_2, x_3, x_4)$ to represent $P(X_1 = x_1, X_2 = x_2, X_3 = x_3, X_4 = x_4)$. In your answers, feel free to do the same. For example, $p(x_1, x_3) = P(X_1 = x_1, X_3 = x_3)$. Decompose into four terms, each as simple as possible.

- 1. If there is no assumption of independence, then $p(x_1, x_2, x_3, x_4) =$
- 2. If all variables are assumed independent, then $p(x_1, x_2, x_3, x_4) =$
- 3. Assuming the variables follow the Bayesian network structure below, $p(x_1, x_2, x_3, x_4) =$

- 1. $p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)p(x_4|x_1,x_2,x_3)$ (for example)
- 2. $p(x_1)p(x_2)p(x_3)p(x_4)$
- 3. $p(x_1)p(x_2)p(x_3|x_1,x_2)p(x_4|x_3)$

3 Lecture 21, 2-26-20: Parameters and MLE

Suppose x_1, \ldots, x_n are iid samples from some distribution with density function $f_X(x; \theta)$, where θ is unknown. Recall that the likelihood of the data is

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i; \theta)$$

Recall we solve an optimization problem to find $\hat{\theta}$ which maximizes L.

- 1. Write an expression for the log-likelihood, $LL(\theta) = \log L(\theta)$.
- 2. Why can we optimize $LL(\theta)$ rather than $L(\theta)$?
- 3. Why do we optimize $LL(\theta)$ rather than $L(\theta)$?
 - 1. $LL(\theta) = \sum_{i=1}^{n} \log f_X(x_i; \theta)$
 - 2. Logarithms are monotonic. This means that if f(a) > f(b), then $\log(f(a)) > \log(f(b))$, so correctness of arg max is preserved.
 - 3. Logs turn products into sums, which makes taking the derivative much simpler.